Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
Curr Issues Mol Biol ; 46(6): 6284-6299, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38921046

ABSTRACT

Dracocephalum moldavica is widely used as an ornamental, medicine, and perfume in industry. Real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) is widely and accurately utilized for gene expression evaluations. Selecting optimal reference genes is essential for normalizing RT-qPCR results. However, the identification of suitable reference genes in D. moldavica has not been documented. A total of 12 reference genes in D. moldavica were identified by PEG6000 (15%) treatment under hypertonia conditions in different tissues (roots, stem, leaves, flower, seeds and sepal) and during three stages of flower development, then used to validate the expression stability. There were four algorithms (delta Ct, geNorm, NormFinder, and BestKeeper) used to analyze the stability. Finally, the RefFinder program was employed to evaluate the candidate reference genes' stability. The results showed that ACTIN, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and EF1α (elongation factor-1α) were stable reference genes under the PEG6000 treatment. Heat shock protein 70 (HSP70) was the most stable gene across different flower development stages. ADP-ribosylation factor (ARF) was the most stable gene in different tissues and total samples. This study provides reliable gene expression studies for future research in D. moldavica.

2.
J Toxicol Environ Health A ; 87(10): 436-447, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38557424

ABSTRACT

One of the main pathological features noted in Alzheimer's disease (AD) is the presence of plagues of aggregated ß-amyloid (Aß1-42)-peptides. Excess deposition of amyloid-ß oligomers (AßO) are known to promote neuroinflammation. Sequentially, following neuroinflammation astrocytes become activated with cellular characteristics to initiate activated astrocytes. The purpose of this study was to determine whether total flavonoids derived from Dracocephalum moldavica L. (TFDM) inhibited Aß1-42-induced damage attributed to activated C8-D1A astrocytes. Western blotting and ELISA were used to determine the expression of glial fibrillary acidic protein (GFAP), and complement C3 to establish the activation status of astrocytes following induction from exposure to Aß1-42. Data demonstrated that stimulation of C8-D1A astrocytes by treatment with 40 µM Aß1-42 for 24 hr produced significant elevation in protein expression and protein levels of acidic protein (GFAP) and complement C3 accompanied by increased expression and levels of inflammatory cytokines. Treatment with TFDM or the clinically employed drug donepezil in AD therapy reduced production of inflammatory cytokines, and toxicity initiated following activation of C8-D1A astrocytes following exposure to Aß1-42. Therefore, TFDM similar to donepezil inhibited inflammatory secretion in reactive astrocytes, suggesting that TFDM may be considered as a potential compound to be utilized in AD therapy.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Lamiaceae , Humans , Amyloid beta-Peptides/pharmacology , Alzheimer Disease/drug therapy , Flavonoids/pharmacology , Complement C3/metabolism , Complement C3/pharmacology , Complement C3/therapeutic use , Neuroinflammatory Diseases , Astrocytes/metabolism , Donepezil/metabolism , Donepezil/pharmacology , Donepezil/therapeutic use , Cytokines/metabolism , Peptide Fragments/metabolism , Peptide Fragments/toxicity
3.
BMC Complement Med Ther ; 24(1): 15, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38169375

