Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Heliyon ; 10(7): e27864, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38560251

ABSTRACT

Terrestrial ecosystems such as coniferous forests in Central Europe are experiencing changes in health status following extreme droughts compounding with severe heat waves. The increasing temporal resolution and spatial coverage of earth observation data offer new opportunities to assess these dynamics. Dense time-series of optical satellite data allow for computing Dynamic Habitat Indices (DHIs), which have been predominantly used in biodiversity studies. However, DHIs cover three aspects of vegetation changes that could be affected by drought: annual productivity, minimum cover, and seasonality. Here, we evaluate the health status of coniferous forests in the federal state of Hesse in Germany over the period 2017-2020 including the severe drought year of 2018 using DHIs based on the Normalized Difference Vegetation Index (NDVI) for drought assessment. To identify the most important variables affecting coniferous forest die-off, a series of environmental variables together with the three DHIs components were used in a logistic regression (LR) model. Each DHI component changed significantly across non-damaged and damaged sites in all years (p-value 0.05). When comparing 2017 to 2019, DHI-based annual productivity decreased and seasonality increased. Most importantly, none of the DHI components had reached pre-drought conditions, which likely indicates a change in ecosystem functioning. We also identified spatially explicit areas highly affected by drought. The LR model revealed that in addition to common environmental parameters related to temperature, precipitation, and elevation, DHI components were the most important factors explaining the health status. Our analysis demonstrates the potential of DHIs to capture the effect of drought events on Central European coniferous forest ecosystems. Since the spaceborne data are available at the global level, this approach can be applied to track the dynamics of ecosystem conditions in other regions, at larger spatial scales, and for other Land Use/Land Cover types.

2.
Sci Total Environ ; 898: 165480, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37463624

ABSTRACT

Agricultural drought posing a significant threat to agricultural production is subject to the complex influence of ocean, terrestrial and meteorological multi-factors. Nevertheless, which factor dominating the dynamics of agricultural drought characteristics and their dynamic impact remain equivocal. To address this knowledge gap, we used ERA5 soil moisture to calculate the standardized soil moisture index (SSI) to characterize agricultural drought. The extreme gradient boosting model was then adopted to fully examine the influence of ocean, terrestrial and meteorological multi-factors on agricultural drought characteristics and their dynamics in China. Meanwhile, the Shapley additive explanation values were introduced to quantify the contribution of multiple drivers to drought characteristics. Our analysis reveals that the drought frequency, severity and duration in China ranged from 5-70, 2.15-35.02 and 1.76-31.20, respectively. Drought duration is increasing and drought intensity is intensifying in southeast, north and northwest China. In addition, potential evapotranspiration is the most significant driver of drought characteristics at the basin scale. Regarding the dynamic evolution of drought characteristics, the percentages of raster points for drought duration and severity with evapotranspiration as the dominant factor are 30.7 % and 32.7 %, and the percentages with precipitation are 35.3 % and 35.0 %, respectively. Precipitation in northern regions has a positive effect on decreasing drought characteristics, while in southern regions, evapotranspiration dominates the dynamics in drought characteristics due to increasing vegetation transpiration. Moreover, the drought severity is exacerbated by the Atlantic Multidecadal Oscillation in the Yangtze and Pearl River basins, while the contribution of the North Atlantic Oscillation to the drought duration evolution is increasing in the Yangtze River basin. Generally, this study sheds new insights into agricultural drought evolution and driving mechanism, which are beneficial for agricultural drought early warning and mitigation.

