Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 488
Filter
1.
Article in English | MEDLINE | ID: mdl-38991175

ABSTRACT

Enrichment and quantification of sugar phosphates (SPx) in biological samples were of great significance in biological medicine. In this work, a series of zirconium-based metal-organic frameworks (MOFs) with different degrees of defects, namely, HP-UiO-66-NH2-X, were synthesized using acetic acid as a modulator and were utilized as high-capacity adsorbents for the adsorption of SPx in biological samples. The results indicated that the addition of acetic acid altered the morphology of HP-UiO-66-NH2-X, with corresponding changes in pore size (3.99-9.28 nm) and specific surface area (894.44-1142.50 m2·g-1). HP-UiO-66-NH2-10 showed the outstanding performance by achieving complete adsorption of all four SPx using only 80 µg of the adsorbent. The excellent adsorption efficiency of HP-UiO-66-NH2-10 was also obtained with a wide pH range and short adsorption time (10 min). Adsorption experiments demonstrated that the adsorption process involved chemical adsorption and multilayer adsorption. By utilizing X-ray photoelectron spectroscopy and density functional theory to explain the adsorption mechanism, it was found that various interactions (including coordination, hydrogen bonding, and electrostatic interactions) collectively contributed to the exceptional adsorption capability of HP-UiO-66-NH2-10. Those results indicated that the defect strategy not only increased the specific surface area and pore size, providing additional adsorption sites, but also reduced the adsorption energy between HP-UiO-66-NH2-10 and SPx. Moreover, HP-UiO-66-NH2-10 showed a low limit of detection (0.001-0.01 ng·mL-1), high precision (<13.77%), and accuracy (80.10-111.83%) in serum, liver, and cells, good stability, high selectivity (SPx/glucose, 1:100 molar ratio), and high adsorption capacity (292 mg·g-1 for SPx). The practical detection of SPx from human serum was also verified, prefiguring the great potentials of defective zirconium-based MOFs for the enrichment and detection of SPx in the biological medicine.

2.
J Hazard Mater ; 476: 135100, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38972200

ABSTRACT

This research proposes a simple and novel strategy for the green detection of antibiotics along with the reduction of microplastic and humic acid (HA) hazards. The entire process is based on a single-step solvent-sieving method to separate HA into insoluble (IHA) and soluble (SHA) components, subsequently recombining and designing the application according to the original characteristics of selected fractions in accordance with the zero-waste principle. IHA was applied as a dispersive solid phase extraction (DSPE) sorbent without chemical modification for the enrichment of trace MACs in complex biological matrices. The recovery of MACs was 74.06-100.84 % in the range of 2.5-1000 µg∙kg-1. Furthermore, SHA could be combined with biodegradable polyvinyl alcohol (PVA) to prepare multifunctional composite films. SHA endows the PVA film with favorable mechanical properties, excellent UV shielding as well as oxidation resistance performance. Compared with pure PVA, the tensile strength, toughness, antioxidant and UV-protection properties were increased to 157.3 Mpa, 258.6 MJ·m-3, 78.6 % and 60 % respectively. This study achieved a green and economically valuable utilization of all components of waste HA, introduced a novel approach for monitoring and controlling harmful substances and reducing white pollution. This has significant implications for promoting sustainable development and recovering valuable resources.

3.
Molecules ; 29(11)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38893572

ABSTRACT

In this work, the dispersive solid phase extraction (dSPE) of melatonin using graphene (G) mixtures with sepiolite (SEP) and bentonite (BEN) clays as sorbents combined with fluorescence detection has been investigated. The retention was found to be quantitative for both G/SEP and G/BEN 4/96 and 10/90 w/w mixtures. G/clay 4/96 w/w mixtures were selected to study the desorption process since the retention was weaker, thus leading to easier desorption. MeOH and aqueous solutions of the nonionic surfactant Brij L23 were tested as desorbents. For both clays and an initial sample volume of 25 mL, a percentage of melatonin recovery close to 100% was obtained using 10 or 25 mL of MeOH as desorbent. Further, using a G/SEP mixture, 25 mL as the initial sample volume and 5 mL of MeOH or 60 mM Brij L23 solution as the desorbent, recoveries of 98.3% and 90% were attained, respectively. The whole method was applied to herbal tea samples containing melatonin, and the percentage of agreement with the labeled value was 86.5%. It was also applied to herbal samples without melatonin by spiking them with two concentrations of this compound, leading to recoveries of 100 and 102%.