ABSTRACT

AIM OF THE STUDY: Cardiovascular disease (CVD) seriously endangers human health and is characterized by high mortality and disability. The effectiveness of Dracocephalum moldavica L. in the treatment of CVD has been proven by clinical practice. However, the mechanism by which DML can treat CVD has not been systematically determined. MATERIALS AND METHODS: The active compounds in DML were screened by literature mining and pharmacokinetic analysis. Cytoscape software was used to construct the target-disease interaction network of DML in the treatment of CVD. Gene ontology and signalling pathway enrichment analyses were performed. The key target pathway network of DML compounds was constructed and verified by pharmacological experiments in vitro. A hydrogen glucose deprivation/reoxygenation model was established in H9c2 cells using hypoxia and glucose deprivation for 9 h combined with reoxygenation for 2 h. The model simulated myocardial ischaemic reperfusion injury to investigate the effects of total flavonoids of Cymbidium on cell viability, myocardial injury markers, oxidative stress levels, and reactive oxygen radical levels. Western blot analysis was used to examine NOX-4, Bcl-2/Bax, and PGC-1α protein expression. RESULTS: Twenty-seven active components were screened, and 59 potential drug targets for the treatment of CVD were obtained. Through the compound-target interaction network and the target-disease interaction network, the key targets and key signalling pathways, such as NOX-4, Bcl-2/Bax and PGC-1α, were obtained. TFDM significantly decreased LDH and MDA levels and the production of ROS and increased SOD activity levels in the context of OGD/R injury. Further studies indicated that NOX-4 and Bax protein levels and the p-P38 MAPK/P38 MAPK andp-Erk1/2/Erk1/2 ratios were suppressed by TFDM. The protein expression of Bcl-2 and PGC-1α was increased by TFDM. CONCLUSIONS: Our results showed that DML had multicomponent, multitarget and multichannel characteristics in the treatment of CVD. The mechanism may be associated with the following signalling pathways: 1) the NOX-4/ROS/p38 MAPK signalling pathway, which inhibits inflammation and reactive oxygen species (ROS) production, and 2) the Bcl-2/Bax and AMPK/SIRT1/PGC-1α signalling pathways, which inhibit apoptosis.


Subject(s)
Cardiovascular Diseases , Flavonoids , Humans , Flavonoids/pharmacology , bcl-2-Associated X Protein , Cardiovascular Diseases/drug therapy , Reactive Oxygen Species , Network Pharmacology , Proto-Oncogene Proteins c-bcl-2 , Glucose , p38 Mitogen-Activated Protein Kinases
4.
Fitoterapia ; 172: 105732, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37952760

ABSTRACT

Dracocephalum moldavica, known as Xiang-qing-lan (in Chinese), is a traditional folk medicine, which was commonly used by Mongolian and Xinjiang Uyghurs area. Dracocephalum moldavica has the effects of purging liver fire, clearing stomach heat, hemostasis. It is used for treating insufficient heart and blood, weakened brain function, weak feeling and spirit disease etc. This review aimed to summarize the botany, traditional uses, phytochemistry, pharmacology and application of Dracocephalum moldavica, which expected to provide theoretical support for future utilization and highlight the further investigation of this vital plant. In addition to the essential oil, approximately 154 compounds have been isolated and identified from aerial parts of the Dracocephalum moldavica, including flavonoids, terpenoids, lignans, phenylpropanoids, phenols, glycosides, polysaccharide and other compounds. Extensive pharmacological activities of the extracts or compounds of Dracocephalum moldavica in vivo and in vitro were confirmed including cardiovascular protection, antioxidative, antimicrobial, antifungal, anti-complementary and chronic mountain sickness. Moreover, Dracocephalum moldavica is used in a wide range of applications in food, biological pesticides and cosmetics. In the future, Dracocephalum moldavica needs further study, such as paying more attention to quality control, toxicity, pharmacological mechanism and pharmacokinetics.


Subject(s)
Botany , Drugs, Chinese Herbal , Lamiaceae , Drugs, Chinese Herbal/pharmacology , Ethnopharmacology , Medicine, Chinese Traditional , Molecular Structure , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Plant Extracts/pharmacokinetics
5.
Mol Med Rep ; 28(6)2023 Dec.
Article in English | MEDLINE | ID: mdl-37859616

ABSTRACT

Several studies have revealed that an imbalance of the intestinal microbiota is involved in intestinal inflammation associated with ulcerative colitis (UC). Therefore, regulating the homeostasis of gut microbiota is critical for treating UC. Dracocephalum moldavica L. (DML) extract, a common traditional Chinese medicine, has been demonstrated to possess numerous pharmacological effects, such as antioxidative, anti­inflammatory, and antibacterial properties. The aim of the present study was to evaluate the beneficial effects of DML extract and the probable mechanism of action in a dextran sulfate sodium­induced chronic colitis model. It was found that DML extract ameliorated UC by improving disease activity index, weight loss, colon length, and histological scoring. DML extract administration also enhanced the count of Lactobacillus and reduced the count of Romboutsia. Furthermore, the results of network pharmacology analysis revealed that the active ingredients (including luteolin, rosmarinic acid, oleanolic acid, ursolic acid, apigenin, acacetin, kaempferol, and isorhamnetin) in the DML extract were closely associated with anti­inflammatory activity via various signaling pathways, including the NF­κB, IL­17, TNF, and Toll­like receptor (TLR) signaling pathways. Western blot analysis further indicated that DML extract downregulated the expression of members of the TLR4/NF­κB signaling pathway, which was associated with colitis. Thus, it was hypothesized that DML extract exerted its anti­colitis effects by modulating the gut microbiota and inflammatory pathways.