3.
Sci Total Environ ; 893: 164917, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37327893

ABSTRACT

The frequency and severity of drought events have increased over the decades under the influence of global warming. Continued drought increases the risk of vegetation degradation. Many studies have investigated the responses of vegetation to drought but rarely from the perspective of drought events. Moreover, the spatial distributions of vegetation sensitivity to drought events are not well understood in China. Thus, the spatiotemporal patterns of drought events were quantified based on the run theory at different time-scales in this study. The relative importance of drought characteristics for vegetation anomalies during drought events were calculated by using the BRT model. Then, the sensitivity of vegetation anomalies and vegetation phenology was quantified by dividing standardized anomalies of vegetation parameters (NDVI and phenological metrics) and SPEI during drought events for different regions in China. The results show that Southern Xinjiang and Southeast China experienced relatively higher values of drought severity, especially at the 3-month and 6-month scales. Most arid areas experienced more drought events but of low severity, while some humid zones underwent few drought events but of high severity. Notable negative NDVI anomalies appeared in the Northeast China and Southwest China, while positive NDVI anomalies were observed in Southeast China and Northern central region. Drought interval, intensity and severity contributed approximately 80 % of the model's explained vegetation variance in most regions. The sensitivity of vegetation anomalies to drought events (VASD) varied regionally in China. The Qinghai-Tibet Plateau and Northeast China tended to exhibit higher sensitivity to drought events. Vegetation in these regions with high sensitivity faced a high risk of degradation and could function as warning signals of vegetation degradation. Drought events at high timescales had a greater impact on vegetation sensitivity in dry zones, while they had a smaller impact on humid areas. With the increase in drought degree of climate zones and the decrease in vegetation coverage, VASD showed a gradual increase. Furthermore, a strong negative correlation between VASD and the aridity index (AI) was observed in all vegetation types. The change in VASD for sparse vegetation was the largest with the change in AI. For vegetation phenology, drought events in most regions delayed the end of the growing season and extended the length of growing season, especially for sparse vegetation. The start of the growing season was advanced in most humid areas, while being delayed in most dry areas during drought events. Knowledge of vegetation sensitivity to drought events will be beneficial to provide decision-making references for the prevention and control of vegetation degradation, especially in the ecological fragile regions.


Subject(s)
Droughts , Ecosystem , China , Tibet , Seasons , Climate Change
4.
Sci Total Environ ; 868: 161755, 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-36690099

ABSTRACT

The extreme change of water storage in the Yangtze River Basin (YRB) have a significant impact on identifying the characteristics of drought events in the basin. To quantify the historical hydrological drought characteristics, we put forward new framework to reconstruct the pre-2003 total water storage anomaly (TWSA) through the nonlinear autoregressive with exogenous input (NARX) model. The NARX model is developed by the Gravity Recovery and Climate Experiment (GRACE) based TWSA and the hydrometeorological data after removing the trend and seasonal signals from 2003 to 2017, then the full pre-2003 reconstructed TWSA signals were obtained by synthesizing hydrometeorological data driven NARX model results from 1979 to 2002 and GRACE-estimated seasonal cycle. We combined the reconstructed TWSA with GRACE observed TWSA to characterize the historical hydrological drought events (onset, end, duration, magnitude, intensity, and recovery) in the YRB. The results show that the drought-related extreme anomalies in total water storage can be captured successfully. From 1979 to 2017, 23 hydrological drought events were identified in the YRB with an average recovery time of 4.7 months. The longest drought lasted 28 months spanning from July 2006 to October 2008. The exceptional drought occurred in September 2011 reached to the largest deficit with a magnitude of -48.5 mm and minimum drought severity index (DSI) of -2.3. Comparing to the period of 1979-1999, the frequency, duration, and average recovery time of drought events increased significantly since 2000 in the YRB. Furthermore, we found that the duration and average recovery time of the drought events have an exponential relationship with the severity, which could help us to estimate the potential recovery time when drought events occur and predict water resources dynamic in the future.

5.
Sci Total Environ ; 846: 157334, 2022 Nov 10.
Article in English | MEDLINE | ID: mdl-35842151

ABSTRACT

Water availability influences terrestrial ecosystems' composition, structure, and function. Recently, climate change increased drought periods frequency and length in many parts of the world, including southwestern China, a biodiversity hotspot. Although the drought impacts on ecosystems are well known, studies are scarce in subtropical areas of China. This work studied the drought legacy effects on vegetation growth in southwestern China using Normalized Difference Vegetation Index (NDVI) and the Standardized Precipitation Evapotranspiration Index (SPEI), with a particular focus on non-growing season extreme drought events. Pervasive non-growing season drought legacy effects were found in the first growing season in most parts of southwestern China. The highest impacts were identified in forests, while the effects in grass were less severe. At the regional scale, horizontal and vertical spatial patterns of drought legacy effects were heterogeneous, and the highest impacts were found in warmer and wetter forests and alpine grasslands. Our study highlights that severe drought conditions may dramatically affect vegetation growth in southwestern China.


