Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
Add more filters










Publication year range
1.
Genes Cells ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38924305

ABSTRACT

Interhomolog recombination in meiosis is mediated by the Dmc1 recombinase. The Mei5-Sae3 complex of Saccharomyces cerevisiae promotes Dmc1 assembly and functions with Dmc1 for homology-mediated repair of meiotic DNA double-strand breaks. How Mei5-Sae3 facilitates Dmc1 assembly remains poorly understood. In this study, we created and characterized several mei5 mutants featuring the amino acid substitutions of basic residues. We found that Arg97 of Mei5, conserved in its ortholog, SFR1 (complex with SWI5), RAD51 mediator, in humans and other organisms, is critical for complex formation with Sae3 for Dmc1 assembly. Moreover, the substitution of either Arg117 or Lys133 with Ala in Mei5 resulted in the production of a C-terminal truncated Mei5 protein during yeast meiosis. Notably, the shorter Mei5-R117A protein was observed in meiotic cells but not in mitotic cells when expressed, suggesting a unique regulation of Dmc1-mediated recombination by posttranslational processing of Mei5-Sae3.

2.
Genetics ; 227(3)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38657110

ABSTRACT

The accurate segregation of homologous chromosomes during the Meiosis I reductional division in most sexually reproducing eukaryotes requires crossing over between homologs. In baker's yeast approximately 80% of meiotic crossovers result from Mlh1-Mlh3 and Exo1 acting to resolve double-Holliday junction intermediates in a biased manner. Little is known about how Mlh1-Mlh3 is recruited to recombination intermediates to perform its role in crossover resolution. We performed a gene dosage screen in baker's yeast to identify novel genetic interactors with Mlh1-Mlh3. Specifically, we looked for genes whose lowered dosage reduced meiotic crossing over using sensitized mlh3 alleles that disrupt the stability of the Mlh1-Mlh3 complex and confer defects in mismatch repair but do not disrupt meiotic crossing over. To our surprise we identified genetic interactions between MLH3 and DMC1, the recombinase responsible for recombination between homologous chromosomes during meiosis. We then showed that Mlh3 physically interacts with Dmc1 in vitro and in vivo. Partial complementation of Mlh3 crossover functions was observed when MLH3 was expressed under the control of the CLB1 promoter (NDT80 regulon), suggesting that Mlh3 function can be provided late in meiotic prophase at some functional cost. A model for how Dmc1 could facilitate Mlh1-Mlh3's role in crossover resolution is presented.


Subject(s)
Cell Cycle Proteins , Crossing Over, Genetic , Meiosis , MutL Protein Homolog 1 , MutL Proteins , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , MutL Protein Homolog 1/genetics , MutL Protein Homolog 1/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , MutL Proteins/metabolism , MutL Proteins/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Protein Binding
3.
Genes Genomics ; 46(5): 589-599, 2024 05.
Article in English | MEDLINE | ID: mdl-38536618

ABSTRACT

BACKGROUND: Elymus atratus (Nevski) Hand.-Mazz. is perennial hexaploid wheatgrass. It was assigned to the genus Elymus L. sensu stricto based on morphological characters. Its genome constitution has not been disentangled yet. OBJECTIVE: To identify the genome constitution and origin of E. atratus. METHODS: In this study, genomic in situ hybridization and fluorescence in situ hybridization, and phylogenetic analysis based on the Acc1, DMC1 and matK sequences were performed. RESULTS: Genomic in situ hybridization and fluorescence in situ hybridization results reveal that E. atratus 2n = 6x = 42 is composed of 14 St genome chromosomes, 14 H genome chromosomes, and 14 Y genome chromosomes including two H-Y type translocation chromosomes, suggesting that the genome formula of E. atratus is StStYYHH. The phylogenetic analysis based on Acc1 and DMC1 sequences not only shows that the Y genome originated in a separate diploid, but also suggests that Pseudoroegneria (St), Hordeum (H), and a diploid species with Y genome were the potential donors of E. atratus. Data from chloroplast DNA showed that the maternal donor of E. atratus contains the St genome. CONCLUSION: Elymus atratus is an allohexaploid species with StYH genome, which may have originated through the hybridization between an allotetraploid Roegneria (StY) species as the maternal donor and a diploid Hordeum (H) species as the paternal donor.


