Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.365
Filter
2.
Front Plant Sci ; 15: 1425834, 2024.
Article in English | MEDLINE | ID: mdl-39086913

ABSTRACT

Introduction: Recent advancements in nanotechnology present promising opportunities for enhancing crop resilience in adverse environmental conditions. Methods: In this study, we conducted a factorial experiment to investigate the influence of potassium nanosilicate (PNS) on sorghum plants exposed to varying degrees of drought stress A randomized complete block design with three replications was employed to subject the sorghum plants to different drought conditions. The three levels of stress were designated as non-stress (NS at -0.03 MPa), moderate stress (MD at -0.6 MPa), and severe stress (SD at -1.2 MPa). The plants were administered PNS at concentrations of 0 mM (control), 3.6 mM Si, and 7.2 mM Si. Results and discussion: As drought stress intensified, we observed significant reductions in multiple plant parameters, including height, fresh weight, dry weight, leaf number, stem diameter, cluster length, seed weight, and nutrient uptake, with the most pronounced effects observed under SD conditions. Interestingly, nitrogen (N) and potassium (K) levels exhibited an increase under drought stress and PNS application, peaking at MD, alongside Si concentrations. Notably, PNS application facilitated enhanced nutrient uptake, particularly evident in the significant increase in nitrogen concentration observed at 3.6 mM PNS. Furthermore, the application of PNS significantly enhanced the fresh weight and nutrient concentrations (notably K and Si) in sorghum seeds under drought stress, despite varying statistical significance for other nutrients. These findings shed light on the mechanisms through which PNS exerts beneficial effects on plant performance under drought stress. By elucidating the complex interactions between PNS application, drought stress, and plant physiology, this study contributes significantly to the development of sustainable agricultural practices aimed at bolstering crop resilience and productivity in water-limited environments.

3.
Ann N Y Acad Sci ; 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39086254

ABSTRACT

This study analyzes the relationship between drought processes and crop yields in Moldova, together with the effects of possible future climate change on crops. The severity of drought is analyzed over time in Moldova using the Standard Precipitation Index, the Standardized Precipitation Evapotranspiration Index, and their relationship with crop yields. In addition, rainfall variability and its relationship with crop yields are examined using spectral analysis and squared wavelet coherence. Observed station data (1950-2020 and 1850-2020), ERA5 reanalysis data (1950-2020), and climate model simulations (period 1970-2100) are used. Crop yield data (maize, sunflower, grape), data from experimental plots (wheat), and the Enhanced Vegetation Index from Moderate Resolution Imaging Spectroradiometer satellites were also used. Results show that although the severity of meteorological droughts has decreased in the last 170 years, the impact of precipitation deficits on different crop yields has increased, concurrent with a sharp increase in temperature, which negatively affected crop yields. Annual crops are now more vulnerable to natural rainfall variability and, in years characterized by rainfall deficits, the possibility of reductions in crop yield increases due to sharp increases in temperature. Projections reveal a pessimistic outlook in the absence of adaptation, highlighting the urgency of developing new agricultural management strategies.

4.
Front Genet ; 15: 1432376, 2024.
Article in English | MEDLINE | ID: mdl-39092431

ABSTRACT

The Epidermal Patterning Factor/EPF-like (EPF/EPFL) family encodes a specific type of secreted protein in plants and plays an important role in plant growth and development, especially in the process of morphogenesis. To investigate the characteristics of EPF/EPFL gene family members and their regulatory functions in stomatal development of Populus trichocarpa, a total of 15 EPF/EPFL family genes were identified. Then the gene structure, chromosome location, phylogenetic relationship, protein conserved domain and gene expression profile were analyzed. According to phylogenetic analysis, PtEPF/EPFL can be classified into four groups. The gene structure and protein conservation motifs within the EPF family indicate the high conservation of the PtEPF/EPFL sequence. The promoter region of PtEPF/EPFL was found to contain cis-elements in response to stress and plant hormones. In addition, RT-qPCR results indicated that the PtEPF/EPFL have a differentially expressed in different tissues. Under drought stress treatment, a substantial upregulation was observed in the majority of PtEPF/EPFL members, suggesting their potential involvement in drought response. These results provide a theoretical basis for future exploration of the characteristics and functions of more PtEPF/EPFL genes.

