Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters











Publication year range
1.
N Biotechnol ; 84: 96-104, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39374895

ABSTRACT

The hydromechanical stress is a relevant parameter for mammalian cell cultivations, especially regarding scale-up processes. It describes the mechanical forces exerted on cells in a bioreactor. The maximum local energy dissipation rate is a suitable parameter to characterize hydromechanical stress. In literature, different studies deal with the effects of hydromechanical stress on CHO cells in stirred tank reactors. However, they often focus on lethal effects. Furthermore, systematic examinations in smaller scales like shake flasks are missing. Thus, this study systematically considers the influence of hydromechanical stress on CHO DP12 cells in shake flask cultivations. By utilizing online monitoring of the oxygen transfer rate, the study simplifies and enhances the resolution of examinations. Results indicate that while lethal effects are absent, numerous sub-lethal effects emerge with increasing hydromechanical stress: The process time is prolonged. The time of glucose and glutamine depletion, and the lactate switch correlate positively linear with the logarithmic average energy dissipation rate while the maximum specific growth rate correlates negatively. Strikingly, the final antibody concentration only declines at the highest tested average energy dissipation rate of 3.84 W kg-1 (only tested condition with a turbulent flow regime and therefore a higher maximal local energy dissipation rate) from about 250 mg L-1 to about 180 mg L-1. This study presents a straightforward method to examine the impact of hydromechanical stress in shake flasks, easily applicable to any other suspension cell line. Additionally, it offers valuable insights for scale-up processes, for example into stirred tank reactors.

2.
Geosci Lett ; 11(1): 36, 2024.
Article in English | MEDLINE | ID: mdl-39157275

ABSTRACT

The Indonesian seas, with their complex passages and vigorous mixing, constitute the only route and are critical in regulating Pacific-Indian Ocean interchange, air-sea interaction, and global climate events. Previous research employing remote sensing and numerical simulations strongly suggested that this mixing is tidally driven and localized in narrow channels and straits, with only a few direct observations to validate it. The current study offers the first comprehensive temporal microstructure observations in the south of Lombok Strait with a radius of 0.05° and centered on 115.54oE and 9.02oS. Fifteen days of tidal mixing observations measured potential temperature and density, salinity, and turbulent energy dissipation rate. The results revealed significant mixing and verified the remotely sensed technique. The south Lombok temporal and depth averaged of the turbulent kinetic energy dissipation rate, and the diapycnal diffusivity from 20 to 250 m are ε  = 4.15 ± 15.9) × 10-6 W kg-1 and K ρ = (1.44 ± 10.7) × 10-2 m2s-1, respectively. This K ρ is up to 104 times larger than the Banda Sea [ K ρ  = (9.2 ± 0.55) × 10-6 m2s-1] (Alford et al. Geophys Res Lett 26:2741-2744, 1999) or the "open ocean" K ρ = 0.03 × 10-4 m2s-1 within 2° of the equator to (0.4-0.5) × 10-4 m2s-1 at 50°-70° (Kunze et al. J Phys Oceanogr 36:1553-1576, 2006). Therefore, nonlinear interactions between internal tides, tidally induced mixing, and ITF plays a critical role regulating water mass transformation and have strong implications to longer-term variations and change of Pacific-Indian Ocean water circulation and climate. Supplementary Information: The online version contains supplementary material available at 10.1186/s40562-024-00349-3.

3.
Polymers (Basel) ; 16(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38891397

ABSTRACT

An experimental device fixed with a laser displacement sensor was assembled to investigate the rebound behaviors and damping mechanism of rubber balls prepared with ethylene-propylene-diene monomer (EPDM)/chlorinated butyl rubber (CIIR) blends. The result showed that a prediction model was proposed to characterize the damping capacity by using the rebound height of the rubber balls. The lower rebound height corresponded to better damping capacity. A modified equation relating to the rebound height has been obtained from the theoretical derivation on the basis of the dynamic mechanical analysis, showing that the rebound height was affected by the deformation frequency, the external excitation, and the nature of rubber blends. Furthermore, the energy dissipation rate (EDR), defined by the ratio of the height loss to the rebound time, was proposed to further characterize the damping capacity. The EDR value was shown to be highest for the pure CIIR and lowest for the pure EPDM, exhibiting a decreasing trend with the increase in EPDM content in the rubber blends. It can be expected that the damping capacity of the EPDM/CIIR blends decreases with the decrease in external excitation, the conclusion of which plays a key role in the formulation design of viscoelastic damping rubber materials.