4.
J Hazard Mater ; 476: 135019, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38925054

ABSTRACT

Based on multiple ligands strategy, a series of multivariate metal organic frameworks (MTV-MOFs) named as PCN-224-DCDPSx were prepared using one-pot solvothermal method to extract and remove sulfonamide antibiotics (SAs). The pore structure and adsorption performance can be further regulated by modulating the doping ratios of medium-tetra(4-carboxylphenyl) porphyrin and 4,4'-dicarboxydiphenyl sulfones. The MTV-MOFs of PCN-224-DCDPS1.0 possesses very large specific surface area (1625 m2/g). Using PCN-224-DCDPS1.0 as sorbent, a dispersive solid-phase extraction method was developed to extract and preconcentrate SAs from water, eggs, and milk prior to high performance liquid chromatography analysis. The limits of detection of method were determined between 0.17 and 0.27 ng/mL with enrichment factors ranging 214-327. The adsorption can be finished within 30 s, and the recovery rate remains above 80 % after 10 repeated uses. The adsorption capacities of sorbent were determined from 300 to 621 mg/g for sulfadiazine, sulphapyridine, sulfamethoxydiazine, sulfachlorpyridazine, sulfabenzamide, and sulfadimethoxine. The adsorption mechanisms were investigated and can be attributed to π-π interactions, hydrogen bonds, and electrostatic interactions. This work represents a method for preparation of MTV-MOFs and uses as sorbent for extraction and enrichment of trace pollutants from complex samples.

5.
J Chromatogr A ; 1727: 464970, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38744187

ABSTRACT

The extensive usage of neonicotinoid insecticides (NIs) has raised many concerns about their potential harm to environment and human health. Thus, it is of great importance to develop an efficient and reliable method to determine NIs in food samples. In this work, three Zr4+-based metal-organic frameworks functionalized with various numbers of hydroxyl groups were fabricated with a facile one-pot solvothermal method. Among them, dihydroxy modified UiO-66 (UiO-66-(OH)2) exhibited best adsorption performance towards five target NIs. Then, a sensitive and efficient method for detection of NIs from vegetable and fruit samples was established based on dispersive solid phase extraction (dSPE) with UiO-66-(OH)2 as adsorbent coupled with ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS). Key parameters affecting the dSPE procedure including amounts of adsorbent, adsorption time, eluent solvents and desorption time were investigated. Under the optimal conditions, rapid adsorption of NIs within five minutes was achieved due to the high affinity of UiO-66-(OH)2 towards NIs. The developed method exhibited high sensitivity with limits of detection (LODs) varied from 0.003 to 0.03 ng/mL and wide linearity range over 3-4 orders of magnitude from 0.01 to 500 ng/mL. Furthermore, the established method was applied for determining trace NIs from complex matrices with recoveries ranging from 74.6 to 99.6 % and 77.0-106.8 % for pear and tomato samples, respectively. The results indicate the potential of UiO-66-(OH)2 for efficient enrichment of trace NIs from complex matrices.


Subject(s)
Insecticides , Limit of Detection , Metal-Organic Frameworks , Solid Phase Extraction , Tandem Mass Spectrometry , Vegetables , Tandem Mass Spectrometry/methods , Solid Phase Extraction/methods , Chromatography, High Pressure Liquid/methods , Insecticides/analysis , Insecticides/isolation & purification , Insecticides/chemistry , Metal-Organic Frameworks/chemistry , Adsorption , Vegetables/chemistry , Neonicotinoids/analysis , Neonicotinoids/chemistry , Neonicotinoids/isolation & purification , Fruit/chemistry , Anabasine/analysis , Anabasine/chemistry , Food Contamination/analysis , Zirconium/chemistry , Phthalic Acids
6.
J Chromatogr A ; 1727: 464976, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38744186

ABSTRACT

A new biosorbent was fabricated by modification of bacterial cellulose biopolymer grafted with lanthanum sulfide decorated carboxylated multiwall carbon nanotube (La2S3@MWCNT@BC). The sorbent was employed in a green alternative dispersive-solid phase extraction of a variety of 14 pesticides in environmental water samples. The analyses were performed using GC-µECD. The properties and structure of La2S3@MWCNT@BC nanocomposite were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, and adsorption-desorption isotherms. The composition of the sorbent was also investigated to evaluate the adsorptive properties of its constituents. The impact of various parameters influencing extraction efficacies such as sorbent dose, adsorption time, sample pH, ionic strength, and desorption conditions was investigated. The method was validated by specificity, matrix effect % (-0.4 to -7.4), enrichment factor (4-10), limits of quantification (0.007-0.31 µg L-1), matrix-matched calibration linearity (0.01-200 µg L-1), determination coefficients (r2=0.9921-0.9998), and precision. The optimized method was applied for the analysis of multiclass pesticides in seven environmental and drinking waters and the recoveries were obtained in the 81-108 % range with RSDs of 2.5-4.7 %. This paper is the first report on the synthesis and use of La2S3@MWCNT@BC nanocomposite to extract pesticides from different water samples. The greenness of the procedure was evaluated by the AGREE protocols.