5.
Sci Total Environ ; 949: 175119, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39089372

ABSTRACT

During the past several decades, the Vietnamese Mekong Delta (VMD) has experienced many severe droughts, resulting in significant impacts on both agriculture and aquaculture. In the evolution and intensification of droughts, local feedbacks in the Land-Atmosphere (LA) interactions were considered to play a crucial role. It is critical to quantify the impact of LA variables on drought processes and severity with the feedback loop of water and energy balances (e.g., soil moisture-latent and sensible heat-precipitation). In this study, a deep learning model, named Long- and Short-term Time-series Network (LSTNet), was applied to simulate the LA interactions over the VMD. With the ERA5 data as modelling inputs, the role of each key variable (e.g., soil moisture, sensible and latent heat) in the LA interactions over the period of 2011-2020 was quantified, and the variations of their inter-relationships in the future period (2015-2099) were also investigated based on the CMIP6 data. The LSTNet model has demonstrated that the deep learning algorithm can effectively capture the relative importance of key variables in the LA interactions. We found that it is crucial to evaluate the effects of soil moisture and sensible heat on the LA interactions, particularly in the dry periods when negative anomalies in soil moisture and sensible heat would significantly reduce the amount of precipitation. In addition, the decline in soil moisture and the rise in sensible heat are anticipated to further diminish precipitation in the future under the changing climate.

6.
Sci Rep ; 14(1): 17855, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090142

ABSTRACT

Breeding high yielding water-deficit tolerant rice is considered a primary goal for achieving the objectives of the sustainable development goals, 2030. However, evaluating the performance of the pre-breeding-promising parental-lines for water deficit tolerance prior to their incorporation in the breeding program is crucial for the success of the breeding programs. The aim of the current investigation is to assess the performance of a set of pre-breeding lines compared with their parents. To achieve this goal a set of 7 pre-breeding rice lines along with their parents (5 genotypes) were field evaluated under well-irrigated and water-stress conditions. Water stress was applied by flush irrigation every 12 days without keeping standing water after irrigation. Based on the field evaluation results, a pre-breeding line was selected to conduct physiological and expression analysis of drought related genes at the green house. Furthermore, a greenhouse trial was conducted in pots, where the genotypes were grown under well and stress irrigation conditions at seedling stage for physiological analysis and expression profiling of the genotypes. Results indicated that the pre-breeding lines which were high yielding under water shortage stress showed low drought susceptibility index. Those lines exhibited high proline, SOD, TSS content along with low levels of MDA content in their leaves. Moreover, the genotypes grain yield positively correlated with proline, SOD, TSS content in their leaves. The SSR markers RM22, RM525, RM324 and RM3805 were able to discriminate the tolerant parents from the sensitive one. Expression levels of the tested drought responsive genes revealed the upregulation of OsLEA3, OsAPX2, OsNAC1, OSDREB2A, OsDREB1C, OsZIP23, OsP5CS, OsAHL1 and OsCATA genes in response to water deficit stress as compared to their expression under normal irrigated condition. Taken together among the tested pre-breeding lines the RBL112 pre-breeding line is high yielding under water-deficit and could be used as donor for high yielding genes in the breeding for water deficit resistance. This investigation withdraws attention to evaluate the promising pre-breeding lines before their incorporation in the water deficit stress breeding program.


Subject(s)
Dehydration , Gene Expression Regulation, Plant , Oryza , Plant Breeding , Oryza/genetics , Dehydration/genetics , Plant Breeding/methods , Droughts , Genotype , Gene Expression Profiling , Water/metabolism , Transcriptome , Stress, Physiological/genetics , Plant Proteins/genetics , Plant Proteins/metabolism
7.
Sci Rep ; 14(1): 17810, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090163