4.
Ann Biomed Eng ; 52(9): 2440-2456, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38753109

ABSTRACT

The hemodynamics in Fontan patients with single ventricles rely on favorable flow and energetics, especially in the absence of a subpulmonary ventricle. Age-related changes in energetics for extracardiac and lateral tunnel Fontan procedures are not well understood. Vorticity (VOR) and viscous dissipation rate (VDR) are two descriptors that can provide insights into flow dynamics and dissipative areas in Fontan pathways, potentially contributing to power loss. This study examined power loss and its correlation with spatio-temporal flow descriptors (vorticity and VDR). Data from 414 Fontan patients were used to establish a relationship between the superior vena cava (SVC) to inferior vena cava (IVC) flow ratio and age. Computational flow modeling was conducted for both extracardiac conduits (ECC, n = 16) and lateral tunnels (LT, n = 25) at different caval inflow ratios of 2, 1, and 0.5 that corresponded with ages 3, 8, and 15+. In both cohorts, vorticity and VDR correlated well with PL, but ECC cohort exhibited a slightly stronger correlation for PL-VOR (>0.83) and PL-VDR (>0.89) than that for LT cohort (>0.76 and > 0.77, respectively) at all ages. Our data also suggested that absolute and indexed PL increase (p < 0.02) non-linearly as caval inflow changes with age and are highly patient-specific. Comparison of indexed power loss between our ECC and LT cohort showed that while ECC had a slightly higher median PL for all 3 caval inflow ratio examined (3.3, 8.3, 15.3) as opposed to (2.7, 7.6, 14.8), these differences were statistically non-significant. Lastly, there was a consistent rise in pressure gradient across the TCPC with age-related increase in IVC flows for both ECC and LT Fontan patient cohort. Our study provided hemodynamic insights into Fontan energetics and how they are impacted by age-dependent change in caval inflow. This workflow may help assess the long-term sustainability of the Fontan circulation and inform the design of more efficient Fontan conduits.


Subject(s)
Fontan Procedure , Models, Cardiovascular , Humans , Child , Child, Preschool , Adolescent , Male , Female , Vena Cava, Superior/physiopathology , Vena Cava, Superior/physiology , Hemodynamics , Vena Cava, Inferior/physiopathology , Biomechanical Phenomena , Young Adult , Aging/physiology , Adult
5.
Bioengineering (Basel) ; 10(4)2023 Apr 16.
Article in English | MEDLINE | ID: mdl-37106665

ABSTRACT

HEK293 is a widely used cell line in the fields of research and industry. It is assumed that these cells are sensitive to hydrodynamic stress. The aim of this research was to use particle image velocimetry validated computational fluid dynamics (CFD) to determine the hydrodynamic stress in both shake flasks, with and without baffles, and in stirred Minifors 2 bioreactors to evaluate its effect on the growth and aggregate size distribution of HEK293 suspension cells. The HEK FreeStyleTM 293-F cell line was cultivated in batch mode at different specific power inputs (from 63 W m-3 to 451 W m-3), whereby ≈60 W m-3 corresponds to the upper limit, which is what has been typically described in published experiments. In addition to the specific growth rate and maximum viable cell density VCDmax, the cell size distribution over time and cluster size distribution were investigated. The VCDmax of (5.77±0.02)·106cellsmL-1 was reached at a specific power input of 233 W m-3 and was 23.8% higher than the value obtained at 63 W m-3 and 7.2% higher than the value obtained at 451 W m-3. No significant change in the cell size distribution could be measured in the investigated range. It was shown that the cell cluster size distribution follows a strict geometric distribution whose free parameter p is linearly dependent on the mean Kolmogorov length scale. Based on the performed experiments, it has been shown that by using CFD-characterised bioreactors, the VCDmax can be increased and the cell aggregate rate can be precisely controlled.