Subject(s)
Cellulose , Lanthanum , Nanotubes, Carbon , Pesticides , Water Pollutants, Chemical , Nanotubes, Carbon/chemistry , Lanthanum/chemistry , Adsorption , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/isolation & purification , Cellulose/chemistry , Pesticides/analysis , Pesticides/chemistry , Pesticides/isolation & purification , Sulfides/chemistry , Limit of Detection , Solid Phase Extraction/methods
7.
J Sep Sci ; 47(11): e2400013, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38819804

ABSTRACT

In this study, monodisperse, uniform, and spherical covalent organic frameworks (COFs) were synthesized using 1,3,5-tris (4-aminophenyl) benzene and 1,3,5-tricarboxaldehyde benzene at room temperature. Post-modification of 6-aminocaproic acid on the COFs yielded carboxyl-modified COFs (COFs-COOH). The modification enhanced the hydrophilicity and adsorption efficiencies of COFs-COOH for malachite green (MG) and crystal violet (CV). A COFs-COOH-based dispersive solid-phase extraction coupled with high-performance liquid chromatography was developed for the analysis of MG and CV. The method showed a linear range from 10 to 1000 ng/mL with detection limits of 1.82 and 0.70 ng/mL for MG and CV detection, respectively. The recoveries of MG and CV from water samples collected from fish farms and markets ranged from 91.63% to 107.10% with relative standard deviations below 5%. Reproducibility tests demonstrated that the adsorption efficiencies of COFs-COOH were maintained at above 85.86% over 15 cycles. The study verified the potential of COFs-COOH as sorbents for the enrichment and separation of triphenylmethane dyes from complex samples.

8.
Environ Res ; 252(Pt 2): 118838, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38570124

ABSTRACT

Herein, Ce-doped CoFe layered double hydroxide (LDH), noted as CoCeFe ternary LDH, was prepared using the co-precipitation route. Prosperous synthesis of CoFe LDH and successful partial replacement of iron cations with cerium cations in CoCeFe ternary LDH were confirmed by X-ray diffraction patterns, energy-dispersive X-ray spectroscopy, and elemental dot-mapping images. Nanosheet morphology was recognized for both CoFe LDH and CoCeFe ternary LDH from scanning electron microscopy and transmission electron microscopy micrographs. In the following, a dispersive solid phase extraction (DSPE) method was developed using the synthesized CoCeFe ternary LDH as a sorbent for extracting perfluorooctanesulfonic acid (PFOS) from wastewater samples. For the selective analysis of PFOS, high-performance liquid chromatography-tandem mass spectroscopy (HPLC-MS/MS) in multiple reaction monitoring mode was used. Analytical parameters such as the limit of detection equal to 0.02 µg/L, with a linear range of 0.05-300 µg/L, the limit of quantification equal to 0.05 µg/L, and an enrichment factor equal to 23.3 were achieved for PFOS at the optimized condition (sorbent: 5 mg of CoCeFe ternary LDH, eluent type and volume: 150 µL mobile phase, pH: 3, adsorption time: 3 min, and desorption time: 5 min). The developed strategy for the analysis of PFOS was tested in real wastewater samples, including copper mine and petrochemical wastewater. The amount of analytes in real samples was calculated using the standard addition method, and good relative recovery in the range of 86%-105% was obtained. The main novelty of this research is the application of CoCeFe ternary LDH to extract the PFOS from wastewater using the DSPE method for determination by HPLC-MS/MS.


Subject(s)
Alkanesulfonic Acids , Cerium , Cobalt , Fluorocarbons , Hydroxides , Iron , Tandem Mass Spectrometry , Water Pollutants, Chemical , Alkanesulfonic Acids/analysis , Alkanesulfonic Acids/chemistry , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Fluorocarbons/analysis , Fluorocarbons/chemistry , Hydroxides/chemistry , Cobalt/analysis , Cobalt/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Cerium/chemistry , Iron/chemistry , Iron/analysis , Solid Phase Extraction/methods , Wastewater/chemistry , Wastewater/analysis , Liquid Chromatography-Mass Spectrometry
9.
Article in English | MEDLINE | ID: mdl-38636134