Subject(s)
Droughts , Ecosystem , China , Climate Change , Forests , Seasons
6.
Sci Total Environ ; 830: 154742, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35341836

ABSTRACT

Global climate change and the increase in the frequency and intensity of drought have led to widespread forest decline and tree mortality. Studying the resilience components of tree growth to drought, including resistance (Rt), recovery (Rc), and resilience (Rs) and the influencing factors, helps assess forests' production and ecological stability under a changing climate. This study analyzed the responses of three resilience components of natural Mongolian pine (Pinus sylvestris var. mongolica) to drought events by examining individual-tree characteristics in two sites of Hulunbuir using the linear mixed effect model. The result showed that drought severity, diameter at breast height (dbh), pre-drought growth, and growth variability prior to drought had significant effects on the three resilience components of Mongolian pine growth. Specifically, as drought severity, dbh and growth variability increased, the Rt and Rs decreased, but Rc increased, showing a trade-off relationship with Rt. However, the Rt, Rc, and Rs decreased with pre-drought growth. Inter-tree competition and tree age also significantly impacted two resilience components. Besides, the interaction term between tree competition and tree age negatively affects Rt and Rs but positively affects Rc. Our findings highlight the influence of drought severity and individual-tree characteristics on drought resilience components, which can serve the adaptive management of natural Mongolian pine forests in the future.


Subject(s)
Pinus sylvestris , Pinus , Droughts , Forests , Trees
7.
Sci Total Environ ; 806(Pt 4): 150701, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34634353

ABSTRACT

Since our comprehensive investigation of finished drinking water in Germany obtained from managed aquifer recharge systems in the period 2015-2016, which revealed widespread contamination with 1,4-dioxane, mitigation measures (integration of AOP units, shutdown or alteration of production processes) have been implemented at some sites. In this study, we conducted follow-up tests on surface water concentrations and associated finished drinking water concentrations in 2017/2018, to evaluate the effectiveness of these measures. Our findings demonstrate that the emission mitigation measures had considerably reducing effects on the average 1,4-dioxane drinking water concentrations for some of the previously severely affected areas (Lower Franconia: -54%, Passau: -88%). Conversely, at notoriously contaminated sites where neither monitoring nor mitigation measures were introduced, the drinking water concentrations stagnated or even increased. Drinking water concentrations determined via a modified US EPA method 522 ranged from below LOQ (0.034 µg/L) up to 1.68 µg/L in all drinking water samples investigated. In river water samples, the maximum concentration exceeded 10 µg/L. Effluents of wastewater treatments plants containing 1,4-dioxane (5 µg/L-1.75 mg/L) were also analyzed for other similar cyclic ethers by suspected target screening. Thus, 1,3-dioxolane and three other derivatives were tentatively identified in effluents from the polyester processing or manufacturing industry. 1,3-Dioxolane was present in concentrations >1.2 mg/L at one site, exceeding up to sevenfold the 1,4-dioxane concentration found there. At another site 2-methyl-1,3-dioxolane was still found 13 km downstream of the discharge point, indicating that ethers analogous to 1,4-dioxane should be further considered regarding their occurrence and fate in wastewater treatment and the aquatic environment.


Subject(s)
Drinking Water , Groundwater , Water Pollutants, Chemical , Dioxanes/analysis , Germany , Water Pollutants, Chemical/analysis
8.
Sci Total Environ ; 806(Pt 4): 150940, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34699836