ABSTRACT

Elymus nutans Griseb. (E. nutans), a pioneer plant for the restoration of high quality pasture and vegetation, is widely used to establish artificial grasslands and ecologically restore arid and salinized soils. To investigate the effects of drought stress and salt stress on the physiology and endogenous hormones of E. nutans seedlings, this experiment configured the same environmental water potential (0 (CK), - 0.04, - 0.14, - 0.29, - 0.49, - 0.73, and - 1.02 MPa) of PEG-6000 and NaCl stress to investigate the effects of drought stress and salt stress, respectively, on E. nutans seedlings under the same environmental water potential. The results showed that although the physiological indices and endogenous hormones of the E. nutans seedlings responded differently to drought stress and salt stress under the same environmental water potential, the physiological indices of E. nutans shoots and roots were comprehensively evaluated using the genus function method, and the physiological indices of the E. nutans seedlings under the same environmental water potential exhibited better salt tolerance than drought tolerance. The changes in endogenous hormones of the E. nutans seedlings under drought stress were analyzed to find that treatment with gibberellic acid (GA3), gibberellin A7 (GA7), 6-benzyladenine (6-BA), 6-(y,y-dimethylallylaminopurine) (2.IP), trans-zeatin (TZ), kinetin (KT), dihydrozeatin (DHZ), indole acetic acid (IAA), and 2,6-dichloroisonicotininc acid (INA) was more effective than those under drought stress. By analyzing the amplitude of changes in the endogenous hormones in E. nutans seedlings, the amplitude of changes in the contents of GA3, GA7, 6-BA, 2.IP, TZ, KT, DHZ, IAA, isopentenyl adenosine (IPA), indole-3-butyric acid (IBA), naphthalene acetic acid (NAA), and abscisic acid was larger in drought stress compared with salt stress, which could be because the endogenous hormones are important for the drought tolerance of E. nutans itself. The amplitude of the changes in the contents of DHZ, TZR, salicylic acid, and jasmonic acid was larger in salt stress compared with drought stress. Changes in the content of melatonin were larger in salt stress compared with drought stress, which could indicate that endogenous hormones and substances are important for the salt tolerance of E. nutans itself.


Subject(s)
Droughts , Plant Growth Regulators , Salt Stress , Seedlings , Seedlings/physiology , Seedlings/drug effects , Seedlings/metabolism , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Stress, Physiological , Plant Roots/physiology , Plant Roots/drug effects , Plant Roots/metabolism , Salt Tolerance , Indoleacetic Acids/metabolism , Poaceae/physiology , Poaceae/drug effects , Poaceae/metabolism
8.
Sci Total Environ ; 949: 175157, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39094636

ABSTRACT

This study utilized MODIS true color satellite imagery to analyse blowing sand and dust events dynamics in the Middle East from 2010 to 2021, focusing on Syria, Iraq, and Jordan. A total of 4923 dust point sources were detected, with a significant concentration (~90 %) located within the Tigris-Euphrates Basin (Nearest Neighbor Ratio = 0.41, р < 0.001). Land cover analysis revealed that bare land, comprising most of the study area, was the predominant source of dust emissions. Wetlands, though only constituting about 1 % of the area, showed the highest frequency of dust sources per unit area, highlighting their role as critical dust emission hotspots. The study emphasizes the impact of drought and anthropogenic factors, such as poor land management, on blowing dust intensity. It suggests the necessity of strategic land management practices, including re-vegetation of arid areas, reducing soil exposure, and implementing wind erosion control measures. To effectively address the transboundary nature of dust emissions, the findings underscore the importance of fostering regional cooperation through mechanisms such as shared environmental monitoring and data exchange platforms, joint management of cross-border natural resources, and collaborative policy making.

9.
New Phytol ; 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39096020

ABSTRACT

The onset of stomatal closure reduces transpiration during drought. In seed plants, drought causes declines in plant water status which increases leaf endogenous abscisic acid (ABA) levels required for stomatal closure. There are multiple possible points of increased belowground resistance in the soil-plant atmospheric continuum that could decrease leaf water potential enough to trigger ABA production and the subsequent decreases in transpiration. We investigate the dynamic patterns of leaf ABA levels, plant hydraulic conductance and the point of failure in the soil-plant conductance in the highly embolism-resistant species Callitris tuberculata using continuous dendrometer measurements of leaf water potential during drought. We show that decreases in transpiration and ABA biosynthesis begin before any permanent decreases in predawn water potential, collapse in soil-plant hydraulic pathway and xylem embolism spread. We find that a dynamic but recoverable increases in hydraulic resistance in the soil in close proximity to the roots is the most likely driver of declines in midday leaf water potential needed for ABA biosynthesis and the onset of decreases in transpiration.