ABSTRACT

Herein, a simple, sensitive, and reliable dispersive solid phase extraction was reported for the efficient extraction of sunitinib from biological samples. To facilitate the extraction of the desired analyte from urine and plasma samples, magnetic MIL-101Cr (NH2) @SiO2 @ NiFe2O4 was synthesized by a hydrothermal method and applied as an effective sorbent during the extraction process. After adsorption of the drug using 10 mg of MIL-101Cr (NH2) @ SiO2 @ NiFe2O4 nanoparticles through vortexing (1 min), the sorbent was separatedfrom the sample solution using a magnet. To eluate the drug, the sorbent containing the sunitinib was contacted with 100 µL dimethylformamide. The eluent was analyzed by high performance liquid chromatography-tandem mass spectrometry. Reasonable validation data consisting of low limits of detection (0.14, 0.35, and 0.70 ng mL-1 in deionized water, plasma, and urine) and quantification (0.48, 1.2, and 2.4 ng mL-1 in deionized water, plasma, and urine, respectively), a wide linear range of the calibration curve (0.48-200, 1.2-200, and 2.4-100 ng mL-1 in deionized water, plasma, and urine, respectively) good extraction recovery (76 %), and low relative standard deviations for inter- and intra-day precisions (6.9 %) were obtained by the method. Eventually, the proposed procedure was effectively implemented on both plasma and urine samples, yielding successful outcomes.


Subject(s)
Limit of Detection , Metal-Organic Frameworks , Solid Phase Extraction , Sunitinib , Tandem Mass Spectrometry , Tandem Mass Spectrometry/methods , Solid Phase Extraction/methods , Chromatography, High Pressure Liquid/methods , Sunitinib/blood , Sunitinib/urine , Sunitinib/analysis , Sunitinib/chemistry , Sunitinib/isolation & purification , Humans , Metal-Organic Frameworks/chemistry , Reproducibility of Results , Linear Models , Magnetite Nanoparticles/chemistry
10.
J Sep Sci ; 47(5): e2300746, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38471966

ABSTRACT

In this work, monodisperse and nano-porous poly(bismaleimide-co-divinylbenzene) microspheres with large specific surface area (427.6 m2 /g) and rich pore structure were prepared by one-pot self-stable precipitation polymerization of 2,2'-bis[4-(4-maleimidophenoxy) phenyl] propane and divinylbenzene. The prepared poly(bismaleimide-co-divinylbenzene) microspheres were employed as dispersive solid-phase extraction (DSPE) adsorbent for the extraction of triazine herbicides. Under optimized conditions, good linearities were obtained between the peak area and the concentration of triazine herbicides in the range of 1-400 µg/L (R2 ≥ 0.9987) with the limits of detection of 0.12-0.31 µg/L. Triazine herbicides were detected using the described approach in vegetable samples (i.e., cucumber, tomato, and maize) with recoveries of 93.6%-117.3% and relative standard deviations of 0.4%-3.5%. In addition, the recoveries of triazine herbicides remained above 80.7% after being used for nine DSPE cycles, showing excellent reusability of poly(bismaleimide-co-divinylbenzene) microspheres. The adsorption of poly(bismaleimide-co-divinylbenzene) microspheres toward triazine herbicides was a monolayer and chemical adsorption. The adsorption mechanism between triazine herbicides and adsorbents might be a combination of hydrogen bonding, electrostatic interaction, and π-π conjugation. The results confirmed the potential use of the poly(bismaleimide-co-divinylbenzene) microspheres-based DSPE coupled to the high-performance liquid chromatography method for the detection of triazine herbicide residues in vegetable samples.


Subject(s)
Herbicides , Vegetables , Vinyl Compounds , Vegetables/chemistry , Chromatography, High Pressure Liquid/methods , Microspheres , Porosity , Triazines/analysis , Solid Phase Extraction/methods , Herbicides/analysis , Limit of Detection
11.
Se Pu ; 42(3): 264-274, 2024 Mar 08.
Article in Chinese | MEDLINE | ID: mdl-38503703