ABSTRACT

Drought-induced die-off in forests is becoming a widespread phenomenon across biomes, but the factors determining potential shifts in taxonomic and structural characteristics following mortality are largely unknown. We report on short-term patterns of resilience after drought-induced episodes of tree mortality across 48 monospecific forests from Morocco to Slovenia. Field surveys recorded plants growing beneath a canopy of dead, defoliated and healthy trees. Site-level structural characteristics and management legacy were also recorded. Resilience was assessed with reference to forest composition (self-replacement), structure, and changes in the climatic suitability of the replacing community relative to the climatic suitability of the dominant pre-drought species. Species climatic suitability was estimated from species distribution models calculated for the baseline 1970-2000 period. Short-term resilience decreased under higher levels of drought-induced damage to the dominant species and with evidences of management legacy. Greater resilience of structural features (fewer gaps, greater canopy height) was observed overall in forests with a larger basal area. Less gaps were also associated with greater woody species richness after drought. Overall, Fagaceae-dominated forests exhibited greater structural resilience than conifer-dominated ones. On those sites that were more climatically suited to the dominant pre-drought species, replacing communities tended to exhibit lower climatic suitability than pre-drought dominant species. There was a greater loss of climatic suitability under a legacy of management and drought intensity, but less so in the replacing communities with higher woody species richness. Our study reveals that short-term forest resilience is determined by pre-drought stand characteristics, often reflecting previous management legacies, and by the impact of drought on both the dominant pre-drought species and post-drought replacing species in terms of their climatic suitability.


Subject(s)
Droughts , Forests , Ecosystem , Slovenia , Trees
9.
Int J Biometeorol ; 65(6): 905-915, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33532925

ABSTRACT

Since the late 1970s, East Asian summer monsoon (EASM) has shown a significant weakening trend, and sustained drought has occurred across North China. Placing recent climate changes in the paleoclimatic context can better understand the EASM variations. Four δ18O sequences based on tree-ring cellulose of Chinese pine were developed from Mt. Beiwudang, North China, covering a period from 1700 to 2013. Based on a climatic response analysis, a transfer function was designed to reconstruct the relative humidity from July to August (RHJA hereafter). The RHJA spans from 1765 to 2013 and explains 49% (R2adj = 48%) of the instrumental variance during the calibration period (1961-2013, r = - 0.70, p < 0.0001). The RHJA is mainly influenced by precipitation in the summer rainy season and reflect EASM variations. Spatial representation analysis indicates that RHJA represents the dry/wet variations across North China. At the interannual scale, RHJA records many extreme dry/wet events, among which the events in 1876-1878, 1900, and the 1920s are extensive droughts. Those events correspond well to ENSO events, plus further correlation and periodicity analysis indicate that RHJA contains ENSO signals. At the interdecadal scale, RHJA shows a decreasing trend and unprecedented low values from 1981 to 2013, suggesting that the weakening of EASM since the late 1970s is unprecedented in the past 249 years. Similarly, the significantly correlating region in the spatial correlation analysis, covering the Meiyu/Baiu/Changma rainfall belt and India, have also undergone a climatic shift since the late 1970s according to previous papers.


Subject(s)
Cellulose , Trees , China , Humidity , India
10.
Environ Sci Pollut Res Int ; 28(17): 21910-21925, 2021 May.
Article in English | MEDLINE | ID: mdl-33411304

ABSTRACT

Due to the present drought events and dynamics of vegetation, the circumstances in mainland China could become even more serious. Therefore, we study the impact of drought on vegetation trends in mainland China, with the aim of discovering the temporal and spatial differences in vegetation dynamics caused by seasonal drought. Our method is based on the use of data from the AVHRR Normalized Difference Vegetation Index (NDVI) from 1983 to 2016 and temperature and precipitation data from Modern Era Retrospective Analysis for Research and Applications (NASA's MERRA). Due to the sparse vegetation and low drought, NDVI is the most useful for describing drought conditions in mainland China. The NDVI, TCI, VHI, NVSWI, VCI, TVDI, and NAP from April to October increased rapidly, while the NDVI, TCI, VHI, NVSWI, NAP, TVDI, and VCI are stable every month in September, improve again in October, and then show in December a downward trend. The NDVI, TCI, VHI, NVSWI, NAP, TVDI, and VCI monthly values indicate that mainland China suffered from severe drought in 1984 and 1993, which lasted until 2007, which were the most drought years. For monitoring drought in mainland China, the NDVI, TVDI, NAP, VCI, and NVSWI values were selected as a tool for reporting drought events during different growing seasons. The seasonal values of TVDI, NDVI, NAP, NVSWI, and VCI confirmed that mainland China suffered from severe drought in 1984, 1993, and 2007 and led the durations of severe drought. Spatial correlation is generated between NDVI, TCI, VHI, NVSWI, NAP, TVDI, and VCI. The correlation between NDVI, TCI, VHI, NAP, and VCI showed a significantly positive correlation while significantly negative correlation between NVSWI and TVDI, TVDI and VHI, which showed a good indication for the assessment of drought, especially for the agricultural regions of mainland China. This shows that the positive sign to support NAP, NVSWI, and TVDI is a good monitoring of the drought indices. During the summer, it appears that compared to the southeastern part of mainland China, drought is more likely to occur in the northwestern areas. There is no doubt that these drought indices are comprehensive indicators of monitoring drought events in mainland China.