6.
Sensors (Basel) ; 23(4)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36850610

ABSTRACT

This study describes the development of a long-range hybrid autonomous underwater vehicle (AUV) for ocean turbulence measurement. It is a unique instrument, combining the characteristics of the conventional AUV and the buoyancy-driven glider, with a variety of flexible motion modes, such as cruise mode, glider mode, drift mode, and combination of multiple motion modes. The hybrid AUV was used for continuous turbulence measurement in the continental slope of the northern South China Sea in 2020. A total of ten continuous profiles were completed covering a horizontal span of 25 Km and a depth of 200 m. The hybrid AUV was operated in the combined glider and cruise mode. The hybrid AUV's flight performance was stable and satisfied the requirement for turbulence observation. The measured velocity shears from both probes were in good agreement, and the noise-reduced shear spectra were in excellent agreement with the Nasmyth spectrum. The water column in the study area was highly stratified, with a thick thermocline. The dissipation rate (ε) varied from 1.41 × 10-10 to 4.18 × 10-7 W·kg-1. In the surface mixed layer, high values of ε (10-9∼10-8 W·kg-1) were observed toward the water surface. In the thermocline, ε was 10-9.5∼10-9 W·kg-1, which was smaller than the level of the surface mixed layer. This result was mainly because of the strong "barrier"-like thermocline, which damped the transmission of wind and heat energy from the surface mixed layer to the deep layer. Overall, this study demonstrates the utility of hybrid AUVs for collecting oceanic turbulence measurements. They are a powerful addition to traditional turbulence instruments, as they make it possible to survey large areas to obtain high-quality and high-resolution data in both vertical and horizontal directions over long durations.

7.
Entropy (Basel) ; 24(8)2022 Jul 27.
Article in English | MEDLINE | ID: mdl-36010696

ABSTRACT

The nonlinear mechanical behavior of rock significantly influences the design and construction of underground structures. Due to the complexity and diversity of the damage mechanisms of rock, the damage variable directly defined by partial-damage mechanisms is insufficient in reflecting the progressive-failure process of rock comprehensively. So, in this paper, a novel damage variable is introduced into the plastic-strain rate based on the theoretical framework of irreversible thermodynamics to overcome this defect. The general expression is derived according to the least energy dissipation rate principle. The proposed damage variable can represent the irreversible energy dissipation process and has a strictly theoretical basis in mechanics. Moreover, the granite and marble stress-strain curves are simulated and compared with the Lemaitre damage model, Mazars damage model, and statistical damage model. The results show that the form of the proposed damage variable is practical and straightforward and can better reflect the entire stress-strain relationship of rock. Furthermore, the initial value of the inelastic response strain can be given directly through the proposed damage variable. The model presented here can overcome the issue that the current models need to select the damage threshold indirectly or assume it in advance and ensures that the damage evolution characteristics follow the first principle entirely.

8.
Bioengineering (Basel) ; 9(8)2022 Aug 12.
Article in English | MEDLINE | ID: mdl-36004911

ABSTRACT

In this work, the oxygen transport and hydrodynamic flow of the PBS Vertical-Wheel MINI™ 0.1 bioreactor were characterized using experimental data and computational fluid dynamics simulations. Data acquired from spectroscopy-based oxygenation measurements was compared with data obtained from 3D simulations with a rigid-lid approximation and LES-WALE turbulence modeling, using the open-source software OpenFOAM-8. The mass transfer coefficients were determined for a range of stirring speeds between 10 and 100 rpm and for working volumes between 60 and 100 mL. Additionally, boundary condition, mesh refinement, and temperature variation studies were performed. Lastly, cell size, energy dissipation rate, and shear stress fields were calculated to determine optimal hydrodynamic conditions for culture. The experimental results demonstrate that the kL can be predicted using Sh=1.68Re0.551Sc13G1.18, with a mean absolute error of 2.08%. Using the simulations and a correction factor of 0.473, the expression can be correlated to provide equally valid results. To directly obtain them from simulations, a partial slip boundary condition can be tuned, ensuring better near-surface velocity profiles or, alternatively, by deeply refining the mesh. Temperature variation studies support the use of this correlation for temperatures up to 37 °C by using a Schmidt exponent of 1/3. Finally, the flow was characterized as transitional with diverse mixing mechanisms that ensure homogeneity and suspension quality, and the results obtained are in agreement with previous studies that employed RANS models. Overall, this work provides new data regarding oxygen mass transfer and hydrodynamics in the Vertical-Wheel bioreactor, as well as new insights for air-water mass transfer modeling in systems with low interface deformation, and a computational model that can be used for further studies.

