Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
BMC Med Genomics ; 17(1): 169, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38915017

ABSTRACT

BACKGROUND: Distal hereditary motor neuropathy (dHMN) is a heterogeneous group of hereditary diseases caused by the gradual degeneration of the lower motor neuron. More than 30 genes associated with dHMN have been reported, while 70-80% of those with the condition are still unable to receive a genetic diagnosis. METHODS: A 26-year-old man experiencing gradual weakness in his lower limbs was referred to our hospital, and data on clinical features, laboratory tests, and electrophysiological tests were collected. To identify the disease-causing mutation, we conducted whole exome sequencing (WES) and then validated it through Sanger sequencing for the proband and his parents. Silico analysis was performed to predict the pathogenesis of the identified mutations. A literature review of all reported mutations of the related gene for the disease was performed. RESULTS: The patient presented with dHMN phenotype harboring a novel homozygous variant c.361G > C (p.Ala121Pro) in SORD, inherited from his parents, respectively. A121 is a highly conserved site and the mutation was categorized as "likely pathogenic" according to the criteria and guidelines of the American College of Medical Genetics and Genomics (ACMG). A total of 13 published articles including 101 patients reported 18 SORD variants. Almost all described cases have the homozygous deletion variant c.757delG (p.A253Qfs*27) or compound heterozygous state of a combination of c.757delG (p.A253Qfs*27) with another variant. The variant c.361G > C (p.Ala121Pro) detected in our patient was the second homozygous variant in SORD-associated hereditary neuropathy. CONCLUSION: One novel homozygous variant c.361G > C (p.Ala121Pro) in SORD was identified in a Chinese patient with dHMN phenotype, which expands the mutation spectrum of SORD-associated hereditary neuropathy and underscores the significance of screening for SORD variants in patients with undiagnosed hereditary neuropathy patients.


Subject(s)
Mutation , Humans , Male , Adult , Exome Sequencing , Hereditary Sensory and Motor Neuropathy/genetics , Pedigree , Phenotype
2.
J Peripher Nerv Syst ; 29(2): 275-278, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38769024

ABSTRACT

BACKGROUND AND AIMS: Pathogenic variants in the NARS1 gene, which encodes for the asparaginyl-tRNA synthetase1 (NARS1) enzyme, were associated with complex central and peripheral nervous system phenotypes. Recently, Charcot-Marie-Tooth (CMT) disease has been linked to heterozygous pathogenic variants in NARS1 in nine patients. Here, we report two brothers and their mother from a French family with distal hereditary motor neuropathy (dHMN) carrying a previously unreported NARS1 variant. METHODS: The NARS1 variant (c.1555G>C; p.(Gly519Arg)) was identified through whole-genome sequencing (WGS) performed on the family members. Clinical findings, nerve conduction studies (NCS), needle electromyography (EMG), and functional assays in yeast complementation assays are reported here. RESULTS: The family members showed symptoms of dHMN, including distal weakness and osteoarticular deformities. They also exhibited brisk reflexes suggestive of upper motor neuron involvement. All patients were able to walk independently at the last follow-up. NCS and EMG confirmed pure motor neuropathy. Functional assays in yeast confirmed a loss-of-function effect of the variant on NARS1 activity. INTERPRETATION: Our findings expand the clinical spectrum of NARS1-associated neuropathies, highlighting the association of NARS1 mutations with dHMN. The benign disease course observed in our patients suggests a slowly progressive phenotype. Further reports could contribute to a more comprehensive understanding of the spectrum of NARS1-associated neuropathies.


Subject(s)
Pedigree , Humans , Male , Female , Adult , France , Middle Aged , Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/physiopathology , Amino Acyl-tRNA Synthetases/genetics , Hereditary Sensory and Motor Neuropathy/genetics , Hereditary Sensory and Motor Neuropathy/physiopathology
3.
Rev Neurol (Paris) ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38702287

ABSTRACT

Distal hereditary motor neuropathies (dHMN) are a group of heterogeneous hereditary disorders characterized by a slowly progressive distal pure motor neuropathy. Electrophysiology, with normal motor and sensory conduction velocities, can suggest the diagnosis of dHMN and guide the genetic study. More than thirty genes are currently associated with HMNs, but around 60 to 70% of cases of dHMN remain uncharacterized genetically. Recent cohort studies showed that HSPB1, GARS, BICB2 and DNAJB2 are among the most frequent dHMN genes and that the prevalence of the disease was calculated as 2.14 and 2.3 per 100,000. The determination of the different genes involved in dHMNs made it possible to observe a genotypic overlap with some other neurogenetic disorders and other hereditary neuropathies such as CMT2, mainly with the HSPB1, HSPB8, BICD2 and TRPV4 genes of AD-inherited transmission and recently observed with SORD gene of AR transmission which seems relatively frequent and potentially curable. Distal hereditary motor neuropathy that predominates in the upper limbs is linked mainly to three genes: GARS, BSCL2 and REEP1, whereas dHMN with vocal cord palsy is associated with SLC5A7, DCTN1 and TRPV4 genes. Among the rare AR forms of dHMN like IGHMBP2 and DNAJB2, the SIGMAR1 gene mutations as well as VRK1 variants are associated with a motor neuropathy phenotype often associated with upper motoneuron involvement. The differential diagnosis of these latter arises with juvenile forms of amyotrophic lateral sclerosis, that could be caused also by variations of these genes, as well as hereditary spastic paraplegia. A differential diagnosis of dHMN related to Brown Vialetto Van Laere syndrome due to riboflavin transporter deficiency is important to consider because of the therapeutic possibility.