Subject(s)
Climate Change , Droughts , China , Environmental Monitoring , Retrospective Studies , Seasons , Temperature
11.
Environ Sci Pollut Res Int ; 28(17): 21085-21100, 2021 May.
Article in English | MEDLINE | ID: mdl-33405158

ABSTRACT

Due to various land cover changes, vegetation dynamics, and climate, drought is the most complex climate-related disaster problem in Tibet and Xinjiang, China. The purpose of the present study is to analyze the performance of the AVHRR Normalized Vegetation Index (NDVI) and the temporal and spatial differences of seasonal vegetation dynamics by correlating the results with rainfall and temperature data of NASA's MERRA to examine the vegetation dynamics and droughts in Tibet and the Xinjiang Province of China. Our method is based on the use of AVHRR NDVI data and NASA MERRA temperature and precipitation during 1983-2016. Due to the dryness and low vegetation, NDVI is more useful to describe the drought conditions in Tibet and Xinjiang of China. The NDVI, TCI, VHI, NVSWI, VCI, TVDI, and NAP from April to October increased rapidly. While the NDVI, TCI, VHI, NVSWI, NAP, TVDI, and VCI are stable every month in September, again improve in October, and then confirm downward trend in December. The NDVI, TCI, VHI, NVSWI, NAP, VCI, and TVDI monthly values indicate that Tibet and Xinjiang province of China suffered from severe drought in 2006, 2008, and 2012 which were the most drought years. For monitoring drought in Tibet and Xinjiang province of China, the NDVI, TVDI, NAP, VCI, and NVSWI values were selected as a tool for reporting drought events during different growing seasons. Seasonal values of TVDI, NDVI, NAP, NVSWI, and VCI confirmed that Tibet and Xinjiang province of China suffered from severe drought in 2006, 2008, and 2012 and led the durations of severe drought. The correlation between NDVI, TCI, VHI, NAP, TVDI, and VCI showed a significantly positive correlation, while the significantly negative correlation between NVSWI and NDVI showed a good indication for the assessment of drought, especially for the agricultural regions of Tibet and Xinjiang province of China. This shows that the positive sign to support NAP, NVSWI, and TVDI is good monitoring of the drought indexes in Tibet and the Xinjiang province of China.


Subject(s)
Climate Change , Droughts , China , Remote Sensing Technology , Seasons , Tibet
12.
Sci Total Environ ; 660: 1245-1255, 2019 Apr 10.
Article in English | MEDLINE | ID: mdl-30743919

ABSTRACT

Droughts are among the costliest natural disasters. They affect wide regions and large numbers of people worldwide by tampering with water availability and agricultural production. In this research, soil moisture drought trends are assessed for Europe using the Soil Moisture Index (SMI) estimated on Joint UK Land Environment Simulator simulations under two Representative Concentration Pathways, the RCP 2.6 and RCP 6.0 scenarios. Results show that SMI drought conditions are expected to exacerbate in Europe with substantial differences among regions. Eastern Europe and Mediterranean regions are found to be the most affected. Spatially and temporally contiguous regions that exhibit SMI of Severe and Extreme index categories are identified as distinct drought events and are assessed for their characteristics. It is shown that even under strong emissions mitigation, these events are expected to increase in occurrence (22% to 123%), while their characteristics will become more unfavorable. Results indicate increase in their spatial extend (between 23% and 46%) and their duration (between 16% and 48%) depending on the period and the scenario. Additional analysis was performed for the exceptionally wide-area (over 106 km2) severe and extreme soil moisture drought events that are expected to drastically increase comparing to the recent past. Projections show that those events are expected to happen between 11 and 28 times more frequently depending on the scenario and the period with a 59% to 246% larger duration. These findings indicate that even applying strong mitigation measures, agricultural drought risk in Europe is expected to become higher than our present experience.