9.
Phys Chem Miner ; 49(5): 14, 2022.
Article in English | MEDLINE | ID: mdl-35535269

ABSTRACT

A system of edge cracks was applied to polished (010) surfaces of K-rich gem-quality alkali feldspar by diffusion-mediated cation exchange between oriented feldspar plates and a Na-rich NaCl-KCl salt melt. The cation exchange produced a Na-rich layer at and beneath the specimen surface, and the associated strongly anisotropic lattice contraction lead to a tensile stress state at the specimen surface, which induced fracturing. Cation exchange along the newly formed crack flanks produced Na-enriched diffusion halos around the cracks, and the associated lattice contraction and tensile stress state caused continuous crack growth. The cracks nucleated with non-uniform spacing on the sample surface and quickly attained nearly uniform spacing below the surface by systematic turning along their early propagation paths. In places, conspicuous wavy cracks oscillating several times before attaining their final position between the neighboring cracks were produced. It is shown that the evolution of irregularly spaced towards regularly spaced cracks including the systematic turning and wavyness along the early propagation paths maximizes the rate of free energy dissipation in every evolutionary stage of the system. Maximization of the dissipation rate is suggested as a criterion for selection of the most probable evolution path for a system undergoing chemically induced diffusion mediated fracturing in an anisotropic homogeneous brittle material. Supplementary Information: The online version contains supplementary material available at 10.1007/s00269-022-01183-9.

10.
Bioengineering (Basel) ; 9(3)2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35324781

ABSTRACT

Allogeneic cell therapy products, such as therapeutic cells derived from pluripotent stem cells (PSCs), have amazing potential to treat a wide variety of diseases and vast numbers of patients globally. However, there are various challenges related to manufacturing PSCs in single-use bioreactors, particularly at larger volumetric scales. This manuscript addresses these challenges and presents potential solutions to alleviate the anticipated bottlenecks for commercial-scale manufacturing of high-quality therapeutic cells derived from PSCs.

11.
Front Physiol ; 12: 725104, 2021.
Article in English | MEDLINE | ID: mdl-34630145

ABSTRACT

Recent studies have correlated kinetic energy (KE) and viscous dissipation rate (VDR) in the left ventricle (LV) with heart health. These studies have relied on 4D-flow imaging or computational fluid dynamics modeling, which are able to measure, or compute, all 3 components (3C) of the blood flow velocity in 3 dimensional (3D) space. This richness of data is difficult to acquire clinically. Alternatively, color Doppler echocardiography (CDE) is more widespread clinically, but only measures a single radial component of velocity and typically only over a planar section. Because of this limitation, prior CDE-based studies have first reconstructed a second component of velocity in the measurement plane prior to evaluating VDR or KE. Herein, we propose 1C-based surrogates of KE and VDR that can be derived directly from the radial component of the flow velocity in the LV. Our results demonstrate that the proposed 1C-based surrogates of KE and VDR are generally as well-correlated with the true KE and VDR values as surrogates that use reconstructed 2C flow data. Moreover, the correlation of these 1C-based surrogates with the true values indicate that CDE (3D in particular) may be useful in evaluating these metrics in practice.