4.
Am J Med Genet A ; 191(12): 2873-2877, 2023 12.
Article in English | MEDLINE | ID: mdl-37622199

ABSTRACT

A 72-year-old man was referred to the Undiagnosed Diseases Network (UDN) because of gradual progressive weakness in both lower extremities for the past 45 years. He was initially diagnosed as having Charcot-Marie-Tooth disease type 2 (CMT2) without a defined molecular genetic cause. Exome sequencing (ES) failed to detect deleterious neuromuscular variants. Very recently, biallelic variants in sorbitol dehydrogenase (SORD) were discovered to be a novel cause of inherited neuropathies including CMT2 or distal hereditary motor neuropathy (dHMN) referred to as Sorbitol Dehydrogenase Deficiency with Peripheral Neuropathy (SORDD, OMIM 618912). The most common variant identified was c.757delG; p.A253Qfs*27. Through the Vanderbilt UDN clinical site, this patient was formally diagnosed with SORDD after the identification of homozygosity for the above SORD frameshift through UDN Genome Sequencing (GS). His medical odyssey was solved by GS and detection of extremely high levels of sorbitol. The diagnosis provided him the opportunity to receive potential treatment with an investigational drug in a clinical trial for SORDD. We suggest that similar studies be considered in other individuals thought to possibly have CMT2 or dHMN.


Subject(s)
Charcot-Marie-Tooth Disease , Humans , Male , Aged , Charcot-Marie-Tooth Disease/diagnosis , Charcot-Marie-Tooth Disease/genetics , L-Iditol 2-Dehydrogenase/genetics , Mutation
5.
J Peripher Nerv Syst ; 28(4): 608-613, 2023 12.
Article in English | MEDLINE | ID: mdl-37584201

ABSTRACT

BACKGROUND AND AIMS: Biallelic variants in the sorbitol dehydrogenase (SORD) gene have been identified as the genetic cause of autosomal recessive (AR) peripheral neuropathy (PN) manifesting as Charcot-Marie-Tooth disease type 2 (CMT2) or distal hereditary motor neuropathy (dHMN). We aim to observe the genetic and clinical spectrum of a cohort of patients with SORD-related PN (SORD-PN). METHODS: A total of 107 patients with AR or sporadic CMT2/dHMN underwent molecular diagnosis by whole-exome sequencing and subsequent Sanger sequencing validation. Available phenotypic data for SORD-PN were collected and analyzed. RESULTS: Eleven (10.28%) of 107 patients were identified as SORD-PN, including four with CMT2 and seven with dHMN. The SORD variant c.210 T > G;p.His70Gln in F-d3 was firstly reported and subsequent analysis showed that it resulted in loss of SORD enzyme function. Evidence of subclinical muscle involvement was frequently detected in patients with SORD-PN, including mildly to moderately elevated serum creatine kinase (CK) levels in 10 patients, myogenic electrophysiological changes in one patient, and muscle edema in five patients undergoing lower extremity MRI. Fasting serum sorbitol level was 88-fold higher in SORD-PN patients (9.69 ± 1.07 mg/L) than in healthy heterozygous subjects (0.11 ± 0.01 mg/L) and 138-fold higher than in healthy controls (0.07 ± 0.02 mg/L). INTERPRETATION: The novel SORD variant c.210 T > G;p.His70Gln and evidence of subclinical muscle involvement were identified, which expanded the genetic and clinical spectrum of SORD-PN. Subclinical muscle involvement might be a common but easily overlooked clinical feature. The serum CK and fasting serum sorbitol levels were expected to be sensitive biomarkers confirmed by follow-up cohort study.