Subject(s)
Colitis, Ulcerative , Colitis , Gastrointestinal Microbiome , Animals , Rats , Mice , NF-kappa B , Colitis/chemically induced , Colitis/drug therapy , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colon , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Dextran Sulfate , Disease Models, Animal , Mice, Inbred C57BL
6.
Molecules ; 28(19)2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37836602

ABSTRACT

This study evaluates the antioxidant properties and anti-inflammatory potential of polyphenolic acid-rich fractions of 80% methanolic extract from the hairy roots of Dracocephalum moldavica. The fractionation of the crude extract yielded the following: a diethyl ether fraction rich in caffeic acid (DM1) (25.85 mg/g DWE), an n-butyl fraction rich in rosmarinic acid (DM3) (43.94 mg/g DWE) and a water residue rich in salvianolic acid B (DM4) (51.46 mg/g DWE). The content of these compounds was determined using high-performance liquid chromatography (HPLC). Their antioxidant activity was evaluated based on DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt) and FRAP assays. The anti-inflammatory activity of the fractions was determined by their effect on nuclear factor kappa-B (NF-κB) activation and interleukin-1ß (IL-1ß) production in LPS E. coli stimulated monocytes. The level of pro-inflammatory IL-1ß in cells was measured using ELISA. The activation of NF-κB in THP1-Blue™ cells, resulting in the secretion of SEAP (secreted embryonic alkaline phosphatase), was detected spectrophotometrically using Quanti-Blue reagent. Among the tested fractions, the diethyl ether fraction (DM1) showed the highest antioxidant potential, with an EC50 value of 15.41 µg/mL in the DPPH assay and 11.47 µg/mL in ABTS and a reduction potential of 10.9 mM Fe(II)/g DWE in FRAP. DM1 at a concentration of 10 mg/mL also efficiently reduced LPS-induced SEAP secretion (53% inhibition) and IL-1ß production (47% inhibition) without affecting the normal growth of L929 fibroblast cells.


Subject(s)
Antioxidants , Plant Extracts , Antioxidants/pharmacology , Antioxidants/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , NF-kappa B , Ether , Lipopolysaccharides/pharmacology , Escherichia coli , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry
7.
Phytother Res ; 37(7): 2745-2758, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36794391

ABSTRACT

Dracocephalum Moldavica L. is a traditional herb for improving pharynx and relieving cough. However, the effect on pulmonary fibrosis is not clear. In this study, we explored the impact and molecular mechanism of total flavonoid extract from Dracocephalum moldavica L. (TFDM) on bleomycin-induced pulmonary fibrosis mouse model. Lung function testing, lung inflammation and fibrosis, and the related factors were detected by the lung function analysis system, HE and Masson staining, ELISA, respectively. The expression of proteins was studied through Western Blot, immunohistochemistry, and immunofluorescence while the expression of genes was analyzed by RT-PCR. The results showed that TFDM significantly improved lung function in mice, reduced the content of inflammatory factors, thereby reducing the inflammation. It was found that expression of collagen type I, fibronectin, and α-smooth muscle actin was significantly decreased by TFDM. The results further showed that TFDM interferes with hedgehog signaling pathway by decreasing the expression of Shh, Ptch1, and SMO proteins and thereby inhibiting the generation of downstream target gene Gli1 and thus improving pulmonary fibrosis. Conclusively, these findings suggest that TFDM improve pulmonary fibrosis by reducing inflammation and inhibition of the hedgehog signaling pathway.


