Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Trends Ecol Evol ; 39(7): 666-676, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38637209

ABSTRACT

Dispersal evolution modifies diverse spatial processes, such as range expansions or biological invasions of single species, but we are currently lacking a realistic vision for metacommunities. Focusing on antagonistic species interactions, we review existing theory of dispersal evolution between natural enemies, and explain how this might be relevant for classic themes in host-parasite evolutionary ecology, namely virulence evolution or local adaptation. Specifically, we highlight the importance of considering the simultaneous (co)evolution of dispersal and interaction traits. Linking such multi-trait evolution with reciprocal demographic and epidemiological feedbacks might change basic predictions about coevolutionary processes and spatial dynamics of interacting species. Future challenges concern the integration of system-specific disease ecology or spatial modifiers, such as spatial network structure or environmental heterogeneity.


Subject(s)
Biological Evolution , Host-Parasite Interactions , Animals , Animal Distribution , Population Dynamics , Ecosystem
2.
Ann Bot ; 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37407025

ABSTRACT

BACKGROUND AND AIMS: Is the increase in species diversity patterns towards lower latitudes, linked to reproductive traits? Plant reproductive organs influence reproductive isolation and hence species divergence. Abiotic differences between temperate and tropical regions can also directly impact on plant reproductive traits. Here we provide a novel overview of southern hemisphere, Afromontane forest tree taxonomical patterns and ask whether reproductive traits relate to latitude, while accounting for environmental (tree height) and evolutionary (biogeographical affinity) selective forces. METHODS: We compiled a novel dataset with a) flower colour, size and pollination syndrome and b) fruit colour, size and dispersal syndrome for 331 tree species found in six Afromontane forest regions. We categorised each species into latitudinal distribution using these six regions, spanning the southern Cape (34º S) to Mount Kenya (0º S). Additionally, we gathered maximum tree height (m) for each species and determined the global distribution of all 196 tree genera (Afrotropical, Palaeotropical or Pantropical). KEY RESULTS: Species, genera and families showed a general decrease in richness away from tropical and subtropical forests towards warm temperate forests. Southern Afrotemperate forests (the furthest south) had the highest tree endemism. There was no relationship between latitude and the reproductive traits tested here. Biogeographical affinity related to fruit colour and dispersal syndrome, with palaeotropical genera showing relative increases in black-purple fruit colour compared to pantropical genera and palaeotropical genera showing relative increases in biotic seed dispersal compared to Afrotropical genera, which showed higher relative abiotic seed dispersal. Taller trees had a higher chance to be wind or insect pollinated (compared to bird pollinated) and had larger fruits. CONCLUSIONS: Latitude explained patterns in Afromontane tree taxonomical diversity, however tree reproductive traits did not relate to latitude. We suggest that phylogenetic conservatism or convergence, or both, explain the reported patterns.

3.
Plants (Basel) ; 12(7)2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37050096

ABSTRACT

Recent field data suggest that migratory gulls disperse many rice field weeds by gut passage (endozoochory), most of which are dry fruited and widely assumed to have no long-distance dispersal mechanisms, except via human activity. We investigated this mechanism with a feeding experiment, in which seeds of five common rice field weeds (in order of increasing seed size: Juncus bufonius, Cyperus difformis, Polypogon monspeliensis, Amaranthus retroflexus, and the fleshy-fruited Solanum nigrum) were fed to seven individuals of lesser black-backed gulls Larus fuscus held in captivity. We quantified seed survival after collecting faeces at intervals for 33 h after ingestion, then extracting intact seeds and running germination tests, which were also conducted for control seeds. All five species showed high seed survival after gut passage, of >70%. Gut retention times averaged 2-4 h, but maxima exceeded 23 h for all species. Germinability after gut passage was 16-54%, and gut passage accelerated germination in J. bufonius and S. nigrum, but slowed it down in the other species. All species had lower germinability after gut passage compared to control seeds (likely due to stratification prior to the experiment), but the loss of germinability was higher in smaller seeds. There was no evidence that the different dispersal syndromes assigned to the five species (endozoochory, epizoochory or barochory) had any influence on our results. In contrast, mean gut retention time was strongly and positively related to seed size, likely because small seeds pass more quickly from the gizzard into the intestines. Non-classical endozoochory of dry-fruited seeds by waterbirds is a major but overlooked mechanism for potential long-distance dispersal, and more research into this process is likely essential for effective weed management.