Subject(s)
Charcot-Marie-Tooth Disease , Hereditary Sensory and Motor Neuropathy , Humans , L-Iditol 2-Dehydrogenase/genetics , Follow-Up Studies , Charcot-Marie-Tooth Disease/genetics , Muscles , Sorbitol , Mutation/genetics , Pedigree , Hereditary Sensory and Motor Neuropathy/genetics
6.
J Peripher Nerv Syst ; 28(3): 518-521, 2023 09.
Article in English | MEDLINE | ID: mdl-37249095

ABSTRACT

BACKGROUND AND AIMS: Pathogenic variants of HSPB1, the gene encoding the small heat shock protein 27, have been reported to cause autosomal dominant distal hereditary motor neuropathy (dHMN) type II and autosomal dominant Charcot-Marie-Tooth (CMT) disease with minimal sensory involvement (CMT2F). This study aimed to describe the clinical features of patients in a family with late-onset dHMN carrying the Pro39Leu variant of HSPB1. METHODS: Whole-exome sequence analysis identified a heterozygous pathogenic variant (Pro39Leu) of HSPB1 in the proband. The presence of the HSPB1 Pro39Leu variant in two affected individuals was confirmed using direct nucleotide sequence analysis. RESULTS: Both patients exhibited distal muscle weakness with lower extremity predominance and no obvious sensory deficits, leading to a clinical diagnosis of late-onset dHMN. Nerve conduction studies (NCSs) revealed a subclinical complication of sensory disturbance in one of the patients. The clinical and electrophysiological findings of patients with the HSPB1 Pro39Leu variant in this study and previous reports are summarized. INTERPRETATION: This study suggests that the clinical spectrum of patients carrying HSPB1 Pro39Leu variants, especially the disease onset, might be broader than expected, and HSPB1 variants should be considered in patients diagnosed with late-onset dHMN. Furthermore, patients with dHMN may have concomitant sensory deficits that should be evaluated using NCSs.


Subject(s)
Charcot-Marie-Tooth Disease , Hereditary Sensory and Motor Neuropathy , Humans , Mutation , Charcot-Marie-Tooth Disease/genetics , Lower Extremity , Heat-Shock Proteins/genetics , Molecular Chaperones/genetics
7.
J Neurol ; 270(6): 3112-3119, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36869887

ABSTRACT

OBJECTIVES: Inherited defects of the neuromuscular junction (NMJ) comprise an increasingly diverse range of diseases. Several recently identified genes highlight the overlap between peripheral neuropathies and congenital myasthenic syndromes (CMS). The beta-2 adrenergic receptor agonist salbutamol has been shown to provide symptomatic benefit in CMS, while improving structural defects at the NMJ. Based on these findings, we identified cases of motor neuropathy with NMJ dysfunction and assessed the effect of salbutamol on motor function. METHODS: Cases of motor neuropathy with significant NMJ dysfunction, were identified using repetitive nerve stimulation and single fibre electromyography. Oral salbutamol was administered for 12 months. Repeat neurophysiological and clinical assessments were undertaken at baseline, 6 months and 12 months. RESULTS: Significant defects of neuromuscular transmission were identified in 15 patients harbouring a range of genetic defects, including mutations in GARS1, DNM2, SYT2 and DYNC1H. No clear benefit on motor function was seen following the administration of 12 months of oral salbutamol; however, there was a significant improvement in patient reported fatigue. In addition, no clear effect on neurophysiological parameters was seen in patients treated with salbutamol. Side-effects due to off-target beta-adrenergic effects were significant in the patient cohort. CONCLUSION: These results highlight the involvement of the NMJ in several subtypes of motor neuropathies, including subtypes of neuropathy due to deficits in mitochondrial fusion-fission, synaptic vesicle transport, calcium channels and tRNA synthetases. Whether the NMJ dysfunction is simply due to muscle reinnervation or a pathology unrelated to denervation is unknown. The involvement of the NMJ may represent a novel therapeutic target in these conditions. However, treatment regimens will need to be more targeted for patients with primary inherited defects of neuromuscular transmission.


Subject(s)
Charcot-Marie-Tooth Disease , Myasthenic Syndromes, Congenital , Humans , Albuterol/pharmacology , Albuterol/therapeutic use , Genetic Heterogeneity , Neuromuscular Junction/pathology , Myasthenic Syndromes, Congenital/drug therapy , Myasthenic Syndromes, Congenital/genetics , Myasthenic Syndromes, Congenital/pathology , Charcot-Marie-Tooth Disease/genetics
8.
Brain ; 146(8): 3470-3483, 2023 08 01.
Article in English | MEDLINE | ID: mdl-36454683