Subject(s)
Flavonoids , Pulmonary Fibrosis , Mice , Animals , Flavonoids/pharmacology , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Hedgehog Proteins/metabolism , Inflammation , Bleomycin
8.
Nat Prod Res ; 37(13): 2135-2143, 2023 Jul.
Article in English | MEDLINE | ID: mdl-35067130

ABSTRACT

In the course of our continuing search for biologically active compounds from medicinal herbs, four undescribed terpenoids including one monoterpenoid glycoside, (1 R, 3S, 4S, 5 R)-(-)-1,8-epoxy-p-menthan-5-ethoxycarbonyl-3-O-ß-D-glucopyranoside (1), one iridoid glycoside, 3'-O-ß-D-glucopyranosyl-melampyroside (2), one sesquiterpene, 1-(2-methylbutanol)-2-pentyl-1,3-cyclohexadiene (3), and one triterpenoid, 28-nor-3ß,18ß-dihydroxyurs-12-ene (4), together with nine known terpenoids (5-13) were isolated from the dried aerial parts of Dracocephalum moldavica (Lamiaceae). Their chemical structures were elucidated by detailed spectroscopy (1 D and 2 D NMR), HRESIMS data analysis and acid hydrolysis. Among them, compounds 9 and 10 were isolated from the family Lamiaceae, compounds 5, 6 and 11-13 were identified from the genus Dracocephalum and compounds 7 and 8 were reported from the D. moldavica for the first time. The biological evaluation of anti-complementary activity revealed that some compounds, 4, 6 and 12 exhibited anti-complementary activity with CH50 and AP50 values ranging from 0.67-1.43 and 1.12-1.55 mM, respectively.


Subject(s)
Lamiaceae , Terpenes , Terpenes/pharmacology , Lamiaceae/chemistry , Magnetic Resonance Spectroscopy , Plant Components, Aerial
9.
Nat Prod Res ; 37(2): 169-179, 2023 Jan.
Article in English | MEDLINE | ID: mdl-34353195

ABSTRACT

A new monoterpenoid glycoside (1 R, 2 R, 4S)-1,8-epoxy-p-menthan-2-O-ß-D-glucopyranosyl-(1→4)-ß-D-glucopyranoside (1) and a new phenolic glycoside, cis-1-(3-hydroxy-4-methoxyphenyl)-2-butene-4-O-α-L-rhamnopyranosyl-(1→3)-O-ß-D-glucopyranoside (2) were isolated from the dried aerial parts of Dracocephalum moldavica, together with 12 known compounds. Compound 5 was isolated from the Lamiaceae family for the first time, compounds 3, 4, 6 and 8-12 were identified from the genus Dracocephalum for the first time and compounds 7 and 13-14 were reported from the D. moldavica for the first time. All the compounds were evaluated for anti-complementary activity against the classical and alternative pathways. Compounds 2-4, 8 and 11 showed anti-complementary activity to different extents, with CH50 and AP50 values ranging from 0.78-1.24 and 1.52-1.84 mM, respectively. The targets of compounds 2-4, 8 and 11 in complement activation cascade were identified as well.


Subject(s)
Cardiac Glycosides , Lamiaceae , Glycosides/pharmacology , Complement Activation
10.
J Asian Nat Prod Res ; 25(8): 796-802, 2023.
Article in English | MEDLINE | ID: mdl-36272140

ABSTRACT

In this paper, we present the discovery of a novel salicylic acid derivative, moldavica acid A (1), and a new natural dibenzo[b,f]oxepin, moldavica acid B (2), together with four known phenylpropionic acids (3-6) and protocatechuic acid (7) that were isolated from Dracocephalum moldavica L. Their structures were elucidated by comprehensive spectroscopic methods, including infrared and nuclear magnetic resonance. Compound 1 is the first example of salicylic acid linking a carboxylated α-pyrone via an ethyl bridge. Beyond expanding the knowledge of the chemical diversity of D. moldavica, both compounds 1 and 2 were shown to upregulate the expression of Kruppel-like factor 2, which could serve as a prospective therapeutic target for the treatment of atherosclerosis.