4.
J Anim Ecol ; 92(6): 1113-1123, 2023 06.
Article in English | MEDLINE | ID: mdl-37087688

ABSTRACT

Dispersal is a central life history trait that affects the ecological and evolutionary dynamics of populations and communities. The recent use of experimental evolution for the study of dispersal is a promising avenue for demonstrating valuable proofs of concept, bringing insight into alternative dispersal strategies and trade-offs, and testing the repeatability of evolutionary outcomes. Practical constraints restrict experimental evolution studies of dispersal to a set of typically small, short-lived organisms reared in artificial laboratory conditions. Here, we argue that despite these restrictions, inferences from these studies can reinforce links between theoretical predictions and empirical observations and advance our understanding of the eco-evolutionary consequences of dispersal. We illustrate how applying an integrative framework of theory, experimental evolution and natural systems can improve our understanding of dispersal evolution under more complex and realistic biological scenarios, such as the role of biotic interactions and complex dispersal syndromes.


Subject(s)
Biological Evolution , Life History Traits , Animals , Population Dynamics , Ecosystem
5.
Proc Biol Sci ; 290(1990): 20221966, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36598014

ABSTRACT

Rapid evolutionary change during range expansions can lead to diverging range core and front populations, with the emergence of dispersal syndromes (coupled responses in dispersal and life-history traits). Besides intraspecific effects, range expansions may be impacted by interspecific interactions such as parasitism. Yet, despite the potentially large impact of parasites imposing additional selective pressures on the host, their role on range expansions remains largely unexplored. Using microcosm populations of the ciliate Paramecium caudatum and its bacterial parasite Holospora undulata, we studied experimental range expansions under parasite presence or absence. We found that the interaction of range expansion and parasite treatments affected the evolution of host dispersal syndromes. Namely, front populations showed different associations of population growth parameters and swimming behaviours than core populations, indicating divergent evolution. Parasitism reshaped trait associations, with hosts evolved in the presence of the parasite exhibiting overall increased resistance and reduced dispersal. Nonetheless, when comparing infected range core and front populations, we found a positive association, suggesting joint evolution of resistance and dispersal at the front. We conclude that host-parasite interactions during range expansions can change evolutionary trajectories; this in turn may feedback on the ecological dynamics of the range expansion and parasite epidemics.


Subject(s)
Life History Traits , Parasites , Animals , Syndrome , Host-Parasite Interactions , Population Dynamics , Biological Evolution
6.
Proc Biol Sci ; 289(1974): 20220068, 2022 05 11.
Article in English | MEDLINE | ID: mdl-35506227

ABSTRACT

Evidence accumulates that dispersal is correlated with individual behavioural phenotype (dispersal syndrome). The evolutionary causes and consequences of such covariation depend on the degree of plasticity versus inheritance of the traits, which requires challenging experiments to implement in mobile organisms. Here, we combine a forced dispersal experiment, natural colonization and longitudinal data to establish if dispersal and aggression levels are integrated and to test their adaptive nature in pied flycatchers (Ficedula hypoleuca). We found that (forced) dispersers behaved more aggressively in their first breeding year after dispersal and decreased their aggression in following years. Strength of dispersal syndrome and direction of fecundity selection on aggression in newly colonized areas varied between years. We propose that the net benefits of aggression for dispersers increase under harsh conditions (e.g. low food abundance). This hypothesis now warrants further testing. Overall, this study provides unprecedented experimental evidence that dispersal syndromes can be remodelled via adaptive plasticity depending on the individuals' local breeding experience and/or year-specific ecological conditions. It highlights the importance of individual behavioural variation in population dynamics.