ABSTRACT

Distal hereditary motor neuropathy represents a group of motor inherited neuropathies leading to distal weakness. We report a family of two brothers and a sister affected by distal hereditary motor neuropathy in whom a homozygous variant c.3G>T (p.1Met?) was identified in the COQ7 gene. This gene encodes a protein required for coenzyme Q10 biosynthesis, a component of the respiratory chain in mitochondria. Mutations of COQ7 were previously associated with severe multi-organ disorders characterized by early childhood onset and developmental delay. Using patient blood samples and fibroblasts derived from a skin biopsy, we investigated the pathogenicity of the variant of unknown significance c.3G>T (p.1Met?) in the COQ7 gene and the effect of coenzyme Q10 supplementation in vitro. We showed that this variation leads to a severe decrease in COQ7 protein levels in the patient's fibroblasts, resulting in a decrease in coenzyme Q10 production and in the accumulation of 6-demethoxycoenzyme Q10, the COQ7 substrate. Interestingly, such accumulation was also found in the patient's plasma. Normal coenzyme Q10 and 6-demethoxycoenzyme Q10 levels were restored in vitro by using the coenzyme Q10 precursor 2,4-dihydroxybenzoic acid, thus bypassing the COQ7 requirement. Coenzyme Q10 biosynthesis deficiency is known to impair the mitochondrial respiratory chain. Seahorse experiments showed that the patient's cells mainly rely on glycolysis to maintain sufficient ATP production. Consistently, the replacement of glucose by galactose in the culture medium of these cells reduced their proliferation rate. Interestingly, normal proliferation was restored by coenzyme Q10 supplementation of the culture medium, suggesting a therapeutic avenue for these patients. Altogether, we have identified the first example of recessive distal hereditary motor neuropathy caused by a homozygous variation in the COQ7 gene, which should thus be included in the gene panels used to diagnose peripheral inherited neuropathies. Furthermore, 6-demethoxycoenzyme Q10 accumulation in the blood can be used to confirm the pathogenic nature of the mutation. Finally, supplementation with coenzyme Q10 or derivatives should be considered to prevent the progression of COQ7-related peripheral inherited neuropathy in diagnosed patients.


Subject(s)
Mitochondrial Diseases , Ubiquinone , Male , Humans , Child, Preschool , Ubiquinone/therapeutic use , Mutation/genetics , Mitochondrial Diseases/drug therapy , Mitochondrial Diseases/genetics , Ataxia/genetics
9.
Brain ; 146(3): 880-897, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36380488

ABSTRACT

Distal hereditary motor neuropathies (dHMNs) are a group of inherited diseases involving the progressive, length-dependent axonal degeneration of the lower motor neurons. There are currently 29 reported causative genes and four disease loci implicated in dHMN. Despite the high genetic heterogeneity, mutations in the known genes account for less than 20% of dHMN cases, with the mutations identified predominantly being point mutations or indels. We have expanded the spectrum of dHMN mutations with the identification of a 1.35 Mb complex structural variation (SV) causing a form of autosomal dominant dHMN (DHMN1 OMIM %182906). Given the complex nature of SV mutations and the importance of studying pathogenic mechanisms in a neuronal setting, we generated a patient-derived DHMN1 motor neuron model harbouring the 1.35 Mb complex insertion. The DHMN1 complex insertion creates a duplicated copy of the first 10 exons of the ubiquitin-protein E3 ligase gene (UBE3C) and forms a novel gene-intergenic fusion sense transcript by incorporating a terminal pseudo-exon from intergenic sequence within the DHMN1 locus. The UBE3C intergenic fusion (UBE3C-IF) transcript does not undergo nonsense-mediated decay and results in a significant reduction of wild-type full-length UBE3C (UBE3C-WT) protein levels in DHMN1 iPSC-derived motor neurons. An engineered transgenic Caenorhabditis elegans model expressing the UBE3C-IF transcript in GABA-ergic motor neurons shows neuronal synaptic transmission deficits. Furthermore, the transgenic animals are susceptible to heat stress, which may implicate defective protein homeostasis underlying DHMN1 pathogenesis. Identification of the novel UBE3C-IF gene-intergenic fusion transcript in motor neurons highlights a potential new disease mechanism underlying axonal and motor neuron degeneration. These complementary models serve as a powerful paradigm for studying the DHMN1 complex SV and an invaluable tool for defining therapeutic targets for DHMN1.


Subject(s)
Muscular Atrophy, Spinal , Ubiquitin-Protein Ligases , Animals , Muscular Atrophy, Spinal/genetics , Mutation , Ubiquitin/genetics , Ubiquitin-Protein Ligases/genetics , Humans
10.
Folia Med Cracov ; 63(4): 57-61, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38578345

ABSTRACT

The heat-shock protein beta-1 (HSPB1) is one of small heat-shock proteins that play an important role in cell functioning by promoting correct folding of other proteins. The HSPB1 mutations are known to cause distal Hereditary Motor Neuropathy type 2B (dHMN2B) and Charcot-Marie-Tooth disease type 2F (CMT2F). More than 30 different mutations in the HSPB1 have been found in patients with CMT2F and dHMN2B. There are cases of the Thr151Ile HSPB1 mutation described in 4 countries: Croatia, Japan, France and Poland. In this paper we present a Polish family with p.Thr151Ile mutation causing distal hereditary motor neuropathy. A 48-year-old male patient presented progressive bilateral lower limb weakness and gait difficulty of typical onset. The presentation of the disease in his daughter, who carries the same mutation is yet uncertain. She has currently no clinical symptoms of the disease but registered mild muscle damage in EMG with correct conduction parameter in ENG.