ABSTRACT

Phenolic endocrine-disrupting chemicals (EDCs) are exogenous substances that interfere with the endocrine system and disrupt normal cell functions upon entering a living organism, leading to reproductive and developmental toxicity. Therefore, the development of a rapid and efficient analytical method for detecting phenolic EDCs in environmental waters is crucial. Owing to the low concentration of phenolic EDCs in environmental water, appropriate sample pretreatment methods are necessary to remove interferences caused by the sample matrix and enrich the target analytes before instrumental analysis. Dispersive solid-phase extraction (DSPE) has gained considerable attention as a simple and rapid sample pretreatment method for environmental-sample analysis. In this method, an adsorbent material is uniformly dispersed in a sample solution and the target analytes are extracted through processes such as vortexing. Compared with traditional solid-phase extraction (SPE), DSPE increases the contact area between the adsorbent and sample solution, reduces the required amounts of adsorbent and organic solvents, and improves the extraction efficiency. The adsorbent material plays a critical role in DSPE because it determines the extraction efficiency of the method. Metal-organic frameworks (MOFs) are porous framework materials composed of metal clusters and multifunctional organic ligands. They possess many excellent properties such as tunable pore sizes, large surface areas, and good thermal and chemical stability, rendering them ideal adsorbent materials for sample pretreatment. MOF-derived porous carbon materials obtained through high-temperature carbonization not only increase the density of MOF materials for better separation but also retain the advantages of a large surface area, highly ordered porous structure, and high porosity. In this study, a porous carbon material derived from an MOF, named as University of Oslo-66-carbon (UiO-66-C), was synthesized using a solvothermal method and applied as an adsorbent to enrich four phenolic EDCs (bisphenol A, 4-tert-octylphenol, 4-nonylphenol, and nonylphenol) in water. A method combining DSPE with ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was established to analyze these phenolic EDCs in water. The UiO-66-C dosage, pH of water sample, adsorption time, eluent type and volume, elution time, and ion strength were optimized. Gradient elution was performed using methanol-water as the mobile phase. The target analytes were separated on an ACQUITY UPLC BEH C18 column (100 mm×2.1 mm, 1.7 µm), and multiple reaction monitoring (MRM) was conducted in negative electrospray ionization mode. The method exhibited a linear correlation within the range of 0.5-100 µg/L for the four phenolic EDCs. The limits of detection (LODs) and quantification (LOQs) of the four phenolic EDCs were 0.01-0.13 µg/L and 0.03-0.42 µg/L, respectively. The precision of the method was evaluated through intra- and inter-day relative standard deviations (RSDs), with values ranging from 1.5% to 10.6% and from 6.1% to 13.2%, respectively. When applied to the detection of phenolic EDCs in tap and surface water, the spiked recoveries of the four phenolic EDCs were 77.1%-116.6%. Trace levels of 4-nonylphenol and nonylphenol were detected in surface water at levels of 1.38 and 0.26 µg/L, respectively. The proposed method exhibits good accuracy and precision; thus, it provides a new rapid, efficient, and sensitive approach for the detection of phenolic EDCs in environmental water.


Subject(s)
Metal-Organic Frameworks , Phenols , Phthalic Acids , Tandem Mass Spectrometry , Water , Chromatography, High Pressure Liquid , Porosity , Chromatography, Liquid , Skeleton , Metals , Solid Phase Extraction
12.
Article in English | MEDLINE | ID: mdl-38306956

ABSTRACT

Ion mobility spectrometry (IMS) has a promising application prospect in food surveillance. However, due to the complexity of food matrix and trace levels of pesticide residues, the effective and rapid detection of pesticides by IMS has been a challenge, especially when using electrospray ionization (ESI) as an ion source. In this study, low-temperature partitioning with dispersive solid-phase extraction (LTP-dSPE) was explored and compared with conventional procedures. Both methods were validated for the quantification of eight pesticides in apples, obtaining a limit of detection (LOD) of 0.02-0.12 mg/kg for LTP-dSPE and 0.02-0.09 mg/kg for conventional solid-phase extraction (SPE), lower than those usually stipulated by government legislation in food matrices. For LTP-dSPE, the matrx effect (ME) ranged from -16.3 to -68.6 %, lower than that for the SPE method, ranging from -70.0 to -92.9 %. The results showed satisfactory efficiency and precision, with recovery values ranging from 67.9 to 115.4 % for LTP-dSPE and from 62.0 to 114.8 % for conventional SPE, with relative standard deviations below 13.0 %. Notably, the proposed LTP-dSPE/ESI-IMS has been shown to be more cost-effective, easier to use, more environment-friendly, more accessible, and, most importantly, less matrix effect than the conventional method, thereby being suitably applicable to a wide range of food safety applications.


Subject(s)
Malus , Pesticide Residues , Pesticides , Pesticides/analysis , Tandem Mass Spectrometry/methods , Temperature , Pesticide Residues/analysis , Ion Mobility Spectrometry , Solid Phase Extraction/methods
13.
Food Chem ; 444: 138666, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38341916

ABSTRACT

This work presents an efficient sorbent for plant growth regulators (PGRs) by regulating the defects of a metal-organic framework MIL-101(Cr). Using the regulated MIL-101(Cr), we developed a simple and effective method for the simultaneous determination of eleven PGRs in fresh fruit juice. The extraction conditions were optimized by an orthogonal array design. Under optimal conditions, the method showed a satisfactory limit of detection (0.1-1.2 ng/g), recovery rates (83.4-110.2 %), and precision (2.9-18.0 % for intra-day and 2.7-10.8 % for inter-day), as well as a greatly suppressed matrix effect. Notably, regulating the defects significantly enhanced the desorption of PGRs on MIL-101(Cr). The sorbent didn't need to be destroyed to release the adsorbed PGRs and could be reused at least 6 times. Furthermore, the defects of MIL-101(Cr) and interactions between the sorbent and PGRs were studied by TGA, ATR-IR, XPS, NH3-TPD and UV-Vis DRS.


Subject(s)
Metal-Organic Frameworks , Plant Growth Regulators/analysis , Fruit and Vegetable Juices , Chromatography, High Pressure Liquid/methods , Solid Phase Extraction/methods
14.
Anal Bioanal Chem ; 416(10): 2439-2452, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38400939

ABSTRACT

Nucleic acid modifications have attracted increasing attention in recent years since they have been found to be related to a number of diseases including cancer. Previous studies have shown that the early development of endometrial cancer (EC) is often accompanied by changes in methylation levels of related genes, and the expression of related proteins that regulate reactive oxygen species (ROS) shows significant differences in EC cells and tissues. However, it has not been reported whether nucleic acid modifications related to methylation or ROS can serve as biomarkers for EC. Accurate quantification of these nucleic acid modifications still has challenges because their amounts in urine are very low and the interferences in urine are complicated. In this study, a novel dispersive solid-phase extraction (DSPE) method based on chitosan-carbon nanotube-Al2O3 (CS-CNT-Al2O3) has been established for the analysis of 5-hydroxymethyluracil (5 mU), 5-methyl-2'-deoxycytidine (5-mdC), 5-hydroxymethyl-2'-deoxycytidine (5-hmdC), 5-formyl-2'-deoxycytidine (5-fdC), and 8-hydroxy-2'-deoxyguanosine (8-OHdG) in EC patient urine samples coupled with UHPLC-QE-Orbitrap-MS/MS and HPLC-UV. Firstly, the synthesis of the CS-CNT-Al2O3 nanocomposite was conducted by a sono-coprecipitation method and was characterized by scanning electron microscope (SEM), energy dispersive spectrometer (EDS), and Fourier transform infrared (FTIR). Under the optimal extraction conditions of DSPE, we successfully quantified 5 mU, 5-mdC, 5-hmdC, 5-fdC, and 8-OHdG in urine samples from 37 EC patients and 39 healthy controls. The results showed that there were significant differences in the levels of 5-mdC, 5-hmdC, 5-fdC, and 8-OHdG in EC patients compared to the healthy control group. The receiver operator characteristic (ROC) curve analysis was carried out to evaluate the potential of 5-mdC, 5-hmdC, 5-fdC, and 8-OHdG to distinguish EC patients from healthy volunteers. The area under the curve (AUC) for 5-mdC, 5-hmdC, 5-fdC, and 8-OHdG was 0.7412, 0.667, 0.8438, and 0.7981, respectively. It indicated that 5-mdC, 5-hmdC, 5-fdC, and 8-OHdG had certain potential in distinguishing between EC patients and healthy volunteers and they could act as potential non-invasive biomarkers for early diagnosis of EC. Moreover, the present study would stimulate investigations of the effects of nucleic acid modifications on the initiation and progression of EC.


Subject(s)
Endometrial Neoplasms , Nucleic Acids , Humans , Female , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Reactive Oxygen Species , 8-Hydroxy-2'-Deoxyguanosine , Endometrial Neoplasms/diagnosis , Solid Phase Extraction , Biomarkers
15.
Foods ; 13(3)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38338544

ABSTRACT

Sulforaphane (SFN) is a natural isothiocyanate compound widely abundant in cruciferous vegetables with multiple bioactive functions. However, traditional analytical methods for the extraction and determination of SFN are cumbersome, time-consuming, and low sensitivity with large amounts of organic solvents. Herein, novel magnetic COF-on-COFs (MB-COFs) were fabricated using Fe3O4 as a magnetic core and COFs-1 grown with COFs-2 as a shell, and they were used as efficient adsorbents of magnetic dispersive solid-phase extraction for rapid quantification of SFN in cruciferous vegetables by combining with HPLC-MS/MS. At the optimal ratio of COFs-1 to COFs-2, MB-COFs had a spherical cluster-like structure and a rough surface, with a sufficient magnetic response for rapid magnetic separation (1 min). Due to the introduction of Fe3O4 and COFs-2, MB-COFs exhibited outstanding extraction efficiencies for SFN (92.5-97.3%), which was about 18-72% higher than that of the bare COFs. Moreover, MB-COFs showed good adsorption capacity (Qm of 18.0 mg/g), rapid adsorption (5 min) and desorption (30 s) to SFN, and favorable reusability (≥7 cycles) by virtue of their unique hierarchical porous structure. The adsorption kinetic data were well fitted by the pseudo-second-order, Ritchie-second-order, intra-particle diffusion, and Elovich models, while the adsorption isotherm data were highly consistent with the Langmuir, Temkin, and Redlich-Peterson models. Finally, under the optimized conditions, the developed method showed a wide linear range (0.001-0.5 mg/L), high sensitivity (limits of quantification of 0.18-0.31 µg/L), satisfactory recoveries (82.2-96.2%) and precisions (1.8-7.9%), and a negligible matrix effect (0.82-0.97). Compared to previous methods, the proposed method is faster and more sensitive and significantly reduces the use of organic solvents, which can achieve the efficient detection of large-scale samples in practical scenarios. This work reveals the high practical potential of MB-COFs as adsorbents for efficient extraction and sensitive analysis of SFN in cruciferous vegetables.

16.
J Chromatogr A ; 1717: 464707, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38310703

ABSTRACT

Detecting trace endocrine disruptors in water is crucial for evaluating the water quality. In this work, a innovative modified polyacrylonitrile@cyanuric chloride-triphenylphosphine nanofiber membrane (PAN@CC-TPS) was prepared by in situ growing triazine porous organic polymers on the polyacrylonitrile (PAN) nanofibers, and used in the dispersive solid phase extraction (DSPE) to enrich trace nitrobenzene phenols (NPs) in water. The resluted PAN@CC-TPS nanofiber membrane consisted of numerous PAN nanofibers cover with CC-TPS solid spheres (∼2.50 µm) and owned abundant functional groups, excellent enrichment performance and good stability. In addition, the method based on PAN@CC-TPS displayed outstanding capacity in detecting the trace nitrobenzene phenols, with 0.50-1.00 µg/L of the quantification, 0.10-0.80 µg/L of the detection limit, 85.35-113.55 % of the recovery efficiency, and 98.08-103.02 of the enrichment factor, which was comparable to most materials. Meanwhile, when PAN@CC-TPS was adopted in the real water samples (sea water and river water), the high enrichment factors and recovery percentages strongly confirmed the feasibility of PAN@CC-TPS for enriching and detecting the trace NPs. Besides, the related mechanism of extracting NPs on PAN@CC-TPS mainly involved the synergistic effect of hydrogen bonding, π-π stacking and hydrophobic effect.


Subject(s)
Nanofibers , Nitrophenols , Organophosphorus Compounds , Nanofibers/chemistry , Porosity , Polymers , Solid Phase Extraction/methods , Phenols/analysis , Antifungal Agents , Triazines/chemistry , Nitrobenzenes , Limit of Detection , Chromatography, High Pressure Liquid/methods
17.
Article in English | MEDLINE | ID: mdl-38252747

ABSTRACT

A magnetic dispersive solid phase extraction method combined with solidification of floating organic droplet-based dispersive liquid-liquid microextraction has been validated for the extraction of polycyclic aromatic hydrocarbons from honey samples. For this purpose, a carbonised cellulose-ferromagnetic nanocomposite was used as a sorbent through the magnetic dispersive solid phase extraction. For preparation of the sorbent, first, carbonised cellulose nanoparticles were created by treating cellulose filter paper with concentrated solution of sulfuric acid. Then, the prepared nanoparticles were loaded onto Fe3O4 nanoparticles through coprecipitation. In the extraction process, first, a few mg of the sorbent was added to the diluted honey solution and dispersed in it using vortex agitation. The particles were then separated and the adsorbed analytes were eluted with an organic solvent. The eluent was taken and after mixing with a water-immiscible extraction solvent was used in the following solidification of floating organic droplet-based dispersive liquid-liquid microextraction procedure. By performing the extraction process under the obtained optimum conditions, low limits of detection (0.08-0.17 ng g-1) and quantification (0.27-0.57 ng g-1), satisfactory precision (relative standard deviations ≤ 5.0%), and wide linear range (0.57-500 ng g-1) with great coefficients of determination (r2≥ 0.9986) were obtained.