Subject(s)
Songbirds , Animals , Biological Evolution , Phenotype , Population Dynamics , Syndrome
7.
Ecology ; 103(6): e3628, 2022 06.
Article in English | MEDLINE | ID: mdl-35018640

Subject(s)
Fruit , Seed Dispersal , Seeds
8.
Ann Bot ; 129(7): 831-838, 2022 07 18.
Article in English | MEDLINE | ID: mdl-34918034

ABSTRACT

BACKGROUND AND AIMS: Fruit traits and their inter-relationships can affect foraging choices by frugivores, and hence the probability of mutualistic interactions. Certain combinations of fruit traits that determine the interaction with specific seed dispersers are known as dispersal syndromes. The dispersal syndrome hypothesis (DSH) states that seed dispersers influence the combination of fruit traits found in fruits. Therefore, fruit traits can predict the type of dispersers with which plant species interact. Here, we analysed whether relationships of fruit traits can be explained by the DSH. To do so, we estimated the inter-relationships between morphological, chemical and display groups of fruit traits. In addition, we tested the importance of each trait group defining seed dispersal syndromes. METHODS: Using phylogenetically corrected fruit trait data and fruit-seed disperser networks, we tested the relationships among morphological, chemical and display fruit traits with Pearson's correlations and phenotypic integration indices. Then, we used perMANOVA to test if the fruit traits involved in the analysis supported the functional types of seed dispersers. KEY RESULTS: Morphological traits showed strong intragroup relationships, in contrast to chemical and display traits whose intragroup trait relationships were weak or null. Accordingly, only the morphological group of traits supported three broad seed disperser functional types (birds, terrestrial mammals and bats), consistent with the DSH. CONCLUSIONS: Altogether, our results give some support to the DSH. Here, the three groups of traits interacted in different ways with seed disperser biology. Broad functional types of seed dispersers would adjust fruit consumption to anatomical limitations imposed by fruit morphology. Once this anatomical filter is sovercome, seed dispersers use almost all the range of variation in chemical and display fruit traits. This suggests that the effect of seed dispersers on fruit traits is modulated by hierarchical decisions. First, morphological constraints define which interactions can actually occur; subsequently, display and composition determine fruit preferences.


Subject(s)
Fruit , Seed Dispersal , Animals , Birds , Fruit/anatomy & histology , Mammals , Phenotype , Seeds , Syndrome
9.
Proc Biol Sci ; 288(1953): 20210817, 2021 06 30.
Article in English | MEDLINE | ID: mdl-34157866

ABSTRACT

The dispersal-syndrome hypothesis posits that fruit traits are a product of selection by frugivores. Although criticized as adaptationist, recent studies have suggested that traits such as fruit or seed size, colour and odour exhibit signatures that imply selection by animal mutualists. These traits imply nutritional rewards (e.g. lipid, carbohydrate), attracting frugivores; however, this remains incompletely resolved. Here, we investigated whether fruit nutrients (lipid, sugar, protein, vitamin C, water content) moderate the co-adaptation of key disperser-group mutualisms. Multivariate techniques revealed that fruit nutrients assembled non-randomly and grouped according to key dispersal modes. Bird-dispersed fruits were richer in lipids than mammal-dispersed fruits. Mixed-dispersed fruits had significantly higher vitamin C than did mammal- or bird-dispersed fruits separately. Sugar and water content were consistently high irrespective of dispersal modes, suggesting that these traits appeal to both avian and mammalian frugivores to match high-energy requirements. Similarly, protein content was low irrespective of dispersal modes, corroborating that birds and mammals avoid protein-rich fruits, which are often associated with toxic levels of nitrogenous secondary compounds. Our results provide substantial over-arching evidence that seed disperser assemblages co-exert fundamental selection pressures on fruit nutrient trait adaptation, with broad implications for structuring fruit-frugivore mutualism and maintaining fruit trait diversity.


Subject(s)
Fruit , Seed Dispersal , Animals , Birds , Mammals , Nutrients
10.
J Evol Biol ; 33(6): 858-868, 2020 06.
Article in English | MEDLINE | ID: mdl-32198956

ABSTRACT

Understanding how ecological interactions have shaped the evolutionary dynamics of species traits remains a challenge in evolutionary ecology. Combining trait evolution models and phylogenies, we analysed the evolution of characters associated with seed dispersal (fruit size and colour) and herbivory (spines) in Neotropical palms to infer the role of these opposing animal-plant interactions in driving evolutionary patterns. We found that the evolution of fruit colour and fruit size was associated in Neotropical palms, supporting the adaptive interpretation of seed-dispersal syndromes and highlighting the role of frugivores in shaping plant evolution. Furthermore, we revealed a positive association between fruit size and the presence of spines on palm leaves, bracteas and stems. We hypothesize that interactions between palms and large-bodied frugivores/herbivores may explain the evolutionary relationship between fruit size and spines. Large-bodied frugivores, such as extinct megafauna, besides consuming the fruits and dispersing large seeds, may also have consumed the leaves or damaged the plants, thus simultaneously favouring the evolution of large fruits and defensive structures. Our findings show how current trait patterns can be understood as the result of the interplay between antagonistic and mutualistic interactions that have happened throughout the evolutionary history of a clade.