Subject(s)
Charcot-Marie-Tooth Disease , HSP27 Heat-Shock Proteins , Female , Humans , Male , Middle Aged , HSP27 Heat-Shock Proteins/genetics , Mutation , Poland
11.
Front Mol Neurosci ; 15: 868089, 2022.
Article in English | MEDLINE | ID: mdl-35431800

ABSTRACT

Small heat shock protein 27 is a critically important chaperone, that plays a key role in several essential and varied physiological processes. These include thermotolerance, apoptosis, cytoskeletal dynamics, cell differentiation, protein folding, among others. Despite its relatively small size and intrinsically disordered termini, it forms large and polydisperse oligomers that are in equilibrium with dimers. This equilibrium is driven by transient interactions between the N-terminal region, the α-crystallin domain, and the C-terminal region. The continuous redistribution of binding partners results in a conformationally dynamic protein that allows it to adapt to different functions where substrate capture is required. However, the intrinsic disorder of the amino and carboxy terminal regions and subsequent conformational variability has made structural investigations challenging. Because heat shock protein 27 is critical for so many key cellular functions, it is not surprising that it also has been linked to human disease. Charcot-Marie-Tooth and distal hereditary motor neuropathy are examples of neurodegenerative disorders that arise from single point mutations in heat shock protein 27. The development of possible treatments, however, depends on our understanding of its normal function at the molecular level so we might be able to understand how mutations manifest as disease. This review will summarize recent reports describing investigations into the structurally elusive regions of Hsp27. Recent insights begin to provide the required context to explain the relationship between a mutation and the resulting loss or gain of function that leads to Charcot-Marie Tooth disease and distal hereditary motor neuropathy.

12.
Clin Neurol Neurosurg ; 213: 107118, 2022 02.
Article in English | MEDLINE | ID: mdl-34995833

ABSTRACT

Sorbitol dehydrogenase (SORD) has been identified as the causative gene of autosomal recessive distal hereditary motor neuropathies (dHMN). Here, we describe a 25-year-old woman who presented with progressive weakness of both lower limbs for the previous 10 years. Electrophysiological results suggested only a reduction in the compound muscle action potential (CMAP) amplitude of both the tibial and left deep peroneal nerves and neurogenic changes in needle EMG. A heterozygous c.757delG variant with a splicing c.786 + 1 G>A variant in the SORD gene was identified. A sural nerve biopsy revealed slight axon separation from the myelin sheath and thin myelin sheaths in very few nerve fibres and thickening of the microvasculature basement membrane. Our study expands the pathological and mutation spectrum of the SORD-related neuropathy.


Subject(s)
Hereditary Sensory and Motor Neuropathy , L-Iditol 2-Dehydrogenase , Adult , Asian People/genetics , China , Female , Hereditary Sensory and Motor Neuropathy/genetics , Humans , L-Iditol 2-Dehydrogenase/genetics , Mutation/genetics , Sural Nerve/pathology
13.
Front Neurol ; 12: 733926, 2021.
Article in English | MEDLINE | ID: mdl-34819907

ABSTRACT

Biallelic mutations in the sorbitol dehydrogenase (SORD) gene have recently been found to be one of the most frequent causes of autosomal recessive axonal Charcot-Marie-Tooth (CMT2) and distal hereditary motor neuropathy (dHMN). This study was performed to explore the frequency of SORD mutations and correlations of the phenotypic-genetic spectrum in a relatively large Chinese cohort. In this study, we screened a cohort of 485 unrelated Chinese patients with hereditary neuropathy by using Sanger sequencing, next generation sequencing, or whole exome sequencing after PMP22 duplication was initially excluded. SORD mutation was identified in five out of 78 undiagnosed patients. Two individuals carried the previously reported homozygous c.757 delG (p.A253Qfs*27) variant, and three individuals carried the heterozygous c.757delG (p.A253Qfs*27) variant together with a second novel likely pathogenic variant, including c.731 C>T (p.P244L), c.776 C>T (p.A259V), or c.851T>C (p.L284P). The frequency of SORD variants was calculated to be 6.4% (5/78) in unclarified CMT2 and dHMN patients. All patients presented with distal weakness and atrophy in the lower limb, two of whom had minor clinical sensory abnormalities and small fiber neuropathy. Our study provides further information on the genotype and phenotype of patients with SORD mutations.