11.
Chinese Pharmacological Bulletin ; (12): 1973-1979, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1013962

ABSTRACT

Aim To investigate the effeets of Dracocephalum Moldavica total flavonoids (TFDM) on the foaming lipoprotein (ox-LDL), and to further elucidate the mechanism of anti-atherosclerosis (AS) of TFDM. Methods RAW264. 7 maerophages were cultured in vitro and induced to become foam cells by ox-LDL stimulation, and inflammation of mouse monocyte macrophage leukemia cells (RAW264. 7) induced by oxi-dized low density TFDM(25, 50, 100 mg • L"

12.
Acta Pharmaceutica Sinica ; (12): 2685-2693, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-999012

ABSTRACT

Total flavonoids of Dracocephalum moldavica L. (TFDM) is an effective component extracted and isolated from the traditional Uighur medicinal herb Cymbidium fragrans. Cymbidium fragrans has the effects of tonifying the heart and brain, promoting blood circulation and resolving blood stasis, and has been widely used in the treatment of cardiovascular and cerebrovascular diseases for a long time. The purpose of this study was to determine the effect of total flavonoids from Cymbidium fragrans on hypoxia/re-oxygenation (H/R) injury in H9c2 (rat cardiomyocytes) cells and its mechanism. A model (H/R) of hypoxia/re-oxygenation injury in H9c2 cells was established using hypoxia and glucose deprivation for 9 h combined with re-oxygenation and rehydration for 2 h to simulate myocardial ischemia-reperfusion injury. The effects of total flavonoids from Cymbidium fragrans on cell viability, markers of myocardial cell damage, oxidative stress levels, and reactive oxygen radical (ROS) content were investigated, Western blot was used to detect the expression of vascular endothelial growth factor B (VEGF-B) and adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) pathway related proteins. The results showed that the total flavonoids of Cymbidium fragrans significantly increased the viability of myocardial cells after H/R injury, and decreased the content of lactate dehydrogenase (LDH) and creatine kinase isozyme (CK-MB) in the cell supernatant. It significantly reduced malondialdehyde (MDA), increased superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities, and decreased intracellular ROS and nitric oxide (NO) content. Western blot analysis showed that the total flavonoids of Cymbidium fragrans decreased Bax levels in H9c2 cells damaged by H/R and increased Bcl-2 expression. Total flavones of Cymbidium fragrans upregulate VEGF-B/AMPK pathway related proteins VEGF-B, vascular endothelial growth factor receptor 1 (VEGFR-1), neuropilin 1 (NRP-1), peroxisome-proliferator-activated receptor γ coactivator-1α (PGC-1α), phosphorylated adenosine monophosphate activated protein (p-AMPK) and phospho mechanistic target of rapamycin (p-MTOR) levels. The above research results indicate that the total flavonoids of Cymbidium can significantly reduce the H/R injury of myocardial cells, which may be related to the upregulation of VEGF-B/AMPK pathway and inhibition of oxidative stress response.

13.
China Pharmacy ; (12): 2328-2332, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-996387

ABSTRACT

OBJECTIVE To provide a reference for comprehensive quality evaluation and control of the effective parts of Dracocephalum moldavica (EPDM). METHODS A total of 10 batches of EPDM were prepared, and chemical information of EPDM was collected by HPLC-Q-Exactive-MS. EPDM components were identified by literature search, database comparison and manual analysis. HPLC fingerprints of 10 batches of EPDM were established by using the Similarity Evaluation System for Traditional Chinese Medicine Chromatographic Fingerprint (2004 A edition); the similarity evaluation and common peak identification were carried out, and the contents of 5 index components were determined by HPLC. RESULTS A total of 11 compounds in EPDM were identified. The fingerprint similarities of EPDM samples from 10 batches were all above 0.96. Among 11 chromatographic peaks, 5 peaks were identified, such as luteolin-7-O-β-D-glucuronide(LG), apigenin-7-O-glucuronide(APG), rosmarinic acid(RA), diosmetin-7-O-β-D-glucuronide(DG), tilianin(TL) . The results of the quantitative analysis showed that all above 5 components had good linearity (R2≥0.999), and the average recoveries were in the range of 95.12%-98.37%. The contents of LG, APG, RA, DG, TL were 21.268 3-29.243 9, 6.365 4-7.771 7, 37.327 4-45.671 2, 17.169 9-21.985 9, 66.940 4-91.206 3 mg/g, respectively. CONCLUSIONS The established method of component identification, fingerprint and content determination is stable, feasible and reliable, which is suitable for the comprehensive quality evaluation and control of EPDM.