Subject(s)
Arecaceae/genetics , Biological Evolution , Fruit/genetics , Animals , Arecaceae/anatomy & histology , Fruit/anatomy & histology , Latin America , Pigmentation/genetics , Plant Defense Against Herbivory/genetics , Seed Dispersal/genetics , Tropical Climate
11.
J Evol Biol ; 33(2): 217-224, 2020 02.
Article in English | MEDLINE | ID: mdl-31677316

ABSTRACT

Dispersal often covaries with other traits, and this covariation was shown to have a genetic basis. Here, we wanted to explore to what extent genetic constraints and correlational selection can explain patterns of covariation between dispersal and key life-history traits-lifespan and reproduction. A prediction from the fitness-associated dispersal hypothesis was that lower genetic quality is associated with higher dispersal propensity as driven by the benefits of genetic mixing. We wanted to contrast it with a prediction from a different model that individuals putting more emphasis on current rather than future reproduction disperse more, as they are expected to be more risk-prone and exploratory. However, if dispersal has inherent costs, this will also result in a negative genetic correlation between higher rates of dispersal and some aspects of performance. To explore this issue, we used the dioecious nematode Caenorhabditis remanei and selected for increased and decreased dispersal propensity for 10 generations, followed by five generations of relaxed selection. Dispersal propensity responded to selection, and females from high-dispersal lines dispersed more than females from low-dispersal lines. Females selected for increased dispersal propensity produced fewer offspring and were more likely to die from matricide, which is associated with a low physiological condition in Caenorhabditis nematodes. There was no evidence for differences in age-specific reproductive effort between high- and low-dispersal females. Rather, reproductive output of high-dispersal females was consistently reduced. We argue that our data provide support for the fitness-associated dispersal hypothesis.


Subject(s)
Caenorhabditis/physiology , Models, Biological , Animal Distribution/physiology , Animals , Behavior, Animal/physiology , Caenorhabditis/classification , Female
12.
Naturwissenschaften ; 106(7-8): 43, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31263966

ABSTRACT

Dispersal, movement leading to gene flow, is a fundamental but costly life history trait. The use of indirect social information may help mitigate these costs, yet we often know little about the proximate sources of such information, and how dispersers and residents may differ in their information use. Terrestrial molluscs, which have a high cost of movement and obligatorily leave information potentially exploitable by conspecifics during movement (through mucus trails), are a good model to investigate links between dispersal costs and information use. We studied whether dispersers and residents differed in their trail-following propensity in the snail Cornu aspersum. Dispersers followed mucus trails more frequently than expected by chance, contrary to non-dispersers. Trail-following by dispersers may reduce dispersal costs by reducing energy expenditure and helping snails find existing habitat or resource patches. Finally, we point that ignoring the potential for collective dispersal provided by trail-following may hinder our understanding of the demographic and genetic consequences of dispersal.


Subject(s)
Animal Distribution/physiology , Models, Biological , Snails/physiology , Animals , Mucus/physiology
13.
Annu Rev Entomol ; 63: 345-368, 2018 01 07.
Article in English | MEDLINE | ID: mdl-29029589

ABSTRACT

Insect invasions, the establishment and spread of nonnative insects in new regions, can have extensive economic and environmental consequences. Increased global connectivity accelerates rates of introductions, while climate change may decrease the barriers to invader species' spread. We follow an individual-level insect- and arachnid-centered perspective to assess how the process of invasion is influenced by phenotypic heterogeneity associated with dispersal and stress resistance, and their coupling, across the multiple steps of the invasion process. We also provide an overview and synthesis on the importance of environmental filters during the entire invasion process for the facilitation or inhibition of invasive insect population spread. Finally, we highlight important research gaps and the relevance and applicability of ongoing natural range expansions in the context of climate change to gain essential mechanistic insights into insect invasions.