14.
Beijing Da Xue Xue Bao Yi Xue Ban ; 53(5): 957-963, 2021 Oct 18.
Article in Chinese | MEDLINE | ID: mdl-34650302

ABSTRACT

OBJECTIVE: Distal hereditary motor neuropathy (dHMN) comprises a heterogeneous group of inherited disorders associated with neurodegeneration of motor nerves and neurons, mainly charac-terized by progressive atrophy and weakness of distal muscle without clinical or electrophysiological sensory abnormalities. To improve the recognition and diagnosis of the disease, we summarized the clinical manifestations, electrophysiological, pathological, and genetic characteristics in eight patients with dHMN. METHODS: Eight probands from different families diagnosed with dHMN were recruited in this study between June 2018 and April 2019 at Peking University People's Hospital. Eight patients underwent complete neurological examination and standard electrophysiological examinations. The clinical criteria were consistent with the patients presenting with a pure motor neuropathy with no sensory changes on electrophysiology. The detailed clinical symptoms, neurophysiological examinations, pathological features and gene mutations were analyzed retrospectively. Genetic testing was performed on the eight patients using targeted next-generation sequencing panel for inherited neuromuscular disorder and was combined with segregation analysis. RESULTS: The age of onset ranged between 11 and 64 years (median 39.5 years) in our dHMN patients. All the cases showed a slowly progressive disease course, mainly characterized by distal limb muscle weakness and atrophy. The motor nerve conduction revealed decreased compound muscle action potential amplitude and velocity, while the sensory nerve conduction velocities and action potentials were not affected. Needle electromyography indicated neurogenic chronic denervation in all patients. Muscle biopsy performed in two patients demonstrated neurogenic skeletal muscle damage. Sural nerve biopsy was performed in one patient, Semithin sections shows relatively normal density and structure of large myelinated fibers, except very few fibers with thin myelin sheaths, which suggested very mild sensory nerve involvement. Eight different genes known to be associated with dHMN were identified in the patients by next-generation sequencing, pathogenic dHMN mutations were identified in three genes, and the detection rate of confirmed genetic diagnosis of dHMN was 37.5% (3/8). Whereas five variants of uncertain significance (VUS) were identified, among which two novel variants co-segregated the phenotype. CONCLUSION: dHMN is a group of inherited peripheral neuropathies with great clinical and genetic heterogeneity. Next-generation sequencing is widely used to discover pathogenic genes in patients with dHMN, but more than half of the patients still remain genetically unknown.


Subject(s)
Hereditary Sensory and Motor Neuropathy , Peripheral Nervous System Diseases , Adolescent , Adult , Child , Hereditary Sensory and Motor Neuropathy/genetics , Humans , Middle Aged , Mutation , Phenotype , Retrospective Studies , Young Adult
15.
Pediatr Neurol ; 119: 40-44, 2021 06.
Article in English | MEDLINE | ID: mdl-33894639

ABSTRACT

BACKGROUND: The ATP7A gene encodes a copper transporter whose mutations cause Menkes disease, occipital horn syndrome (OHS), and, less frequently, ATP7A-related distal hereditary motor neuropathy (dHMN). Here we describe a family with OHS caused by a novel mutation in the ATP7A gene, including a patient with a comorbid dHMN that worsened markedly after being treated with copper histidinate. METHODS: We studied in detail the clinical features of the patients and performed a genomic analysis by using TruSight One Expanded Sequencing Panel. Subsequently, we determined the ATP7A and ATP7B expression levels, mitochondrial membrane potential, and redox balance in cultured fibroblasts of Patient 1. RESULTS: We found a novel ATP7A late truncated mutation p.Lys1412AsnfsX15 in the two affected members of this family. The co-occurrence of OHS and dHMN in Patient 1 reveals the variable phenotypic expressivity of the variant. A severe clinical and neurophysiologic worsening was observed in the dHMN of Patient 1 when he was treated with copper replacement therapy, with a subsequent fast recovery after the copper histidinate was withdrawn. Functional studies revealed that the patient had low levels of both ATP7A and ATP7B, the other copper transporter, and high levels of superoxide ion in the mitochondria. CONCLUSIONS: Our findings broaden the clinical spectrum of ATP7A-related disorders and demonstrate that two clinical phenotypes can occur in the same patient. The copper-induced toxicity and low levels of both ATP7A and ATP7B in our patient suggest that copper accumulation in motor neurons is the pathogenic mechanism in ATP7A-related dHMN.


Subject(s)
Copper-Transporting ATPases/genetics , Copper/toxicity , Cutis Laxa/genetics , Ehlers-Danlos Syndrome/genetics , Adult , Child , Copper/blood , Cutis Laxa/blood , Cutis Laxa/diagnosis , Cutis Laxa/physiopathology , Ehlers-Danlos Syndrome/blood , Ehlers-Danlos Syndrome/diagnosis , Ehlers-Danlos Syndrome/physiopathology , Humans , Male , Pedigree , Young Adult
16.
Neurol Sci ; 42(9): 3695-3705, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33443672