Subject(s)
Elymus , Hordeum , Elymus/genetics , Phylogeny , In Situ Hybridization, Fluorescence , Genome, Plant , Hordeum/genetics
4.
bioRxiv ; 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-38014100

ABSTRACT

The accurate segregation of homologous chromosomes during the Meiosis I reductional division in most sexually reproducing eukaryotes requires crossing over between homologs. In baker's yeast approximately 80 percent of meiotic crossovers result from Mlh1-Mlh3 and Exo1 acting to resolve double-Holliday junction (dHJ) intermediates in a biased manner. Little is known about how Mlh1-Mlh3 is recruited to recombination intermediates and whether it interacts with other meiotic factors prior to its role in crossover resolution. We performed a haploinsufficiency screen in baker's yeast to identify novel genetic interactors with Mlh1-Mlh3 using sensitized mlh3 alleles that disrupt the stability of the Mlh1-Mlh3 complex and confer defects in mismatch repair but do not disrupt meiotic crossing over. We identified several genetic interactions between MLH3 and DMC1, the recombinase responsible for recombination between homologous chromosomes during meiosis. We then showed that Mlh3 physically interacts with Dmc1 in vitro and at times in meiotic prophase when Dmc1 acts as a recombinase. Interestingly, restricting MLH3 expression to roughly the time of crossover resolution resulted in a mlh3 null-like phenotype for crossing over. Our data are consistent with a model in which Dmc1 nucleates a polymer of Mlh1-Mlh3 to promote crossing over.

6.
Front Plant Sci ; 14: 1208285, 2023.
Article in English | MEDLINE | ID: mdl-37615022

ABSTRACT

Effective chromosome synapsis and crossover formation during meiosis are essential for fertility, especially in grain crops such as wheat. These processes function most efficiently in wheat at temperatures between 17-23 °C, although the genetic mechanisms for such temperature dependence are unknown. In a previously identified mutant of the hexaploid wheat reference variety 'Chinese Spring' lacking the long arm of chromosome 5D, exposure to low temperatures during meiosis resulted in asynapsis and crossover failure. In a second mutant (ttmei1), containing a 4 Mb deletion in chromosome 5DL, exposure to 13 °C led to similarly high levels of asynapsis and univalence. Moreover, exposure to 30 °C led to a significant, but less extreme effect on crossovers. Previously, we proposed that, of 41 genes deleted in this 4 Mb region, the major meiotic gene TaDMC1-D1 was the most likely candidate for preservation of synapsis and crossovers at low (and possibly high) temperatures. In the current study, using RNA-guided Cas9, we developed a new Chinese Spring CRISPR mutant, containing a 39 bp deletion in the 5D copy of DMC1, representing the first reported CRISPR-Cas9 targeted mutagenesis in Chinese Spring, and the first CRISPR mutant for DMC1 in wheat. In controlled environment experiments, wild-type Chinese Spring, CRISPR dmc1-D1 and backcrossed ttmei1 mutants were exposed to either high or low temperatures during the temperature-sensitive period from premeiotic interphase to early meiosis I. After 6-7 days at 13 °C, crossovers decreased by over 95% in the dmc1-D1 mutants, when compared with wild-type plants grown under the same conditions. After 24 hours at 30 °C, dmc1-D1 mutants exhibited a reduced number of crossovers and increased univalence, although these differences were less marked than at 13 °C. Similar results were obtained for ttmei1 mutants, although their scores were more variable, possibly reflecting higher levels of background mutation. These experiments confirm our previous hypothesis that DMC1-D1 is responsible for preservation of normal crossover formation at low and, to a certain extent, high temperatures. Given that reductions in crossovers have significant effects on grain yield, these results have important implications for wheat breeding, particularly in the face of climate change.

7.
Bio Protoc ; 13(14): e4780, 2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37497444

ABSTRACT

During the first meiotic prophase in mouse, repair of SPO11-induced DNA double-strand breaks (DSBs), facilitating homologous chromosome synapsis, is essential to successfully complete the first meiotic cell division. Recombinases RAD51 and DMC1 play an important role in homology search, but their mechanistic contribution to this process is not fully understood. Super-resolution, single-molecule imaging of RAD51 and DMC1 provides detailed information on recombinase accumulation on DSBs during meiotic prophase. Here, we present a detailed protocol of recombination foci analysis of three-color direct stochastic optical reconstruction microscopy (dSTORM) imaging of SYCP3, RAD51, and DMC1, fluorescently labeled by antibody staining in mouse spermatocytes. This protocol consists of sample preparation, data acquisition, pre-processing, and data analysis. The sample preparation procedure includes an updated version of the nuclear spreading of mouse testicular cells, followed by immunocytochemistry and the preparation steps for dSTORM imaging. Data acquisition consists of three-color dSTORM imaging, which is extensively described. The pre-processing that converts fluorescent signals to localization data also includes channel alignment and image reconstruction, after which regions of interest (ROIs) are identified based on RAD51 and/or DMC1 localization patterns. The data analysis steps then require processing of the fluorescent signal localization within these ROIs into discrete nanofoci, which can be further analyzed. This multistep approach enables the systematic investigation of spatial distributions of proteins associated with individual DSB sites and can be easily adapted for analyses of other foci-forming proteins. All computational scripts and software are freely accessible, making them available to a broad audience. Key features Preparation of spread nuclei, resulting in a flattened preparation with easy antibody-accessible chromatin-associated proteins on dSTORM-compatible coverslips. dSTORM analysis of immunofluorescent repair foci in meiotic prophase nuclei. Detailed descriptions of data acquisition, (pre-)processing, and nanofoci feature analysis applicable to all proteins that assemble in immunodetection as discrete foci. Graphical overview.

8.
Genes Genet Syst ; 98(1): 45-52, 2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37225456

ABSTRACT

Meiotic recombination between homologous chromosomes is promoted by the collaborative action of two RecA homologs, Rad51 and meiosis-specific Dmc1. The filament assembly of Dmc1 is promoted by meiosis-specific Mei5-Sae3 in budding yeast. Mei5-Sae3 shows sequence similarity to fission yeast Sfr1-Swi5, which stimulates DNA strand exchanges by Rad51 as well as Dmc1. Sae3 and Swi5 share a conserved motif with the amino acid sequence YNEI/LK/RD. In this study, we analyzed the role of the YNEL residues in the Sae3 sequence in meiotic recombination and found that these residues are critical for Sae3 function in Dmc1 assembly. L59 substitution in the Sae3 protein disrupts complex formation with Mei5, while Y56 and N57 substitutions do not. These observations reveal the differential contribution of conserved YNEL residues to Sae3 activities in meiotic recombination.


Subject(s)
Chromosomal Proteins, Non-Histone , Meiosis , Saccharomyces cerevisiae Proteins , Amino Acids/genetics , Amino Acids/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Meiosis/genetics , Rad51 Recombinase/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/metabolism
9.
Biomolecules ; 13(4)2023 04 10.
Article in English | MEDLINE | ID: mdl-37189409

ABSTRACT

Homologous recombination (HR) is essential for meiosis in most sexually reproducing organisms, where it is induced upon entry into meiotic prophase. Meiotic HR is conducted by the collaborative effort of proteins responsible for DNA double-strand break repair and those produced specifically during meiosis. The Hop2-Mnd1 complex was originally identified as a meiosis-specific factor that is indispensable for successful meiosis in budding yeast. Later, it was found that Hop2-Mnd1 is conserved from yeasts to humans, playing essential roles in meiosis. Accumulating evidence suggests that Hop2-Mnd1 promotes RecA-like recombinases towards homology search/strand exchange. This review summarizes studies on the mechanism of the Hop2-Mnd1 complex in promoting HR and beyond.