12.
Sci Total Environ ; 795: 148781, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34252767

ABSTRACT

Spilled oil slicks are likely to break into droplets offshore due to wave energy. The fate and transport of such droplets are affected by suspended particles in local marine environment, through forming oil particle aggregates (OPAs). OPA formation is affected by various factors, including the mixing energy and duration. To evaluate these two factors, lab experiments of OPA formation were conducted using kaolinite at two hydrophobicities in baffled flasks, as represented by the contact angle of 28.8° and 37.7° (original and modified kaolinite). Two mixing energies (energy dissipation rates of 0.05 and 0.5 W/kg) and four durations (10 min, 30 min, 3 h, and 24 h) were considered. Penetration to the oil droplets was observed at 3-5 µm and 5-7 µm for the original and modified kaolinite by confocal microscopy, respectively. At lower mixing energy, volume median diameter d50 of oil droplets increased from 45 µm to 60 µm after 24 h mixing by original kaolinite; for modified kaolinite, d50 decreased from 40 µm to 25 µm after 24 h mixing. The trapped oil amount in negatively buoyant OPAs decreased from 35% (3 h mixing) to 17% (24 h mixing) by original kaolinite; and from 18% to 12% after 24 h mixing by modified kaolinite. Results indicated that the negatively buoyant OPAs formed with original kaolinite at low mixing energy reaggregated after 24 h. At higher mixing energy, d50 decreased from 45 µm to 17 µm after 24 h mixing for both kaolinites. And the trapped oil amount in negatively buoyant OPAs increased to 72% and 49% after 24 h mixing for original and modified kaolinite, respectively. At higher mixing energy, the OPAs formed within 10 min and reached equilibrium at 3 h by original kaolinite. For modified kaolinite, the OPAs continued to form through 24 h.


Subject(s)
Petroleum Pollution , Petroleum , Water Pollutants, Chemical , Hydrophobic and Hydrophilic Interactions , Oils , Water Pollutants, Chemical/analysis
13.
J Environ Sci Health B ; 56(6): 540-547, 2021.
Article in English | MEDLINE | ID: mdl-33979275

ABSTRACT

A rapid and sensitive method for the identification and quantification of quintrione residue in brown rice, rice husk, and rice straw matrices was developed and validated. Samples were extracted with acetonitrile, purified with octadecylsilane (C18) and graphitized carbon black (GCB) sorbents, and quantified using ultrahigh-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS). The developed method exhibited excellent linearity (R2 ≥ 0.9988), and the limit of quantitation was 2 µg/kg in all matrices. The method also had outstanding trueness and recoveries (90.5-111.1%) at four spiked levels (2, 20, 200, and 2000 µg/kg) with intraday and interday precisions of 0.7-6.5% and 5.2-11.8%, respectively, in the three matrices. The applicability of the method was tested by determining the dissipation rate of quintrione in rice straw under field conditions, and the measured data fit the Hockey stick kinetic model with R2 values of 0.9349-0.9983. The half-lives of quintrione in rice straw ranged from 2.7 to 16.5 days. The results indicate that the method is effective and reliable for the detection of quintrione residue in rice paddy fields, and the dissipation data provide guidance for the safe application of quintrione.


Subject(s)
Herbicides/analysis , Oryza/chemistry , Pesticide Residues/analysis , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry
14.
Geophys Res Lett ; 48(17): e2021GL094272, 2021 Sep 16.
Article in English | MEDLINE | ID: mdl-35864942

ABSTRACT

The gas transfer velocity, k , modulates gas fluxes across air-water interfaces in rivers. While the theory postulates a local scaling law between k and the turbulent kinetic energy dissipation rate ε , empirical studies usually interpret this relation at the reach-scale. Here, we investigate how local k ( ε ) laws can be integrated along heterogeneous reaches exploiting a simple hydrodynamic model, which links stage and velocity to the local slope. The model is used to quantify the relative difference between the gas transfer velocity of a heterogeneous stream and that of an equivalent homogeneous system. We show that this aggregation bias depends on the exponent of the local scaling law, b , and internal slope variations. In high-energy streams, where b > 1 , spatial heterogeneity of ε significantly enhances reach-scale values of k as compared to homogeneous settings. We conclude that small-scale hydro-morphological traits bear a profound impact on gas evasion from inland waters.