Subject(s)
Honey , Liquid Phase Microextraction , Polycyclic Aromatic Hydrocarbons , Gas Chromatography-Mass Spectrometry , Liquid Phase Microextraction/methods , Polycyclic Aromatic Hydrocarbons/analysis , Solid Phase Extraction/methods , Solvents , Cellulose , Magnetic Phenomena
18.
Article in English | MEDLINE | ID: mdl-38211390

ABSTRACT

Tacrolimus is a potent immunosuppressive drug used in the prevention of tissue rejection. It has a narrow therapeutic index. Therefore, the determination of its concentration in biological fluids like plasma and urine is a very crucial issue. In this research, tacrolimus concentrations in plasma and urine samples were determined with a dispersive solid phase extraction procedure coupled to high-performance liquid chromatography-tandem mass spectrometry. For this purpose, a curcumin modified metal-organic framework was synthesized and used in extraction procedure. Tacrolimus was adsorbed onto the sorbent surface with aid of vortexing. Then, the adsorbed tacrolimus was eluted by a suitable solvent. Important parameters in extraction procedure were optimized by "one-variable-at-a-time" approach and reported as below: sorbent amount, 10 mg; sample solution pH, 2; agitation mode, vortexing; adsorption and desorption times, 1 min, and eluent (volume), methanol (200 µL). Under the optimized conditions and according to the International Council for Harmonization guidelines, the validation of the method was performed, and the results showed acceptable accuracy and precision (relative standard deviations ≤14 %), good linearity in a wide range (4-200 ng mL-1), and low limits of detection (1.2 ng mL-1 in plasma and 0.34 ng mL-1 in urine) and quantification (4.7 ng mL-1 in plasma and 1.12 ng mL-1 in urine). Finally, the validated method was successfully applied for the determination of tacrolimus in the plasma samples of the patients.


Subject(s)
Curcumin , Metal-Organic Frameworks , Nanocomposites , Humans , Metal-Organic Frameworks/chemistry , Tacrolimus , Tandem Mass Spectrometry/methods , Liquid Chromatography-Mass Spectrometry , Chromatography, Liquid , Solid Phase Extraction/methods , Chromatography, High Pressure Liquid/methods
19.
Food Chem ; 441: 138357, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38199109

ABSTRACT

Neonicotinoids, the fastest-growing class of insecticides, have posed a multi-media residue problem with adverse effects on environment, biodiversity and human health. Herein, covalent organic framework-sodium alginate-Ca2+-polyacrylic acid composite beads (CACPs), facilely prepared at room temperature, were used in convenient dispersive solid-phase extraction (dSPE) and combined with high-performance liquid chromatography (HPLC) for the detection of five neonicotinoid insecticides (thiamethoxam, acetamiprid, dinotefuran, clothianidin, imidacloprid). CACPs can be completely separated within 1 min without centrifugation. After seven adsorption/desorption cycles, it maintained high extraction efficiencies (>90%). The developed method exhibited a wide linear range (0.01 âˆ¼ 10 µg mL-1), low limits of detection (LODs, 0.0028 âˆ¼ 0.0031 mg kg-1), and good repeatability (RSD ≤ 8.11%, n = 3). Moreover, it was applied to the determination of five neonicotinoids in fruit and vegetables (peach, pear, lettuce, cucumber, tomato), and recoveries ranged from 73.6% to 116.2%.


Subject(s)
Acrylic Resins , Insecticides , Metal-Organic Frameworks , Humans , Insecticides/analysis , Vegetables/chemistry , Metal-Organic Frameworks/analysis , Fruit/chemistry , Neonicotinoids/analysis , Solid Phase Extraction/methods , Chromatography, High Pressure Liquid/methods
20.
Environ Monit Assess ; 196(2): 136, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38200248

ABSTRACT

The effluent release containing heavy metals as Ni2+ ions has drastic risks to both the natural environment and human health. In this research, the nano Fe3O4/chitosan-acrylamide hydrogel was prepared as a novel nano sorbent for dispersive solid-phase extraction of Ni2+ ions and applied to the water sample solution. The pH, amount and type of elution solvent, the extraction time, etc. were optimized to improve the efficiency of the proposed method. Analytical parameters such as concentration factor and relative standard deviation (%) were achieved as 33.3 and 1.8%, respectively. The capacity in equilibrium sorption was calculated at 22.54 mg g-1. Furthermore, to estimate the adsorption mode, Freundlich, Langmuir, and Temkin models were fitted with experimental isotherm data. Besides, to check the basic process of the metal adsorption mechanism, pseudo-first-order, pseudo-second-order, and Roginsky-Zeldovich models were investigated and the results were fitted with the pseudo-second-order model. The value of change in entropy (⊿S) obtained is -65.24 (J(mol K)-1). Negative values of change in enthalpy, ⊿H in (kJ mol-1) is -24.45 (kJ mol-1) which indicates both physical and chemical adsorptions involved in the process of adsorption. Finally, the nano Fe3O4/chitosan-acrylamide hydrogel exhibited high performance to remove the Ni2+ ions from water sample solution.


Subject(s)
Chitosan , Hydrogels , Humans , Environmental Monitoring , Ions , Acrylamide , Solid Phase Extraction , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...