Subject(s)
DNA-Binding Proteins , Meiosis , Humans , DNA-Binding Proteins/metabolism , Homologous Recombination , DNA Repair , Recombinases/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism
10.
Front Genet ; 14: 1135006, 2023.
Article in English | MEDLINE | ID: mdl-37056290

ABSTRACT

Established autotetraploids often have a highly stable meiosis with high fertility compared with neo-autotetraploids. The autotetraploid Carassius auratus (4n = 200, RRRR) (4nRR), which stemmed from whole-genome duplication of Carassius auratus red var. (2n = 100, RR) (RCC), produces diploid gametes with an adopted diploid-like chromosome pairing in meiosis and maintains the formation of autotetraploid lineages. In this study, we focused on Dmc1, a meiosis-specific recombinase during the prophase of meiosis I, and elaborated on the genetic variation, alternative transcription, expression characterization, and epigenetic modification of Dmc1 in RCC and 4nRR. Two original Dmc1 from RCC were identified in 4nRR, and two duplicated Dmc1 differences in genetic composition were observed in 4nRR. Furthermore, we only noticed that one original and one duplicated Dmc1 were expressed in RCC and 4nRR, respectively. However, both possessed identical gene expression profiles, differential expression of sexual dimorphism, and hypomethylation levels. These results indicated that the specific expression of duplicated Dmc1 may be involve in the progression of meiosis of the diploid-like chromosome pairing in autotetraploid Carassius auratus. Herein, the findings significantly increase knowledge of meiosis of autopolyploid fish and provide meaningful insights into genetic breeding in polyploidy fish.

11.
Plant Reprod ; 36(1): 17-41, 2023 03.
Article in English | MEDLINE | ID: mdl-35641832

ABSTRACT

Homologous recombination during meiosis is crucial for the DNA double-strand breaks (DSBs) repair that promotes the balanced segregation of homologous chromosomes and enhances genetic variation. In most eukaryotes, two recombinases RAD51 and DMC1 form nucleoprotein filaments on single-stranded DNA generated at DSB sites and play a central role in the meiotic DSB repair and genome stability. These nucleoprotein filaments perform homology search and DNA strand exchange to initiate repair using homologous template-directed sequences located elsewhere in the genome. Multiple factors can regulate the assembly, stability, and disassembly of RAD51 and DMC1 nucleoprotein filaments. In this review, we summarize the current understanding of the meiotic functions of RAD51 and DMC1 and the role of their positive and negative modulators. We discuss the current models and regulators of homology searches and strand exchange conserved during plant meiosis. Manipulation of these repair factors during plant meiosis also holds a great potential to accelerate plant breeding for crop improvements and productivity.


Subject(s)
DNA Breaks, Double-Stranded , Rec A Recombinases , Rec A Recombinases/genetics , Rec A Recombinases/metabolism , Rad51 Recombinase/genetics , Rad51 Recombinase/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Eukaryota/metabolism , DNA Repair , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Recombinases/genetics , Nucleoproteins/genetics , Meiosis
12.
Yi Chuan ; 44(5): 398-413, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35729697

ABSTRACT

Meiosis is a specialized cell division that occurs in reproductive cells during sexual reproduction. It contains once DNA replication following nucleus division twice, thus producing haploid gametes. Fusion of male and female gametes restores genome to the diploid level, which not only ensures the genome stability between generations during sexual reproduction, but also leads to genetic diversity among offspring. Meiosis homologous recombination (HR) is one of the crucial events during meiotic prophase I, and it not only ensures the subsequently faithful segregation of homologous chromosomes (homologs), but also exchanges genetic information between homologs with greatly increasing the genetic diversity of progeny. RAD51 (RADiation sensitive 51) and DMC1 (disruption Meiotic cDNA 1) are essential recombinases for the HR process, and have certain commonalities and differences. In this review, we summarize and compare the conserved and differentiated features of RAD51 and DMC1 in terms of origin, evolution, structure, and function, we also provide an outlook on future research directions to further understand and study the molecular mechanisms in regulation of meiotic recombination.