15.
Proc Math Phys Eng Sci ; 476(2243): 20200591, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33362423

ABSTRACT

Extreme dissipation events in turbulent flows are rare, but they can be orders of magnitude stronger than the mean dissipation rate. Despite its importance in many small-scale physical processes, there is presently no accurate theory or model for predicting the extrema as a function of the Reynolds number. Here, we introduce a new model for the dissipation probability density function (PDF) based on the concept of significant shear layers, which are thin regions of elevated local mean dissipation. At very high Reynolds numbers, these significant shear layers develop layered substructures. The flow domain is divided into the different layer regions and a background region, each with their own PDF of dissipation. The volume-weighted regional PDFs are combined to obtain the overall PDF, which is subsequently used to determine the dissipation variance and maximum. The model yields Reynolds number scalings for the dissipation maximum and variance, which are in agreement with the available data. Moreover, the power law scaling exponent is found to increase gradually with the Reynolds numbers, which is also consistent with the data. The increasing exponent is shown to have profound implications for turbulence at atmospheric and astrophysical Reynolds numbers. The present results strongly suggest that intermittent significant shear layer structures are key to understanding and quantifying the dissipation extremes, and, more generally, extreme velocity gradients.

16.
Sensors (Basel) ; 20(22)2020 Nov 16.
Article in English | MEDLINE | ID: mdl-33207621

ABSTRACT

The total energy dissipation rate on the ocean surface, ϵt (W m-2), provides a first-order estimation of the kinetic energy input rate at the ocean-atmosphere interface. Studies on the spatial and temporal distribution of the energy dissipation rate are important for the improvement of climate and wave models. Traditional oceanographic research normally uses remote measurements (airborne and platforms sensors) and in situ data acquisition to estimate ϵt; however, those methods cover small areas over time and are difficult to reproduce especially in the open oceans. Satellite remote sensing has proven the potential to estimate some parameters related to breaking waves on a synoptic scale, including the energy dissipation rate. In this paper, we use polarimetric Synthetic Aperture Radar (SAR) data to estimate ϵt under different wind and sea conditions. The used methodology consisted of decomposing the backscatter SAR return in terms of two contributions: a polarized contribution, associated with the fast response of the local wind (Bragg backscattering), and a non-polarized (NP) contribution, associated with wave breaking (Non-Bragg backscattering). Wind and wave parameters were estimated from the NP contribution and used to calculate ϵt from a parametric model dependent of these parameters. The results were analyzed using wave model outputs (WAVEWATCH III) and previous measurements documented in the literature. For the prevailing wind seas conditions, the ϵt estimated from pol-SAR data showed good agreement with dissipation associated with breaking waves when compared to numerical simulations. Under prevailing swell conditions, the total energy dissipation rate was higher than expected. The methodology adopted proved to be satisfactory to estimate the total energy dissipation rate for light to moderate wind conditions (winds below 10 m s-1), an environmental condition for which the current SAR polarimetric methods do not estimate ϵt properly.

17.
Data Brief ; 30: 105519, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32373683

ABSTRACT

In this article, we present the datasets which are used to estimate the turbulent kinetic energy dissipation rates and vertical diffusivity in the Indonesian seas. An archived CTD (conductivity, temperature, depth) datasets collected between 1990 and 2016 with 1 m vertical resolution is presented and analyzed using an improved Thorpe method. The direct estimates dataset of the dissipation rate from two research expeditions, i.e., INDOMIX Program in 2010 and TOMTOM Program in 2015 were also presented, available to be compared with the indirect estimates from CTD profiles. We also present the dissipation rate output of three recent regional internal tide models in the Indonesian seas for comparison with microstructure measurements and improved Thorpe estimates. The datasets refer to "Spatial structure of turbulent mixing inferred from historical CTD datasets in the Indonesian seas" [1].