14.
Int J Mol Sci ; 23(15)2022 Jul 29.
Article in English | MEDLINE | ID: mdl-35955548

ABSTRACT

Heart failure (HF) is a clinical syndrome of cardiac insufficiency caused by abnormalities in cardiac structure and function that arise for various reasons, and it is the final stage of most cardiovascular diseases' progression. Total flavonoid extract from Dracocephalum moldavica L. (TFDM) has many pharmacological and biological roles, such as cardioprotective, neuroprotective, anti-atherogenic, antihypertensive, anti-diabetic, anti-inflammatory, antioxidant, etc. However, its effect on HF and its molecular mechanism are still unclear. In this study, we used systems pharmacology and an animal model of HF to investigate the cardioprotective effect of TFDM and its molecular mechanism. Eleven compounds in TFDM were obtained from the literature, and 114 overlapping genes related to TFDM and HF were collected from several databases. A PPI network and C-T network were established, and GO enrichment analysis and KEGG pathway analysis were performed. The top targets from the PPI network and C-T network were validated using molecular docking. The pharmacological activity was investigated in an HFpEF (heart failure with preserved ejection fraction) mouse model. This study shows that TFDM has a protective effect on HFpEF, and its protective mechanism may be related to the regulation of proinflammatory cytokines, apoptosis-related genes, fibrosis-related genes, etc. Collectively, this study offers new insights for researchers to understand the protective effect and mechanism of TFDM against HFpEF using a network pharmacology method and a murine model of HFpEF, which suggest that TFDM is a promising therapy for HFpEF in the clinic.


Subject(s)
Heart Failure , Lamiaceae , Animals , Anti-Inflammatory Agents/metabolism , Disease Models, Animal , Flavonoids/metabolism , Flavonoids/pharmacology , Flavonoids/therapeutic use , Heart Failure/metabolism , Lamiaceae/chemistry , Mice , Molecular Docking Simulation , Network Pharmacology , Stroke Volume
15.
Nutrients ; 14(12)2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35745128

ABSTRACT

This Special Issue focusses on the role of natural products in disease prevention, relief and treatment [...].


Subject(s)
Biological Products , Biological Products/therapeutic use , Plant Extracts
16.
Chem Biodivers ; 19(7): e202200294, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35594039

ABSTRACT

The two novel polysaccharides, DMP-1 and DMP-2, with molecular weights of 4.1553×105  kDa and 1.9764×105  kDa, respectively, were isolated from Dracocephalum moldavica. The structural characterization indicated that DMP-1 and DMP-2 shared a similar backbone consisting of →5)-Araf-(1→, Manp-(1→, Glcp-(1→, →2)-Manp-(1→, →6)-Glcp-(1→ and →3,6)-Galp-(1→ with a different molar ratios and triple-helix structures with α- and ß-type glycosidic bonds. The anti-complementary activity evaluation showed that DMP-1 and DMP-2 had strong complement inhibition through the classical pathway (CP), alternative pathway (AP) and lectin pathway (LP). Mechanistic studies indicated that DMP-1 can block the activation cascade of the complement system by targeting C2, C3, C5, C9, Factor B and Factor P, and that DMP-2 inhibited complement activation by blocking C2, C3, C4, C5, C9 and Factor B.


Subject(s)
Complement Factor B , Lamiaceae , Complement Activation , Polysaccharides/chemistry
17.
J Asian Nat Prod Res ; 24(12): 1177-1184, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35001746

ABSTRACT

One novel naphthalene derivative, 2-octa-2',4',6'-atriynenaphthalene (1), together with eighteen known compounds (2-19) were isolated from the aerial parts of Dracocephalum moldavica L. Compounds 2, 8, 10, 13, 15-17 and 19 were obtained from the family Lamiaceae for the first time, and compounds 11 and 18 were firstly identified from the genus of Dracocephalum. All the isolates were evaluated for anti-complementary activities through the classical and alternative pathways, and the targets of the most active compounds on the complement activation cascade were also investigated.


Subject(s)
Lamiaceae , Molecular Structure , Plant Components, Aerial , Naphthalenes/pharmacology
18.
Zhongguo Zhong Yao Za Zhi ; 47(24): 6663-6671, 2022 Dec.
Article in Chinese | MEDLINE | ID: mdl-36604916

ABSTRACT

This study investigated the mechanism of total flavonoid extract from Dracocephalum moldavica(TFDM) in mice with bleomycin(BLM)-induced pulmonary fibrosis(PF) and explored its mechanism against the pyroptosis pathway. A mouse model of PF was established by intratracheal infusion of bleomycin(4 mg·kg~(-1)), and the normal group was treated with the same dose of saline under the same conditions. After the second day of modeling, the distilled water was given to the normal and model groups by gavage, and the corresponding drug were given to the TFDM and the dexamethasone groups for 28 consecutive days. After 28 days, lung tissues of mice with PF were taken to determine the content of hydroxyproline(HYP). The degree of lung inflammation and fibrosis was observed by hematoxylin-eosin(HE) and Masson stainings, and the content of interleukin-18(IL-18) and interleukin-1ß(IL-1ß) in the serum of mice with PF were measured by enzyme-linked immunosorbent assay(ELISA). Western blot was used to determine the expression levels of proteins in the lung tissues of mice with PF. HE staining showed that the BLM group had abnormal lung tissue structures and showed more inflammatory cell infiltration. Masson staining showed plenty of collagenous fibrotic tissues that were stained blue in the lung tissues. As compared with the normal group, the content of HYP and levels of IL-18 and IL-1ß in the serum of rats in the BLM group were up-regulated(P<0.01). The protein expressions of type Ⅰ collagen(Col-1), fibronectin 1(FN1), α-smooth muscle actin(α-SMA), cysteinyl aspartate specific proteinase-1(caspase-1), gasdermin D(GSDMD), NOD-like receptor thermal protein domain associated protein 3(NLRP3), p62, and apoptosis-associated speck-like protein containing a CARD(ASC) in the lung tissues of mice with PF in the BLM group were increased(P<0.01), whereas the protein expressions of autophagy-related 5(ATG5) and Beclin1 were decreased(P<0.01). Compared with the BLM group, the TFDM groups and dexamethasone group showed normal lung tissue structures and reduced inflammatory cell infiltration. Less collagenous fibrous tissues in blue color were seen and the fibrosis in the lung tissue was alleviated in the TFDM groups and dexamethasone group, with the down-regulation of the content of HYP and the levels of IL-18 and IL-1ß(P<0.05, P<0.01). In the TFDM groups and dexamethasone group, the protein expression levels of Col-1, FN1, α-SMA, caspase-1, GSDMD, NLRP3, p62, and ASC were decreased(P<0.01), and the protein expressions of ATG5 and Beclin1 were increased(P<0.01) in the lung tissues of mice with PF. From the above results, it is known that TFDM down-regulates the levels of inflammatory factors and related proteins, and effectively mitigates the process of BLM-induced PF by regulating the pyroptosis pathways and potentially affecting the autophagy.


Subject(s)
Pulmonary Fibrosis , Animals , Mice , Beclin-1/pharmacology , Bleomycin/toxicity , Caspases , Dexamethasone/adverse effects , Flavonoids/pharmacology , Interleukin-18/genetics , Interleukin-18/metabolism , Lung , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , Pyroptosis
19.
Acta Pharmaceutica Sinica ; (12): 409-418, 2022.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-922916