10.
Ann Bot ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39086357

ABSTRACT

BACKGROUND AND AIMS: Leaf elongation is vital for Poaceae species' productivity, influenced by atmospheric CO2 concentration ([CO2]) and climate-induced water availability changes. Although [CO2] mitigates the effects of drought on reducing transpiration per unit leaf area, it also increases total leaf area and water use. These complex interactions associated with leaf growth pose challenges in anticipating climate change effects. This study aims to assess [CO2] effects on leaf growth response to drought in perennial ryegrass (Lolium perenne), tall fescue (Festuca arundinacea) and wheat (Triticum aestivum). METHODS: Plants were cultivated in growth chambers with [CO2] at 200 or 800 ppm. At leaf six to seven unfolding, half of the plants were subjected to severe drought treatment. Leaf elongation rate (LER) was measured daily, whereas plant transpiration was continuously recorded gravimetrically. Additionally, water-soluble carbohydrate (WSC) content along with water and osmotic potentials in the leaf growing zone were measured at drought onset, mid-drought and leaf growth cessation. KEY RESULTS: Elevated [CO2] mitigated drought impacts on LER and delayed growth cessation across species. A positive correlation between LER and soil relative water content (SRWC) was observed. At the same SRWC, perennial grasses exhibited a higher LER with elevated [CO2], likely due to enhanced stomatal regulation. Despite stomatal closure and WSC accumulation, CO2 did not influence nighttime water potential or osmotic potential. The marked increase in leaf area across species resulted in similar (wheat and tall fescue) or higher (ryegrass) total water use by the experiment's end, under both watered and unwatered conditions. CONCLUSIONS: In conclusion, elevated [CO2] mitigates the adverse effects of drought on leaf elongation in three Poaceae species, due to its impact on plant transpiration. Overall, these findings provide valuable insights into CO2 and drought interactions that may help anticipate plant responses to climate change.

11.
Biochem Biophys Res Commun ; 735: 150489, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39096883

ABSTRACT

Drought is the primary factor limiting rice production in ecosystems. Wild rice rhizosphere bacteria possess the potential to assist in the stress resistance of cultivated rice. This study examines the impact of wild rice rhizosphere bacteria on cultivated rice under drought conditions. From the rhizosphere soil of wild rice, 20 potential drought-resistant strains were isolated. Subsequent to the screening, the most effective strain b3, was identified as Enterobacter ludwigii. Pot experiments were conducted on the cultivated Changbai 9 rice. It was found that inoculation with the E. ludwigii b3 strain improved the drought resistance of the rice, promotion of rice growth (shoot height increased by 13.47 %), increased chlorophyll content (chlorophyll a, chlorophyll b and carotenoid increased by 168.74 %, 130.68 % and 87.89 %), improved antioxidant system (content of glutathione was increased by 60.35 %), and accumulation of osmotic regulation substances (soluble sugar and soluble protein increased by 70.36 % and 142.03 %). Furthermore, E. ludwigii b3 had a transformative effect on the rhizosphere bacterial community of cultivated rice, increasing its abundance and diversity while simultaneously recruiting beneficial rhizosphere bacteria, resulting in a more complex community. Additionally, E. ludwigii b3 acted directly and indirectly on cultivated rice through its metabolites (organic acids, amino acids, flavonoids and other substances), which helped alleviate drought stress. In conclusion, the E. ludwigii b3 shows promise as a drought-resistant strain and has the potential to improve the growth and productivity of cultivated rice in arid agricultural ecosystems. This study represents the first investigation of E. ludwigii in the rhizosphere of wild rice under drought conditions on cultivated rice.

12.
Sci Total Environ ; : 175164, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39097016

ABSTRACT

The simultaneous occurrence of climate extremes significantly impacts ecosystems, increasing the vulnerability to physical risks. Despite extensive research on hot extremes and droughts globally, there remains a significant gap in comprehending the occurrence, magnitude, spatial extent, and associated risks of compound extremes, encompassing scenarios like warm/dry, cold/dry, warm/wet, and cold/wet. This study investigates various compound extreme scenarios by examining combinations of maximum temperature (Tx) and the Standardized Precipitation Evapotranspiration Index (SPEI) using monthly data from 1951 to 2014 acquired from the India Meteorological Department (IMD) for Indian landmass. From the results, the spatial extent of warm/dry events has increased at 1.8 % per decade, while cold/wet events decreased by 1.1 % over India. The warm/wet events have shown an increased trend of about 0.3 %, and cold/dry events at modest rise of 0.7 % per decade. Furthermore, compound warm/dry and cold/wet extremes over India exhibit extreme frequency and shorter return periods, posing greater risk. Conversely, compound cold/dry and warm/wet extremes occur less often, indicating longer return periods and lower risk. Across much of the country, the frequency of warm/dry, cold/dry, warm/wet, and cold/wet extremes ranges from 30 to 45, 15-30, 20-30, and 25-45 months, respectively. Notably, warm/dry conditions exhibit increased frequency in the recent period (1983-2014) with 31 years compared to the base period (1951-1982) which had approximately 24 years for a spatial extent exceeding 5 %. The findings of this study contribute to an enhanced understanding of the changes in compound climate extremes from a multivariate perspective.

13.
Glob Chang Biol ; 30(8): e17439, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39092538

ABSTRACT

Heatwaves and soil droughts are increasing in frequency and intensity, leading many tree species to exceed their thermal thresholds, and driving wide-scale forest mortality. Therefore, investigating heat tolerance and canopy temperature regulation mechanisms is essential to understanding and predicting tree vulnerability to hot droughts. We measured the diurnal and seasonal variation in leaf water potential (Ψ), gas exchange (photosynthesis Anet and stomatal conductance gs), canopy temperature (Tcan), and heat tolerance (leaf critical temperature Tcrit and thermal safety margins TSM, i.e., the difference between maximum Tcan and Tcrit) in three oak species in forests along a latitudinal gradient (Quercus petraea in Switzerland, Quercus ilex in France, and Quercus coccifera in Spain) throughout the growing season. Gas exchange and Ψ of all species were strongly reduced by increased air temperature (Tair) and soil drying, resulting in stomatal closure and inhibition of photosynthesis in Q. ilex and Q. coccifera when Tair surpassed 30°C and soil moisture dropped below 14%. Across all seasons, Tcan was mainly above Tair but increased strongly (up to 10°C > Tair) when Anet was null or negative. Although trees endured extreme Tair (up to 42°C), positive TSM were maintained during the growing season due to high Tcrit in all species (average Tcrit of 54.7°C) and possibly stomatal decoupling (i.e., Anet ≤0 while gs >0). Indeed, Q. ilex and Q. coccifera trees maintained low but positive gs (despite null Anet), decreasing Ψ passed embolism thresholds. This may have prevented Tcan from rising above Tcrit during extreme heat. Overall, our work highlighted that the mechanisms behind heat tolerance and leaf temperature regulation in oak trees include a combination of high evaporative cooling, large heat tolerance limits, and stomatal decoupling. These processes must be considered to accurately predict plant damages, survival, and mortality during extreme heatwaves.


Subject(s)
Plant Stomata , Quercus , Thermotolerance , Quercus/physiology , Plant Stomata/physiology , Spain , Switzerland , France , Plant Leaves/physiology , Photosynthesis , Temperature , Seasons , Water , Hot Temperature , Droughts
14.
BMC Plant Biol ; 24(1): 749, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39103780

ABSTRACT

BACKGROUND: Climate change induces perturbation in the global water cycle, profoundly impacting water availability for agriculture and therefore global food security. Water stress encompasses both drought (i.e. water scarcity) that causes the drying of soil and subsequent plant desiccation, and flooding, which results in excess soil water and hypoxia for plant roots. Terrestrial plants have evolved diverse mechanisms to cope with soil water stress, with the root system serving as the first line of defense. The responses of roots to water stress can involve both structural and physiological changes, and their plasticity is a vital feature of these adaptations. Genetic methodologies have been extensively employed to identify numerous genetic loci linked to water stress-responsive root traits. This knowledge is immensely important for developing crops with optimal root systems that enhance yield and guarantee food security under water stress conditions. RESULTS: This review focused on the latest insights into modifications in the root system architecture and anatomical features of legume roots in response to drought and flooding stresses. Special attention was given to recent breakthroughs in understanding the genetic underpinnings of legume root development under water stress. The review also described various root phenotyping techniques and examples of their applications in different legume species. Finally, the prevailing challenges and prospective research avenues in this dynamic field as well as the potential for using root system architecture as a breeding target are discussed. CONCLUSIONS: This review integrated the latest knowledge of the genetic components governing the adaptability of legume roots to water stress, providing a reference for using root traits as the new crop breeding targets.


Subject(s)
Chromosome Mapping , Dehydration , Fabaceae , Phenotype , Plant Roots , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/physiology , Fabaceae/genetics , Fabaceae/physiology , Adaptation, Physiological/genetics , Droughts , Floods , Crops, Agricultural/genetics , Crops, Agricultural/growth & development , Crops, Agricultural/physiology
15.
J Environ Manage ; 367: 122019, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39106801

ABSTRACT

The present study evaluates the future drought hazard in Morocco using a Multi-Model Ensemble (MME) approach. First, the artificial neural network-based MME is constructed using the General Circulation Models (GCMs) from the Climate Models Intercomparison Project phase 6 (CMIP6) which are most successful in representing the historical temperature and precipitation values. Next, the future changes in the precipitation, Potential EvapoTranspiration (PET) calculated using temperatures data, aridity index, and drought indices calculated via the Standardized Precipitation Evapotranspiration Index (SPEI) values were projected for the historical period 1980-2014, near future 2025-2050, mid future 2051-2075, and far future 2076-2100. The obtained results indicate that there will be a decrease in values of the precipitation and an increase in values of the PET, leading to an increase in aridity risk for Morocco. The future projections using the SPEI results show that the average index values will mostly be in the drought zone, indicating that the drought severity will increase. The spatial analysis of SPEI values in different regions of Morocco demonstrates that the northern part of the country has relatively more drought occurrences, and drought severity tends to increase with each passing period. The study also reveals that drought severity will significantly increase after 2050 in the Shared Socio-economic Pathways 5-8.5 (SSP5-8.5) scenario. The research concludes that the increase in drought severity will significantly impact Morocco's water resources, agriculture and food security among others.

17.
Sci Total Environ ; : 175255, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39102956

ABSTRACT

The acceleration of water cycle processes in the context of global warming will exacerbate the frequency and intensity of extreme events and predispose to drought and flood disasters (DFD). The Yellow River Basin (YRB) is one of the basins with significant and sensitive impacts of climate change, comprehensive assessment and prediction of its DFD risk are of great significance for ecological protection and high-quality development. This study first constructed an evaluation index system for drought disaster risk and flood disaster risk based on hazard, vulnerability, exposure and the role of large reservoirs. Secondly, the weights of each evaluation index are established by the analytic hierarchy process. Finally, based on the four-factor theory of disasters, an evaluation model of DFD risk indicators is established. The impact of large reservoirs on DFD risk in the YRB is analyzed with emphasis. The results show that from 1990 to 2020, the drought disaster risk in the YRB is mainly distributed in the source area of the Yellow River and the northwest region (11.26-15.79 %), and the flood disaster risk is mainly distributed in the middle and lower reaches (30.04-31.29 %). Compared to scenarios without considering large reservoirs, the area at risk of high drought and high flood is reduced by 45.45 %, 44.22 % and 31.29 % in 2000, 2010 and 2020, respectively. Large reservoirs in the YRB play an important role in mitigating DFD risk, but their role is weakened with the enhancement of the emission scenario. Under the influence of different scenario models, the DFD risk in the YRB in 2030 and 2060 will increase, and the area of high drought and high flood risk in the middle and upper reaches of the basin will increase by 0.26-25.15 %. Therefore, the YRB should play the role of large reservoirs in DFD risk defense in its actions to cope with future climate change, while improving non-engineering measures such as early warning and emergency management systems to mitigate the impacts of disasters.