18.
Water Res ; 172: 115500, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-31986396

ABSTRACT

The effects of aeration and stirring systems on the physical properties of sludge were analyzed using a computational fluid dynamics (CFD) model. The aims of this study were to (1) compare the effects of aeration and stirring on sludge properties using the same turbulent mixing intensity, and (2) to reveal the relationship between sludge properties and hydrodynamic indicators to determine how hydrodynamic conditions influence sludge flocculation. Mixing experiments with stirring and aeration were carried out in 2-L beakers with the average velocity gradient (G) set to 90, 190, or 280 s-1. The sludge flocculation performance, zeta potential, and Gibbs free energy (ΔG) were analyzed and the flow velocity, turbulence energy, turbulence dissipation rate, and Kolmogorov microscale were calculated as hydrodynamic parameters. The average flow velocity and the turbulence dissipation rate were obviously higher in the stirring system than in the aeration system at the same G. However, the turbulence energy and Kolmogorov microscale in the aeration system were much higher than those in the stirring system. Both the zeta potential and ΔG were lower in the aeration system than the stirring system. The zeta potential and ΔG results for the two systems suggest that aeration is more beneficial for sludge flocculation than stirring even though the sludge flocculation performance F/F0 in the stirring and aeration systems showed no obvious differences. Significant relationships between hydrodynamic parameters calculated based on the CFD model and average values of sludge properties in the stable phase showed that the Kolmogorov microscale, average flow velocity, and turbulence energy were appropriate hydrodynamic parameters for evaluating the flocculation performance F/F0, zeta potential, and ΔG, respectively.


Subject(s)
Hydrodynamics , Sewage , Bioreactors , Flocculation , Surface Properties , Waste Disposal, Fluid
19.
Harmful Algae ; 89: 101654, 2019 11.
Article in English | MEDLINE | ID: mdl-31672223

ABSTRACT

Dinoflagellate species of Dinophysis, in particular D. acuminata and D. acuta, produce lipophilic toxins that pose a threat to human health when concentrated in shellfish and jeopardize shellfish exploitations in western Europe. In northwestern Iberia, D. acuminata has a long growing season, from spring to early autumn, and populations develop as soon as shallow stratification forms when the upwelling season begins. In contrast, D. acuta blooms in late summer, when the depth of the pycnocline is maximal and upwelling pulses are moderate. In situ observations on the hydrodynamic regimes during the two windows of opportunity for Dinophysis species led us to hypothesize that D. acuta should be more sensitive to turbulence than D. acuminata. To test this hypothesis, we studied the response of D. acuminata and D. acuta to three realistic turbulence levels low (LT), ε ≈ 10-6 m2 s-3; medium (MT), ε ≈ 10-5 m2 s-3 and high (HT), ε ≈ 10-4 m2 s-3generated by Turbogen, a highly reproducible, computer-controlled system. Cells of both species exposed to LT and MT grew at rates similar to the controls. Marked differences were found in the response to HT: D. acuminata grew slowly after an initial lag phase, whereas D. acuta cell numbers declined. Results from this study support the hypothesis that turbulence may play a role in shaping the spatio-temporal distribution of individual species of Dinophysis. We also hypothesize that, in addition to cell disturbance affecting division, sustained high shear generated by microturbulence may cause a decline in Dinophysis numbers due to decreased densities of ciliate prey.


Subject(s)
Ciliophora , Dinoflagellida , Europe , Seasons , Shellfish
20.
J Microencapsul ; 36(4): 371-384, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31215280

ABSTRACT

Microencapsulation is almost exclusively performed in batch processes. With today's chemistry increasingly performed in flow reactors, this work aims to realise a continuous reactor setup for the encapsulation of an ester with a polyuria (PU) shell. The generation of an emulsion template is performed in a recirculation loop driven by a pump and equipped with static mixers, screen type and Kenics®. Calorimetric measurements are performed to characterise the energy dissipation rate inside the loop. The curing step is performed in a coiled tube reactor with two geometric configurations. Number based capsule size distributions are derived from micrograph analysis. Results indicate that the recycle pump is the main contributor to determine the capsule size distribution. A continuous setup is achieved for PU microcapsules containing hexyl acetate with a production rate of 198 g/h dry capsules, and a mean capsule diameter of 13.3 µm with a core content of 54 wt%.


Subject(s)
Acetates/chemistry , Capsules/chemistry , Drug Compounding/instrumentation , Emulsions/chemistry , Equipment Design , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL