Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
Proc Biol Sci ; 287(1919): 20192291, 2020 01 29.
Article in English | MEDLINE | ID: mdl-31964309

ABSTRACT

When two species interbreed, the resulting hybrid offspring are often sterile, with the heterogametic (e.g. XY) hybrid usually being more severely affected. The prevailing theory for this pattern of sterility evokes divergent changes in separate lineages having maladaptive interactions when placed together in a hybrid individual, with recessive factors on the sex chromosome interacting with dominant factors on the autosomes. The effect of these interactions on gametogenesis should not be uniform across species pairs unless genetic divergence follows the same paths in different lineages or if a specific stage of gametogenesis is more susceptible to detrimental genetic interactions. Here, we perform a detailed cellular characterization of hybrid male sterility across three recently diverged species pairs of Drosophila. Across all three pairs, sterile hybrid sperm are alive but exhibit rapid nuclear de-condensation with age, with active, but non-differentiated, mitochondria. Surprisingly, all three sets of interspecies hybrids produce half of the number of sperm per round of spermatogenesis, with each sperm cell containing two tails. We identify non-disjunction failures during meiosis I as the likely cause. Thus, errors during meiosis I may be a general phenomenon underlying Drosophila male sterility, indicating either a heightened sensitivity of this spermatogenic stage to failure, or a basis to sterility other than the prevailing model.


Subject(s)
Drosophila/physiology , Spermatogenesis/physiology , Animals , Epistasis, Genetic , Female , Hybridization, Genetic , Infertility, Male , Male
2.
Evolution ; 69(5): 1178-90, 2015 05.
Article in English | MEDLINE | ID: mdl-25824653

ABSTRACT

Models of speciation-with-gene-flow have shown that the reduction in recombination between alternative chromosome arrangements can facilitate the fixation of locally adaptive genes in the face of gene flow and contribute to speciation. However, it has proven frustratingly difficult to show empirically that inversions have reduced gene flow and arose during or shortly after the onset of species divergence rather than represent ancestral polymorphisms. Here, we present an analysis of whole genome data from a pair of cactophilic fruit flies, Drosophila mojavensis and D. arizonae, which are reproductively isolated in the wild and differ by several large inversions on three chromosomes. We found an increase in divergence at rearranged compared to colinear chromosomes. Using the density of divergent sites in short sequence blocks we fit a series of explicit models of species divergence in which gene flow is restricted to an initial period after divergence and may differ between colinear and rearranged parts of the genome. These analyses show that D. mojavensis and D. arizonae have experienced postdivergence gene flow that ceased around 270 KY ago and was significantly reduced in chromosomes with fixed inversions. Moreover, we show that these inversions most likely originated around the time of species divergence which is compatible with theoretical models that posit a role of inversions in speciation with gene flow.


Subject(s)
Chromosome Inversion , Drosophila/genetics , Genetic Speciation , Genome, Insect , Animals , Chromosomes, Insect/genetics , Evolution, Molecular , Gene Flow , Polymorphism, Genetic
3.
J Evol Biol ; 28(2): 403-14, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25522894

ABSTRACT

Traits involved in post-copulatory interactions between the sexes may evolve rapidly as a result of sexual selection and/or sexual conflict, leading to post-mating-prezygotic (PMPZ) reproductive isolating barriers between diverging lineages. Although the importance of PMPZ isolation is recognized, the molecular basis of such incompatibilities is not well understood. Here, we investigate molecular evolution of a subset of Drosophila mojavensis and Drosophila arizonae reproductive tract genes. These include genes that are transcriptionally regulated by conspecific mating in females, many of which are misregulated in heterospecific crosses, and a set of male genes whose transcripts are transferred to females during mating. As a group, misregulated female genes are not more divergent and do not appear to evolve under different selection pressures than other female reproductive genes. Male transferred genes evolve at a higher rate than testis-expressed genes, and at a similar rate compared to accessory gland protein genes, which are known to evolve rapidly. Four of the individual male transferred genes show patterns of divergent positive selection between D. mojavensis and D. arizonae. Three of the four genes belong to the sperm-coating protein-like family, including an ortholog of antares, which influences female fertility and receptivity in Drosophila melanogaster. Synthesis of these molecular evolutionary analyses with transcriptomics and predicted functional information makes these genes candidates for involvement in PMPZ reproductive incompatibilities between D. mojavensis and D. arizonae.


Subject(s)
Drosophila/genetics , Evolution, Molecular , Animals , Drosophila/physiology , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Female , Gene Expression Regulation/physiology , Male , Phylogeny , Reproduction/physiology , Selection, Genetic
4.
Braz. arch. biol. technol ; 52(5): 1083-1089, Sept.-Oct. 2009. ilus, tab
Article in English | LILACS | ID: lil-536382

ABSTRACT

A method that allows the measure of molecular weight of two well-known and closely related esterases from Drosophila mojavensis and its sibling species, D. arizonae, is here described, using native polyacrylamide gel electrophoresis at several concentrations, applying Fergunson´s principles. These enzymes, namely EST-4 and EST-5, presented molecular weight values between 81 and 91 kDa. In spite of their distinct expression pattern through the insect's life cycle, they showed properties of isoenzymes codified by distinct structural genes, supporting the hypothesis of a rather recent gene duplication event that generated both in D. mojavensis and D. arizonae, as well as in other species of repleta group. The method is simple and adequate to be applied to preliminary molecular weight determination of other enzymes without any previous purification procedure.


Neste trabalho, um método que permite a estimativa do peso molecular de duas esterases conhecidas e intimamente relacionadas, encontradas em Drosophila mojavensis e sua espécie aparentada D. arizonae, é descrito. Este método é realizado utilizando a técnica de eletroforese em diferentes concentrações de gel e aplicando os princípios de Fergunson. As enzimas, denominadas EST-4 e EST-5, apresentaram pesos moleculares entre 81 e 91 kDa. Apesar de seus padrões diferenciados de expressão durante o ciclo de vida do inseto, elas demonstraram propriedades de enzimas codificadas por genes estruturais distintos, corroborando a hipótese de um evento de duplicação gênica recente que gerou ambas em D. mojavensis e D. arizonae, bem como em outras espécies do grupo repleta. O método proposto é simples e adequado para ser utilizado em estimativas preliminares de determinação de pesos moleculares de outras enzimas sem haver a necessidade de um procedimento prévio de purificação.

SELECTION OF CITATIONS
SEARCH DETAIL
...