Subject(s)
Meiosis , Recombinases , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/genetics , DNA-Binding Proteins/genetics , Female , Homologous Recombination , Humans , Male , Meiosis/genetics , Rad51 Recombinase/genetics , Recombinases/genetics
13.
Ecol Evol ; 12(1): e8517, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35136562

ABSTRACT

Some plants with low fertility are morphologically intermediate between Roegneria stricta and Roegneria turczaninovii, and were suspected to be natural hybrids between these species. In this study, karyotype analysis showed that natural hybrids and their putative parents were tetraploids (2n = 4x = 28). Meiotic pairing in natural hybrids is more irregular than its putative parents. Results of genomic in situ hybridization and fluorescence in situ hybridization indicate that natural hybrids contain the same genome as their putative parents. The nuclear gene DNA meiotic recombinase 1 (DMC1) and the chloroplast gene rps16 of natural hybrids and their putative parents were analyzed for evidence of hybridization. The results from molecular data supported by morphology and cytology demonstrated that the plants represent natural hybrids between R. stricta and R. turczaninovii. The study is important for understanding species evolution in the genus since it demonstrates for the first time the existence of populations of natural homoploid hybrids in Roegneria. The study also reports for the first time that the composition of the genomic formula of R. turczaninovii is StY, confirming that the current taxonomic status is correct.

14.
Chromosome Res ; 30(1): 59-75, 2022 03.
Article in English | MEDLINE | ID: mdl-35064347

ABSTRACT

Meiotic homologous chromosomes synapse and undergo crossing over (CO). In many eukaryotes, both synapsis and crossing over require the induction of double stranded breaks (DSBs) and subsequent repair via homologous recombination. In these organisms, two key proteins are recombinases RAD51 and DMC1. Recombinase-modulators HOP2 and MND1 assist RAD51 and DMC1 and also are required for synapsis and CO. We have investigated the hop2-1 phenotype in Arabidopsis during the segregation stages of both meiosis and mitosis. Despite a general lack of synapsis during prophase I, we observed extensive, stable interconnections between nonhomologous chromosomes in diploid hop2-1 nuclei in first and second meiotic divisions. Using γH2Ax as a marker of unrepaired DSBs, we detected γH2AX foci from leptotene through early pachytene but saw no foci from mid-pachytene onward. We conclude that the bridges seen from metaphase I onward are due to mis-repaired DSBs, not unrepaired ones. Examining haploids, we found that wild type haploids produce only univalents, but hop2-1 haploids like hop2-1 diploids have illegitimate connections stable enough to produce bridged chromosomes during segregation. Our results suggest that HOP2 has a significant active role in preventing repairs that use nonhomologous chromosomes during meiosis. We also found evidence that HOP2 plays a role in preventing illegitimate repair of radiation-induced DSBs in rapidly dividing petal cells. We conclude that HOP2 in Arabidopsis plays both a positive role in promoting synapsis and a separable role in preventing DSB repair using nonhomologous chromosomes. SIGNIFICANCE STATEMENT : The fidelity of homologous recombination (HR) during meiosis is essential to the production of viable gametes and for maintaining genome integrity in vegetative cells. HOP2 is an important protein for accurate meiotic HR in plants. We have found evidence of high levels of illegitimate repairs between nonhomologous chromosomes during meiosis and in irradiated petal cells in hop2-1 mutants, suggesting a role for HOP2 beyond its established role in synapsis and crossing over.


Subject(s)
Arabidopsis , Arabidopsis/genetics , Cell Cycle Proteins/metabolism , Chromosome Pairing , Chromosomes/metabolism , DNA-Binding Proteins/metabolism , Meiosis , Rad51 Recombinase/genetics
15.
Plants (Basel) ; 10(11)2021 Nov 09.
Article in English | MEDLINE | ID: mdl-34834780

ABSTRACT

Protein ubiquitination is important for the regulation of meiosis in eukaryotes, including plants. However, little is known about the involvement of E2 ubiquitin-conjugating enzymes in plant meiosis. Arabidopsis UBC22 is a unique E2 enzyme, able to catalyze the formation of ubiquitin dimers through lysine 11 (K11). Previous work has shown that ubc22 mutants are defective in megasporogenesis, with most ovules having no or abnormally functioning megaspores; furthermore, some mutant plants show distinct phenotypes in vegetative growth. In this study, we showed that chromosome segregation and callose deposition were abnormal in mutant female meiosis while male meiosis was not affected. The meiotic recombinase DMC1, required for homologous chromosome recombination, showed a dispersed distribution in mutant female meiocytes compared to the presence of strong foci in WT female meiocytes. Based on an analysis of F1 plants produced from crosses using a mutant as the female parent, about 24% of female mutant gametes had an abnormal content of DNA, resulting in frequent aneuploids among the mutant plants. These results show that UBC22 is critical for normal chromosome segregation in female meiosis but not for male meiosis, and they provide important leads for studying the role of UBC22 and K11-linked ubiquitination.