18.
Sci Total Environ ; 949: 175181, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39094660

ABSTRACT

The impacts of various drought types on autumn phenology have yet to be extensively explored. We address the influence of pre-season agricultural and meteorological droughts on autumn phenology in the Northern Hemisphere. To this end, enhanced autumn phenology models incorporating drought factors was developed, contributing to a deeper understanding of these complex interactions. The study reveals that there was no significant trend of advancement or delay in the End of Season (EOS) across the Northern Hemisphere based on SIF estimates from 2001 to 2020. The cumulative and delayed impacts of pre-season agricultural drought on EOS were found to be more pronounced than those associated with meteorological drought. The analysis of various evaluation indexes shows that the performance of the Cooling Degree Days (CDD) model incorporating the Standardized Soil Moisture Drought Index (CDDSSMI) in simulating EOS in the Northern Hemisphere is >14 % higher than that of the standard CDD model. Additionally, the performance of the CDD model with the Standardized Precipitation Index (CDDSPI) in simulating EOS in the Northern Hemisphere is improved by >5.6 % compared to the standard CDD model. A comparison of future EOS projections across various models reveals that the CDD model significantly overestimates EOS in different scenarios (SSP245 and SSP585). The CDDSSMI model projects EOS approximately 7 days earlier than the CDD model, and the CDDSPI model projects EOS approximately 5 days earlier than the CDD model. This study highlights the diverse impacts of drought types on plant autumn phenology and underscores the significance of parameterizing drought impacts in autumn phenology models.

19.
J Plant Physiol ; 302: 154316, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39098091

ABSTRACT

ABA-insensitive 5 (ABI5) belongs to the basic leucine zipper class of transcription factors and is named for being the fifth identified Arabidopsis mutant unresponsive to ABA. To understand the influence of ABI5 in its active state on downstream gene expression and plant growth and development, we overexpressed the full-length ABI5 (A.t.MX-4) and the active forms of ABI5 with deleted transcriptional repression domains (A.t.MX-1, A.t.MX-2, and A.t.MX-3). Compared with the wild type, A.t.MX-1, A.t.MX-2, and A.t.MX-3 exhibited an increase in rosette leaf number and size, earlier flowering, increased thousand-seed weight, and significantly enhanced drought resistance. Thirty-five upregulated/downregulated proteins in the A.t.MX-1 were identified by proteomic analysis, and these proteins were involved in ABA biosynthesis and degradation, abiotic stress, fatty acid synthesis, and energy metabolism. These proteins participate in the regulation of plant drought resistance, flowering timing, and seed size at the levels of transcription and post-translational modification.

20.
Plant Physiol Biochem ; 215: 108999, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39098185

ABSTRACT

Castanea sativa Miller, a high-valuable crop for Mediterranean countries, is facing frequent and prolonged periods of heat and drought, severely affecting chestnut production. Aiming to tackle this problem, this study unraveled the influence of mycorrhizal association with the fungi Paxillus involutus (Batsch) on young chestnut plants' responses to combined heat (42 °C; 4 h/day) and drought (no irrigation until soil moisture reached 25%) over 21 days of stress exposure. Heat stress had no harmful effects on growth, photosynthesis, nor induced oxidative stress in either mycorrhizal (MR) or non-mycorrhizal (NMR) chestnut plants. However, drought (alone or combined) reduced the growth of NMR plants, affecting water content, leaf production, and foliar area, while also hampering net CO2 assimilation and carbon relations. The mycorrhizal association, however, mitigated the detrimental effects of both stresses, resulting in less susceptibility and fewer growth limitations in MR chestnut plants, which were capable of ensuring a proper carbon flow. Evaluation of the oxidative metabolism revealed increased lipid peroxidation and hydrogen peroxide levels in NMR plants under water scarcity, supporting their higher susceptibility to stress. Conversely, MR plants activated defense mechanisms by accumulating antioxidant metabolites (ascorbate, proline and glutathione), preventing oxidative damage, especially under the combined stress. Overall, drought was the most detrimental condition for chestnut growth, with heat exacerbating stress susceptibility. Moreover, mycorrhizal association with P. involutus substantially alleviated these effects by improving growth, water relations, photosynthesis, and activating defense mechanisms. Thus, this research highlights mycorrhization's potential to enhance C. sativa resilience against climate change, especially at early developmental stages.

SELECTION OF CITATIONS
SEARCH DETAIL
...