ABSTRACT

We investigated the ability of Dracocephalum moldavica (EPDM) flavonoids to protect human brain microvascular endothelial cells (HBMECs) from necroptosis induced by ischemia-reperfusion injury. To mimic the process of cerebral ischemia-reperfusion injury, a necroptosis model was established by treatment with the pan-cysteine aspartic acid protease (caspase) inhibitor Z-VAD-FMK combined with oxygen-glucose deprivation/re-oxygenation (OGD/R) injury using HBMECs. Cell proliferation and cytotoxicity (cell counting kit-8, CCK-8) was used to measure cell viability. A Hoechst33342/PI fluorescent double-staining method was exploited to determine the rate of cell necroptosis. A commercial kit was used to detect lactate dehydrogenase in the cell culture supernate. DCFH-DA probes, calcein AM and JC-1 probes were used to measure changes in ROS production, mitochondrial membrane permeability transformation pore (MPTP) opening and mitochondrial membrane potential (MMP), respectively. Enzyme-linked immunosorbent assay (ELISA) kits were chosen to detect the release of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6). Western blotting was used to detect necroptosis-related proteins. The results show that relative to control group, Z-VAD-FMK combined with OGD/R injury reduced cell viability, increased the necroptosis rate and the levels of LDH and ROS in HBMECs. The MPTP of the model group cells opened and the MMP reduced. TNF-α, IL-1β, and IL-6 levels were significantly elevated. Furthermore, the expression of receptor-interacting protein kinase 3 (RIP3) and mitochondrial phosphoglycerate mutase 5 (PGAM5) was significantly increased, accompanied by an increase of phosphorylated mixed-lineage kinase domain-like protein (p-MLKL)/MLKL. EPDM partially reversed the changes of the above-mentioned factors in HBMECs induced by Z-VAD-FMK plus OGD/R injury. These results indicate that EPDM may protect HBMECs from cerebral ischemia-reperfusion injury by inhibiting the RIP3/MLKL/PGAM5 pathway and MPTP opening to maintain mitochondrial function, thereby providing a scientific basis for the use of EPDM in the treatment of cerebral ischemia-related diseases.

20.
Front Pharmacol ; 12: 796628, 2021.
Article in English | MEDLINE | ID: mdl-34938197

ABSTRACT

Vascular dementia (VaD) is a general term used to describe difficulties in memory, reasoning, judgment, and planning caused by a reduced blood flow to the brain and consequent brain damage, in which microRNAs (miRNAs) are involved. Dracocephalum moldavica L. (D. moldavica) is traditionally used in the treatment of cardiovascular diseases as well as VaD, but the biomolecular mechanisms underlying its therapeutic effect are obscure. In the present study, the molecular mechanisms involved in the treatment of VaD by the total flavonoids from Dracocephalum moldavica L. (TFDM) were explored by the identification of miRNA profiling using bioinformatics analysis and experimental verification. A total of 2,562 differentially expressed miRNAs (DEMs) and 3,522 differentially expressed genes (DEGs) were obtained from the GSE120584 and GSE122063 datasets, in which the gene functional enrichment and protein-protein interaction network of 93 core targets, originated from the intersection of the top DEM target genes and DEGs, were established for VaD gene profiling. One hundred and eighty-five targets interacting with 42 flavonoids in the TFDM were included in a compound-target network, subsequently found that they overlapped with potential targets for VaD. These 43 targets could be considered in the treatment of VaD by TFDM, and included CaMKII, MAPK, MAPT, PI3K, and KDR, closely associated with the vascular protective effect of TFDM, as well as anti-oxidative, anti-inflammatory, and anti-apoptotic properties. The subsequent analysis of the compound-target gene-miRNA network indicated that eight miRNAs that mediated 43 targets had a close interaction with TFDM, suggesting that the neuroprotective effects were principally due to kaempferol, apigenin, luteolin, and quercetin, which were mostly associated with the miR-3184-3p/ESR1, miR-6762-3p/CDK1, miR-6777-3p/ESRRA, and other related axes. Furthermore, the in vitro oxygen-glucose deprivation (OGD) model demonstrated that the dysregulation of miR-3184-3p and miR-6875-5p found by qRT-PCR was consistent with the changes in the bioinformatics analysis. TFDM and its active compounds involving tilianin, luteolin, and apigenin showed significant effects on the upregulation of miR-3184-3p and downregulation of miR-6875-5p in OGD-injured cells, in line with the improved cell viability. In conclusion, our findings revealed the underlying miRNA-target gene network and potential targets of TFDM in the treatment of VaD.

SELECTION OF CITATIONS
SEARCH DETAIL
...