16.
Mol Hum Reprod ; 27(9)2021 09 01.
Article in English | MEDLINE | ID: mdl-34515795

ABSTRACT

Nonobstructive azoospermia (NOA) and diminished ovarian reserve (DOR) are two disorders that can lead to infertility in males and females. Genetic factors have been identified to contribute to NOA and DOR. However, the same genetic factor that can cause both NOA and DOR remains largely unknown. To explore the candidate pathogenic gene that causes both NOA and DOR, we conducted whole-exome sequencing (WES) in a non-consanguineous family with two daughters with DOR and a son with NOA. We detected one pathogenic frameshift variant (NM_007068:c.28delG, p. Glu10Asnfs*31) following a recessive inheritance mode in a meiosis gene DMC1 (DNA meiotic recombinase 1). Clinical analysis showed reduced antral follicle number in both daughters with DOR, but metaphase II oocytes could be retrieved from one of them. For the son with NOA, no spermatozoa were found after microsurgical testicular sperm extraction. A further homozygous Dmc1 knockout mice study demonstrated total failure of follicle development and spermatogenesis. These results revealed a discrepancy of DMC1 action between mice and humans. In humans, DMC1 is required for spermatogenesis but is dispensable for oogenesis, although the loss of function of this gene may lead to DOR. To our knowledge, this is the first report on the homozygous frameshift mutation as causative for both NOA and DOR and demonstrating that DMC1 is dispensable in human oogenesis.


Subject(s)
Azoospermia/genetics , Cell Cycle Proteins/genetics , DNA-Binding Proteins/genetics , Adult , Animals , Cells, Cultured , China , DNA Mutational Analysis , Female , Frameshift Mutation , Genetic Predisposition to Disease , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Pedigree , Primary Ovarian Insufficiency/genetics
17.
Parasitology ; 148(8): 934-946, 2021 07.
Article in English | MEDLINE | ID: mdl-33827719

ABSTRACT

Trichomonas vaginalis is a parasite of the human urogenital tract and the causative agent of trichomoniasis, a sexually transmitted disease of worldwide importance. This parasite is usually found as a motile flagellated trophozoite. However, when subjected to stressful microenvironmental conditions, T. vaginalis trophozoites can differentiate into peculiar cyst-like stages, which exhibit notable physiological resistance to unfavourable conditions. Although well documented in morphological and proteomic terms, patterns of gene expression changes involved in the cellular differentiation into cyst-like stages are mostly unknown. The real-time reverse transcription polymerase chain reaction (RT-qPCR) is recognized as a sensitive and accurate method for quantification of gene expression, providing fluorescence-based data that are proportional to the amount of a target RNA. However, the reliability of relative expression studies depends on the validation of suitable reference genes, which RNAs exhibit a minimum of variation between tested conditions. Here, we attempt to determine suitable reference genes to be used as controls of invariant expression during cold-induced in vitro differentiation of T. vaginalis trophozoites into cyst-like forms. Furthermore, we reveal that the mRNA from the meiotic recombinase Dmc1 is upregulated during this process, indicating that cryptic sexual events may take place in cyst-like stages of T. vaginalis.