ABSTRACT

The Dynactin 1 (DCTN1) encodes the p150 subunit of dynactin, which engages retrograde axonal transport. Missense mutations in DCTN1 have been linked to a series of neurodegenerative diseases, including distal hereditary motor neuropathies (dHMN) and Perry syndrome. A few pathogenic DCTN1 mutations related with Perry syndrome have been described within, or adjacent to, the highly conserved N-terminal cytoskeleton-associated protein, glycine-rich (CAP-Gly) domain. But to our best knowledge, only the pathogenic G59S mutation in DCTN1 has been reported in dHMN7B families. Herein, we provided a novel heterozygous mutation in DCTN1 which caused both dHMN7B and Perry syndrome from a Chinese family. Whole exome sequencing (WES) was performed to identify the disease-associated genes. Single nucleotide variants (SNVs) and small insertions/deletions (INDELs) were further predicted with Mutation Taster, Polymorphism Phenotyping v2 (PolyPhen-2), and Sorting Intolerant From Tolerant (SIFT) and compared to the Single Nucleotide Polymorphism Database(dbSNP), Exome Aggregation Consortium (ExAC), and the 1000 Genomes Project. Furthermore, a novel missense mutation c.279G>C (Q93H) in DCTN1 was identified as the candidate loci. The mutation was confirmed with Sanger sequencing in the family members and cosegregated with various phenotypes. In silico analysis and molecular structural modeling, the mutation not only caused the loss of a hydrogen bond within the p150 protein but also affected the formation of hydrogen bonds between p150 and EB. Therefore, the new Q93H mutation in DCTN1 caused both familial dHMN7B and Perry syndrome. Our findings could expand the clinical and pathogenic spectrum and strengthen the clinical diagnostic role of the DCTN1 gene.


Subject(s)
Mutation, Missense , Parkinsonian Disorders , China , Depression , Dynactin Complex/genetics , Humans , Hypoventilation , Mutation , Mutation, Missense/genetics
17.
Eur J Neurol ; 28(4): 1334-1343, 2021 04.
Article in English | MEDLINE | ID: mdl-33369814

ABSTRACT

BACKGROUND AND PURPOSE: Distal hereditary motor neuropathies (dHMNs) are a heterogeneous group of disorders characterized by degeneration of the motor component of peripheral nerves. Currently, only 15% to 32.5% of patients with dHMN are characterized genetically. Additionally, the prevalence of these genetic disorders is not well known. Recently, biallelic mutations in the sorbitol dehydrogenase gene (SORD) have been identified as a cause of dHMN, with an estimated frequency in undiagnosed cases of up to 10%. METHODS: In the present study, we included 163 patients belonging to 108 different families who were diagnosed with a dHMN and who underwent a thorough genetic screening that included next-generation sequencing and subsequent Sanger sequencing of SORD. RESULTS: Most probands were sporadic cases (62.3%), and the most frequent age of onset of symptoms was 2 to 10 years (28.8%). A genetic diagnosis was achieved in 37/108 (34.2%) families and 78/163 (47.8%) of all patients. The most frequent cause of distal hereditary motor neuropathies were mutations in HSPB1 (10.4%), GARS1 (9.8%), BICD2 (8.0%), and DNAJB2 (6.7%) genes. In addition, 3.1% of patients were found to be carriers of biallelic mutations in SORD. Mutations in another seven genes were also identified, although they were much less frequent. Eight new pathogenic mutations were detected, and 17 patients without a definite genetic diagnosis carried variants of uncertain significance. The calculated minimum prevalence of dHMN was 2.3 per 100,000 individuals. CONCLUSIONS: This study confirms the genetic heterogeneity of dHMN and that biallelic SORD mutations are a cause of dHMN in different populations.


Subject(s)
Charcot-Marie-Tooth Disease , Hereditary Sensory and Motor Neuropathy , Charcot-Marie-Tooth Disease/genetics , Child , Child, Preschool , Genetic Association Studies , Genetic Testing , HSP40 Heat-Shock Proteins , Heterozygote , Humans , Molecular Chaperones , Mutation
18.
Eur J Neurol ; 28(1): 297-304, 2021 01.
Article in English | MEDLINE | ID: mdl-32909314

ABSTRACT

BACKGROUND AND PURPOSE: In a subset of patients with inherited peripheral neuropathies the first symptom is atrophy and weakness of the intrinsic muscles of the hands, without involvement of lower limbs until later in the disease course. The exact pathomechanisms of this phenotype are currently unknown. The aim of this study was to characterize the clinical, neurophysiological and genetic features of a group of patients with a clinical diagnosis of upper limb predominant Charcot-Marie-Tooth disease (CMT). METHODS: The clinical, electrophysiology and genetic data of 11 patients with upper limb predominant peripheral neuropathy selected from a single-centre cohort of 461 patients diagnosed with inherited neuropathy were analysed and the clinical, electrophysiological and genetic characteristics of these patients reported. RESULTS: An overlapping phenotype of neuropathy and myopathy was detected in two patients. Four patients carry autosomal dominant mutations in GARS and a single patient had a homozygous mutation in SH3TC2. However, the underlying genetic diagnosis could not be confirmed in six patients by gene panel sequencing. CONCLUSIONS: Upper limb-onset inherited neuropathies are genetically heterogeneous and, in some cases, there is an overlapping myopathy. Autosomal dominant GARS mutations are the most common genetic cause; however, mutations in other CMT genes may also result in this phenotype in individual patients. The majority of these patients cannot be genetically diagnosed by gene panel testing of known CMT and myopathy genes, suggesting further genetic heterogeneity and highlighting the importance of further genetic investigations in these patients and families.


