Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Appl Radiat Isot ; 209: 111322, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38642442

ABSTRACT

Dose conformity is an essential parameter used in radiotherapy and radiosurgery that measures the correspondence of the dose distribution derived from a Treatment Planning System (TPS) with the actual volume to be treated, the Planning Treatment Volume (PTV). The present work uses a method based on the expansion of dose distributions and PTVs by three-dimensional Zernike polynomials and further comparison of their moments to define a general criterion of dose conformity. To carry on this study, data coming from 20 patients comprising 80 datasets exported from the TPS, which included imaging data (PTVs) and dose distributions corresponding to different treatment modalities: three-dimensional conformal radiotherapy, intensity-modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT), were used. The expansions in Zernike polynomials were obtained up to order 6 and reconstructed dose distributions and PTVs were obtained and compared, and several definitions for a general dose conformity index were proposed. Results indicate agreement between the proposed dose conformity index and the Conformation Number CN. The proposed method allows for a systematic approach to the analysis of dose distributions with further extensions in AI applications.


Subject(s)
Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated , Humans , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Radiotherapy, Conformal/methods , Algorithms
2.
Rep Pract Oncol Radiother ; 25(4): 586-593, 2020.
Article in English | MEDLINE | ID: mdl-32508534

ABSTRACT

AIM: Our goal was to compare conformal 3D (C3D) radiotherapy (RT), modulated intensity RT (IMRT), and volumetric modulated arc therapy (VMAT) planning techniques in treating pituitary adenomas. BACKGROUND: RT is important for managing pituitary adenomas. Treatment planning advances allow for higher radiation dosing with less risk of affecting organs at risk (OAR). MATERIALS AND METHODS: We conducted a 5-year retrospective review of patients with pituitary adenoma treated with external beam radiation therapy (C3D with flattening filter, flattening filter-free [FFF], IMRT, and VMAT). We compared dose-volume histogram data. For OARs, we recorded D2%, maximum, and mean doses. For planning target volume (PTV), we registered V95%, V107%, D95%, D98%, D50%, D2%, minimum dose, conformity index (CI), and homogeneity index (HI). RESULTS: Fifty-eight patients with pituitary adenoma were included. Target-volume coverage was acceptable for all techniques. The HI values were 0.06, IMRT; 0.07, VMAT; 0.08, C3D; and 0.09, C3D FFF (p < 0.0001). VMAT and IMRT provided the best target volume conformity (CI, 0.64 and 0.74, respectively; p < 0.0001). VMAT yielded the lowest doses to the optic pathway, lens, and cochlea. The position of the neck in extreme flexion showed that it helps in planning mainly with VMAT by allowing only one arc to be used and achieving the desired conformity, decreasing the treatment time, while allowing greater protection to the organs of risk using C3D, C3DFFF. CONCLUSIONS: Our results confirmed that EBRT in pituitary adenomas using IMRT, VMAT, C3D, C3FFF provide adequate coverage to the target. VMAT with a single arc or incomplete arc had a better compliance with desired dosimetric goals, such as target coverage and normal structures dose constraints, as well as shorter treatment time. Neck extreme flexion may have benefits in treatment planning for better preservation of organs at risk. C3D with extreme neck flexion is an appropriate treatment option when other treatment techniques are not available.

SELECTION OF CITATIONS
SEARCH DETAIL