Subject(s)
Animal Distribution , Insecta , Introduced Species , Adaptation, Biological , Animals , Arachnida
14.
Biota Neotrop. (Online, Ed. ingl.) ; 17(4): e20170336, 2017. tab, graf
Article in English | LILACS | ID: biblio-951124

ABSTRACT

Abstract Studies of the vegetation on islands off the coast of southeastern Brazil are still very scarce, despite their importance for assessing, managing, and conserving insular biodiversity. We present here a list of the vascular flora of Queimada Grande Island (QGI; 24°29′10″ S, 46°40′30″ W, 57 ha, 33.2 km from the coast) in southeastern Brazil and describe its phytophysiognomies. The island is covered mainly by Atlantic Forest (Dense Ombrophilous Forest), as well as with rock outcrop and anthropogenic vegetation with herbaceous-shrub phytophysiognomies. QGI showed relatively low species richness (S = 125) when compared to other Brazilian coastal islands. Herbaceous (52) and climbing species (31) predominated on QGI. The richest families were Fabaceae (11 species), Poaceae (9), and Apocynaceae, Asteraceae and Orchidaceae (8 species each). Most species (S = 112) are autochthonous from different phytophysiognomies of the southeastern Brazilian Atlantic Forest complex. Many species associated with anthropically disturbed areas (S = 26) can be found on QGI, including the invasive grass Melinis minutiflora. There was a slight predominance of zoochory (S = 50). We did not identify any species endemic to QGI. One of its species (Cattleya intermedia, Orchidaceae) is vulnerable at both national and regional levels, and another (Barrosoa apiculata, Asteraceae) is presumably extinct on the mainland in São Paulo State. The vascular flora of QGI originated from the mainland Atlantic Forest complex, following the pattern of other coastal islands in southeastern Brazil. The flora and vegetation of QGI reflect the combination of insular conditions, the small size of the island, habitat restriction, steep topography, incipient soils, and the past use of the area with the introduction of several foreign species. We recommend permanent monitoring of the vegetation cover of QGI and its management, in order to ensure the conservation of the local native biota.


Resumo Estudos sobre a vegetação de ilhas costeiras no sudeste do Brasil ainda são muito escassos, apesar de sua importância para a avaliação, manejo e conservação da biodiversidade insular. Nós apresentamos aqui uma lista da flora vascular da Ilha Queimada Grande (IQG; 24°29′10″ S, 46°40′30″ W, 57 ha, 33,2 km da costa), sudeste do Brasil, e descrevemos suas fitofisionomias. A ilha é recoberta principalmente por Floresta Atlântica (Floresta Ombrófila Densa), bem como por vegetação sobre afloramento rochoso e vegetação antrópica com fisionomias herbáceo-arbustivas. A IQG apresentou riqueza relativamente baixa (S = 125) comparada a de outras ilhas costeiras do Brasil. Espécies herbáceas (52) e trepadeiras (31) predominaram na IQG. As famílias mais ricas foram Fabaceae (11 espécies), Poaceae (9), Apocynaceae, Asteraceae e Orchidaceae (8 espécies cada). A maioria das espécies (S = 112) é autóctone de diferentes fitofisionomias do complexo da Floresta Atlântica do sudeste do Brasil. Muitas espécies associadas a áreas antropicamente alteradas (S = 26) são encontradas na IQG, incluindo a gramínea invasora Melinis minutiflora. Houve ligeira predominância de zoocoria (S = 50). Nós não identificamos espécies endêmicas para a IQG. Uma espécie (Cattleya intermedia, Orchidaceae) encontra-se vulnerável em nível nacional e estadual, e outra (Barrosoa apiculata, Asteraceae) está presumivelmente extinta no estado de São Paulo. A flora vascular da IQG originou-se no complexo da Floresta Atlântica continental, seguindo o padrão de outras ilhas costeiras do sudeste do Brasil. A flora e a vegetação da IQG refletem a combinação da condição insular, tamanho reduzido da ilha, restrição de habitat, topografia acidentada, solos incipientes e o uso pretérito da área com a introdução de várias espécies alóctones. Nós recomendamos o monitoramento permanente da vegetação da IQG e seu manejo, visando garantir a conservação da biota nativa local.

15.
Am Nat ; 188(2): 175-95, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27420783

ABSTRACT

The evolutionary stability of quantitative traits depends on whether a population can resist invasion by any mutant. While uninvadability is well understood in well-mixed populations, it is much less so in subdivided populations when multiple traits evolve jointly. Here, we investigate whether a spatially subdivided population at a monomorphic equilibrium for multiple traits can withstand invasion by any mutant or is subject to diversifying selection. Our model also explores the correlations among traits arising from diversifying selection and how they depend on relatedness due to limited dispersal. We find that selection tends to favor a positive (negative) correlation between two traits when the selective effects of one trait on relatedness is positively (negatively) correlated to the indirect fitness effects of the other trait. We study the evolution of traits for which this matters: dispersal that decreases relatedness and helping that has positive indirect fitness effects. We find that when dispersal cost is low and the benefits of helping accelerate faster than its costs, selection leads to the coexistence of mobile defectors and sessile helpers. Otherwise, the population evolves to a monomorphic state with intermediate helping and dispersal. Overall, our results highlight the effects of population subdivision for evolutionary stability and correlations among traits.


Subject(s)
Biological Evolution , Genetic Fitness , Haploidy , Life Cycle Stages , Models, Genetic , Mutation , Selection, Genetic
16.
J Chem Ecol ; 42(4): 323-8, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27039380

ABSTRACT

Fleshy fruits contain a myriad of secondary metabolites that may fulfill various non-mutually exclusive ecological functions. Among them are defense against pathogens and herbivores, manipulation of frugivores' gut retention time, or controlling the germination process. In addition, it has been suggested that aroma compounds may be used as fruit-selection cues by frugivores, and that plants may be under selection to provide a reliable signal for ripeness to seed-dispersal vectors through ripe fruit aroma. A previous project demonstrated that fruit odor of two Neotropical primate-dispersed plant species can be used by primates to identify ripe fruits. Here, we provide data supporting the hypothesis that olfactory conspicuousness of ripeness in these two species may be an evolved signal rather than a cue exploited by primates. We analyzed the odors of ripe and unripe fruits of the two species along with odors of two sympatric species whose main dispersal vector is passerine birds. We show that only primate-dispersed species significantly change their odor profiles upon ripening. Thus, odor of bird-dispersed species is not informative regarding their ripeness level and is likely to fulfill other functions. We discuss these data in light of the multiple hypotheses for the presence of fruit secondary metabolites, and we offer a roadmap for future studies to establish the hypothesis that fruit odor is an evolved signal for ripeness.


Subject(s)
Fruit/chemistry , Fruit/growth & development , Odorants/analysis , Plants/chemistry , Primates/physiology , Seed Dispersal , Tropical Climate , Animals
17.
J Theor Biol ; 374: 94-106, 2015 Jun 07.
Article in English | MEDLINE | ID: mdl-25816742

ABSTRACT

Over the past decade, the neutral theory of biodiversity has stirred up community assembly theory considerably by suggesting that stochasticity in the form of ecological drift is an important factor determining community composition and community turnover. The neutral theory assumes that all species within a community are functionally equivalent (the neutrality assumption), and therefore applies best to communities of trophically similar species. Evidently, trophically similar species may still differ in dispersal ability, and therefore may not be completely functionally equivalent. Here we present a new sampling formula that takes into account the partitioning of a community into two guilds that differ in immigration rate. We show that, using this sampling formula, we can accurately detect a subdivision into guilds from species abundance distributions, given ecological data about dispersal ability. We apply our sampling formula to tropical tree data from Barro Colorado Island, Panama. Tropical trees are divided depending on their dispersal mode, where biotically dispersed trees are grouped as one guild, and abiotically dispersed trees represent another guild. We find that breaking neutrality by adding guild structure to the neutral model significantly improves the fit to data and provides a better understanding of community assembly on BCI. Our findings are thus an important step towards an integration of neutral and niche theory.


Subject(s)
Biodiversity , Models, Biological , Plant Dispersal , Trees/physiology , Ecology/methods , Ecosystem , Likelihood Functions , Panama , Population Dynamics , Probability , Reproducibility of Results , Species Specificity , Tropical Climate
18.
Biota Neotrop. (Online, Ed. ingl.) ; 14(4): e20140062, 28/11/2014. tab, graf
Article in English | LILACS | ID: biblio-951011

ABSTRACT

Climbing plants are remarkable components of forests, highly contributing for the diversity and dynamics of communities. Studies focusing on climbing plants are scarce and for many vegetation types little is known about climbing species composition and their traits relevant for dispersal and establishment. The focus of this study is to provide the first floristic inventory of climbing plants in an Araucaria forest of Brazil, describing the dispersal syndromes and climbing mechanisms of species and comparing these traits and species composition patterns with other study sites in Southern Brazil. We found 104 taxa belonging to 33 families, with Asteraceae (22 spp.) and Apocynaceae (14 spp.) being the richest families. Among climbing mechanisms, stem twiner (50 spp.) is the most common, followed by tendril (20 spp.) and scrambler (12 spp.), while in relation to the dispersal syndromes, anemochoric species (65 spp.) are the most relevant followed by endozoochoric (28 spp.). Three new species registries were found for Rio Grande do Sul State expanding their occurrence range towards South Brazil. The comparison of climbers' survey sites showed two sharp groups in relation to species composition and traits proportion, Seasonal and Araucaria/Atlantic forest sites, but with no difference of traits frequency between sites. There is a predominance of stem twiners species in all sites, but the relative difference for tendril species increases in Araucaria and Atlantic forest sites. The Asteraceae and Apocynaceae families were the most relevant, contrasting to Seasonal forests of Southeast Brazil. Interesting patterns can be achieved with a more detailed classification of climbing mechanisms and the results found in this study contributes to enhance the knowledge on climbers' traits and diversity in South Brazil.


Trepadeiras são importantes componentes florestais, contribuindo na diversidade e dinâmica de comunidades vegetais. Estudos focados em trepadeiras são escassos e para muitos tipos vegetacionais pouco se sabe sobre a composição de espécies de trepadeiras e seus atributos relevantes para dispersão e estabelecimento. O foco deste estudo é fornecer o primeiro inventário florístico de plantas trepadeiras em uma floresta de Araucária no Brasil, descrevendo as síndromes de dispersão e mecanismos de escalada das espécies e comparando esses atributos e a composição de espécies com outros sítios no Sul do Brasil. Foram encontrados 104 taxa pertencentes a 33 famílias, sendo Asteraceae (22 spp.) e Apocynaceae (14 spp.) as famílias mais ricas. Dentre os mecanismos de escalada, o tipo volúvel (50 spp.) é o mais comum, seguido por gavinhas (20 spp.) e apoiantes (12 spp.), enquanto em relação ès síndromes de dispersão as espécies anemocóricas (65 spp.) são as mais relevantes seguidas por endozoocóricas (28 spp.). Três novos registros de espécies foram encontrados para o Estado do Rio Grande do Sul, expandindo suas extensões de ocorrência para o Sul do Brasil. A comparação entre sítios evidenciou dois grupos nítidos em relação è composição de espécies e proporção de atributos, sítios em florestas sazonais e nas florestas com Araucária e Atlântica, porém não há diferença na frequência dos atributos entre os sítios. Há uma predominância de espécies volúveis em todos os sítios, entretanto a diferença relativa para espécies com gavinhas aumenta nos sítios de floresta com Araucária e Atlântica. As famílias Asteraceae e Apocynaceae foram as mais relevantes, contrastando com florestas sazonais no Sudeste do Brasil. Padrões interessantes podem ser encontrados com uma classificação mais detalhada dos mecanismos de escalada e os resultados encontrados neste estudo contribuem para aumentar o conhecimento sobre os atributos e a diversidade de trepadeiras no Sul do Brasil.

19.
Ecol Lett ; 17(6): 756-67, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24690406

ABSTRACT

Recent research has highlighted interdependencies between dispersal and other life-history traits, i.e. dispersal syndromes, thereby revealing constraints on the evolution of dispersal and opportunities for improved ability to predict dispersal by considering suites of dispersal-related traits. This review adds to the growing list of life-history traits linked to spatial dispersal by emphasising the interdependence between dispersal through space and time, i.e. life-history diversity that distributes individuals into separate reproductive events. We reviewed the literature that has simultaneously investigated spatial and temporal dispersal to examine the prediction that traits of these two dispersal strategies are negatively correlated. Our results suggest that negative covariation is widely anticipated from theory. Empirical studies often reported evidence of weak negative covariation, although more complicated patterns were also evident, including across levels of biological organisation. Existing literature has largely focused on plants with dormancy capability, one or two phases of the dispersal process (emigration and/or transfer) and a single level of biological organisation (theory: individual; empirical: species). We highlight patterns of covariation across levels of organisation and conclude with a discussion of the consequences of dispersal through space and time and future research areas that should improve our understanding of dispersal-related life-history syndromes.


Subject(s)
Animal Distribution , Models, Biological , Plant Dispersal , Animals , Biological Evolution , Conservation of Natural Resources , Population Dynamics
20.
Biota Neotrop. (Online, Ed. ingl.) ; 14(1): e20130003, Jan.-Mar. 2014. tab, graf
Article in English | LILACS | ID: biblio-950985

ABSTRACT

In ecological communities, the proportion of plant species with different dispersal syndromes is known as the dispersal spectrum, which can result from different selective pressures such as climate. This is because variations in temperature, humidity, atmospheric pressure and precipitation result in distinct flora and fauna among different sites. If climate conditions along an altitudinal range act as a strong direct or indirect selective pressure on dispersal syndromes, the dispersal spectrum among plant communities in different altitudes should be distinct. We organized the dispersal syndromes in five hierarchical levels according to the levels of detail in diaspore morphology and, consequently, different degrees of specificity to the dispersers. Then we identified, within each hierarchical level, the syndromes of tree species of four forest types of the Atlantic Rainforest along a 1200 m altitudinal range in Southeast Brazil. Among 327 species, we found two syndromes in the most general hierarchical level (abiotic and biotic dispersal), three in the following level (wind, self and animal), three in the intermediate level (barochory, autochory and endozoochory), two in the forth level (mammal and bird), and 12 syndromes in the most specific level, all of which were related to the morphology of diaspores dispersed by wind, autochory, mammals and birds. The dispersal spectrum in the five hierarchical levels was similar among the four forest types. Overall, the majority of species is dispersed by biotic agents, considered here as animals and the parent plant itself. Within biotic agents, the most important are animals, specifically birds. Most bird-dispersed species present drupoid diaspores. Our results indicate that the selective pressures on dispersal syndromes originated from climate conditions that vary with altitude are not strong, hence resulting in the same dispersal spectrum among the forest types.


Dentro de uma comunidade, a proporção de espécies vegetais com diferentes síndromes de dispersão é chamada de espectro de dispersão, o qual pode resultar de distintas pressões seletivas, como o clima. Isso ocorre porque variações na temperatura, umidade, pressão atmosférica e precipitação resultam em flora e fauna distintas entre locais. Assim, podemos esperar que o espectro de dispersão de comunidades vegetais em diferentes altitudes seja distinto se as condições climáticas ao longo do gradiente altitudinal atuarem como pressão seletiva direta ou indireta sobre as síndromes. Nós hierarquizamos as síndromes de dispersão em cinco níveis, de acordo com o detalhamento da morfologia dos diásporos e, consequentemente, seus diferentes graus de especificidade com os dispersores. Identificamos, em cada um dos níveis hierárquicos, as síndromes de espécies arbóreas de quatro formações florestais da Mata Atlântica ao longo de um gradiente altitudinal de 1200 m no sudeste do Brasil. Entre 327 espécies, encontramos duas síndromes no nível hierárquico mais geral (dispersão abiótica e biótica), três no nível seguinte (vento, própria planta parental e animais), três no nível intermediário (barocoria, autocoria e endozoocoria), duas no quarto nível (mamíferos e aves) e 12 síndromes no nível mais específico, relacionadas è morfologia dos diásporos dispersos pelo vento, autocoria, mamíferos e aves. O espectro de dispersão nos cinco níveis foi similar nas quatro formações florestais. De forma geral, a maior parte das espécies é dispersa por agentes bióticos, aqui considerados animais e a própria planta parental. Dentre os agentes bióticos, os mais importantes são os animais, especificamente as aves. A maioria das espécies dispersas pelas aves apresenta diásporos drupóides. Nossos resultados indicam que as pressões seletivas sobre as síndromes de dispersão ocasionadas pelas condições climáticas que variam com a altitude não são fortes. Assim, a ausência destas pressões seletivas resulta em um espectro de dispersão similar entre as formações florestais em diferentes altitudes.

SELECTION OF CITATIONS
SEARCH DETAIL
...