Subject(s)
Gene Expression Regulation, Developmental/genetics , Meiosis/genetics , Trichomonas vaginalis/growth & development , Trichomonas vaginalis/genetics , Cell Cycle Proteins/genetics , Cold Temperature , DNA-Binding Proteins/genetics , Humans , RNA, Messenger/metabolism , Reference Values , Up-Regulation
18.
Iran J Child Neurol ; 15(1): 101-106, 2021.
Article in English | MEDLINE | ID: mdl-33558818

ABSTRACT

The laminin α2 subunit is a protein encoded by the laminin α2 gene(LAMA2) which has the role of adhesion (attachment of cells to one another). Genetics consideration showed that mutation in LAMA2 caused a collection of muscle-wasting conditions called muscular dystrophy. This disorder causes disconnection of muscular cells and degeneration of the musculoskeletal system. In this study, we defined the molecular consideration of three patients with laminin α2 deficiency by clinical presentations of congenital muscular dystrophy. In this regard, 65 exons of the LAMA2 gene were amplified by polymerase chain reaction. Moreover, multiple ligation-dependent probe amplification and next generation sequencing (NGS) were carried out for all the patients. Because of NGS negativity, gene sequencing was performed. Results of searching for rearrangements of the LAMA2 gene enabled us to recognize homozygous pathogenic mutations c.2049_c.2050del, c.7156-2A>G, and c,1303C>T. These mutations produce an out-of-frame transcript that will be degraded by nonsense mediated decay. Therefore, we think these changes are pathogenic ones.

19.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Article in English | MEDLINE | ID: mdl-33593897

ABSTRACT

Most eukaryotes possess two RecA-like recombinases (ubiquitous Rad51 and meiosis-specific Dmc1) to promote interhomolog recombination during meiosis. However, some eukaryotes have lost Dmc1. Given that mammalian and yeast Saccharomyces cerevisiae (Sc) Dmc1 have been shown to stabilize recombination intermediates containing mismatches better than Rad51, we used the Pezizomycotina filamentous fungus Trichoderma reesei to address if and how Rad51-only eukaryotes conduct interhomolog recombination in zygotes with high sequence heterogeneity. We applied multidisciplinary approaches (next- and third-generation sequencing technology, genetics, cytology, bioinformatics, biochemistry, and single-molecule biophysics) to show that T. reesei Rad51 (TrRad51) is indispensable for interhomolog recombination during meiosis and, like ScDmc1, TrRad51 possesses better mismatch tolerance than ScRad51 during homologous recombination. Our results also indicate that the ancestral TrRad51 evolved to acquire ScDmc1-like properties by creating multiple structural variations, including via amino acid residues in the L1 and L2 DNA-binding loops.


Subject(s)
Cell Cycle Proteins/metabolism , DNA-Binding Proteins/metabolism , Fungal Proteins/metabolism , Genome, Fungal , Homologous Recombination , Hypocreales/metabolism , Meiosis , Rad51 Recombinase/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Cell Cycle Proteins/genetics , DNA, Single-Stranded , DNA-Binding Proteins/genetics , Fungal Proteins/genetics , Hypocreales/genetics , Rad51 Recombinase/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics
20.
Front Plant Sci ; 11: 600820, 2020.
Article in English | MEDLINE | ID: mdl-33304374

ABSTRACT

The mammalian BREAST CANCER 2 (BRCA2) gene is a tumor suppressor that plays a crucial role in DNA repair and homologous recombination (HR). Here, we report the identification and characterization of OsBRCA2, the rice orthologue of human BRCA2. Osbrca2 mutant plants exhibit normal vegetative growth but experience complete male and female sterility as a consequence of severe meiotic defects. Pairing, synapsis and recombination are impaired in osbrca2 male meiocytes, leading to chromosome entanglements and fragmentation. In the absence of OsBRCA2, localization to the meiotic chromosome axes of the strand-invasion proteins OsRAD51 and OsDMC1 is severely reduced and in vitro OsBRCA2 directly interacts with OsRAD51 and OsDMC1. These results indicate that OsBRCA2 is essential for facilitating the loading of OsRAD51 and OsDMC1 onto resected ends of programmed double-strand breaks (DSB) during meiosis to promote single-end invasions of homologous chromosomes and accurate recombination. In addition, treatment of osbrca2-1 seedlings with mitomycin C (MMC) led to hypersensitivity. As MMC is a genotoxic agent that creates DNA lesions in the somatic cells that can only be repaired by HR, these results suggest that OsBRCA2 has a conserved role in DSB repair and HR in rice.

SELECTION OF CITATIONS
SEARCH DETAIL
...