Subject(s)
Charcot-Marie-Tooth Disease , Hereditary Sensory and Motor Neuropathy , Charcot-Marie-Tooth Disease/genetics , Genetic Heterogeneity , Hand , Hereditary Sensory and Motor Neuropathy/genetics , Humans , Mutation , Phenotype
19.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-942281

ABSTRACT

OBJECTIVE@#Distal hereditary motor neuropathy (dHMN) comprises a heterogeneous group of inherited disorders associated with neurodegeneration of motor nerves and neurons, mainly charac-terized by progressive atrophy and weakness of distal muscle without clinical or electrophysiological sensory abnormalities. To improve the recognition and diagnosis of the disease, we summarized the clinical manifestations, electrophysiological, pathological, and genetic characteristics in eight patients with dHMN.@*METHODS@#Eight probands from different families diagnosed with dHMN were recruited in this study between June 2018 and April 2019 at Peking University People's Hospital. Eight patients underwent complete neurological examination and standard electrophysiological examinations. The clinical criteria were consistent with the patients presenting with a pure motor neuropathy with no sensory changes on electrophysiology. The detailed clinical symptoms, neurophysiological examinations, pathological features and gene mutations were analyzed retrospectively. Genetic testing was performed on the eight patients using targeted next-generation sequencing panel for inherited neuromuscular disorder and was combined with segregation analysis.@*RESULTS@#The age of onset ranged between 11 and 64 years (median 39.5 years) in our dHMN patients. All the cases showed a slowly progressive disease course, mainly characterized by distal limb muscle weakness and atrophy. The motor nerve conduction revealed decreased compound muscle action potential amplitude and velocity, while the sensory nerve conduction velocities and action potentials were not affected. Needle electromyography indicated neurogenic chronic denervation in all patients. Muscle biopsy performed in two patients demonstrated neurogenic skeletal muscle damage. Sural nerve biopsy was performed in one patient, Semithin sections shows relatively normal density and structure of large myelinated fibers, except very few fibers with thin myelin sheaths, which suggested very mild sensory nerve involvement. Eight different genes known to be associated with dHMN were identified in the patients by next-generation sequencing, pathogenic dHMN mutations were identified in three genes, and the detection rate of confirmed genetic diagnosis of dHMN was 37.5% (3/8). Whereas five variants of uncertain significance (VUS) were identified, among which two novel variants co-segregated the phenotype.@*CONCLUSION@#dHMN is a group of inherited peripheral neuropathies with great clinical and genetic heterogeneity. Next-generation sequencing is widely used to discover pathogenic genes in patients with dHMN, but more than half of the patients still remain genetically unknown.


Subject(s)
Adolescent , Adult , Child , Humans , Middle Aged , Young Adult , Hereditary Sensory and Motor Neuropathy/genetics , Mutation , Peripheral Nervous System Diseases , Phenotype , Retrospective Studies
20.
Front Neurol ; 11: 603003, 2020.
Article in English | MEDLINE | ID: mdl-33381078

ABSTRACT

Background and Objectives: Distal hereditary motor neuropathy (dHMN) is a clinically and genetically heterogeneous group of inherited neuropathies. The objectives of this study were to report the clinical and genetic features of dHMN patients in a Chinese cohort. Aims and Methods: We performed clinical assessments and whole-exome sequencing in 24 dHMN families from Mainland China. We conducted a retrospective analysis of the data and investigated the frequency and clinical features of patients with a confirmed mutation. Results: Two novel heterozygous mutations in GARS, c.373G>C (p.E125Q) and c.1015G>A (p.G339R), were identified and corresponded to the typical dHMN-V phenotype. Together with families with WARS, SORD, SIGMAR1, and HSPB1 mutations, 29.2% of families (7/24) acquired a definite genetic diagnosis. One novel heterozygous variant of uncertain significance, c.1834G>A (p.G612S) in LRSAM1, was identified in a patient with mild dHMN phenotype. Conclusion: Our study expanded the mutation spectrum of GARS mutations and added evidence that GARS mutations are associated with both axonal Charcot-Marie-Tooth and dHMN phenotypes. Mutations in genes encoding aminoamide tRNA synthetase (ARS) might be a frequent cause of autosomal dominant-dHMN, and SORD mutation might account for a majority of autosomal recessive-dHMN cases. The relatively low genetic diagnosis yield indicated more causative dHMN genes need to be discovered.

SELECTION OF CITATIONS
SEARCH DETAIL
...