13.
Glob Chang Biol ; 25(4): 1358-1367, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30638293

ABSTRACT

Climate change will have large consequences for flooding frequencies in freshwater systems. In interaction with anthropogenic activities (flow regulation, channel restoration and catchment land-use) this will both increase flooding and drought across the world. Like in many other ecosystems facing changed environmental conditions, it remains difficult to predict the rate and trajectory of vegetation responses to changed conditions. Given that critical ecosystem services (e.g. bank stabilization, carbon subsidies to aquatic communities or water purification) depend on riparian vegetation composition, it is important to understand how and how fast riparian vegetation responds to changing flooding regimes. We studied vegetation changes over 19 growing seasons in turfs that were transplanted in a full-factorial design between three riparian elevations with different flooding frequencies. We found that (a) some transplanted communities may have developed into an alternative stable state and were still different from the target community, and (b) pathways of vegetation change were highly directional but alternative trajectories did occur, (c) changes were rather linear but faster when flooding frequencies increased than when they decreased, and (d) we observed fastest changes in turfs when proxies for mortality and colonization were highest. These results provide rare examples of alternative transient trajectories and stable states under field conditions, which is an important step towards understanding their drivers and their frequency in a changing world.

14.
J Hydrol Reg Stud ; 22: 100593, 2019 Apr.
Article in English | MEDLINE | ID: mdl-32257820

ABSTRACT

STUDY REGION: This study has three spatial scales: global (0.5°), macro-regional, and country scale. The database of drought events has specific entries for each macro-region and country. STUDY FOCUS: We constructed a database of meteorological drought events from 1951 to 2016, now hosted by the Global Drought Observatory of the European Commission's Joint Research Centre. Events were detected at macro-regional and country scale based on the separate analysis of the Standardized Precipitation-Evapotranspiration Index (SPEI) and the Standardized Precipitation Index (SPI) at different accumulation scales (from 3 to 72 months), using as input the Global Precipitation Climatology Centre (GPCC) and Climatic Research Unit (CRU) Time Series datasets. The database includes approximately 4800 events based on SPEI-3 and 4500 based on SPI-3. Each event is described by its start and end date, duration, intensity, severity, peak, average and maximum area in drought, and a special score to classify 52 mega-droughts. NEW HYDROLOGICAL INSIGHTS FOR THE REGION UNDER STUDY: We derived trends in drought frequency and severity, separately for SPI and SPEI at a 12-month accumulation scale, which is usually related to hydrological droughts. Results show several drought hotspots in the last decades: Amazonia, southern South America, the Mediterranean region, most of Africa, north-eastern China and, to a lesser extent, central Asia and southern Australia. Over North America, central Europe, central Asia, and Australia, the recent progressive temperature increase outbalanced the increase in precipitation causing more frequent and severe droughts.

15.
Sci Total Environ ; 627: 1242-1252, 2018 Jun 15.
Article in English | MEDLINE | ID: mdl-30857089

ABSTRACT

Hydrological cycle is expected to become the primary cause of ecosystem's degradation in near future under changing climate. Rain manipulation experiments under field conditions provide accurate picture on the responses of biotic processes to changed water availability for plants. A field experiment, mimicking expected changes in rain patterns, was established in a Mediterranean shrub community at Porto Conte, Italy, in 2001. In November 2011 Cistus monspeliensis, one of the dominating shrub species in the Mediterranean basin, was 13C labelled on plots subjected to extended rain shortage period and on control non manipulated plots. Carbon (C) allocation was traced by 13C dynamics in shoots, shoot-respired CO2, roots, microbial biomass, K2SO4-extractable C and CO2 respired from soil. Most of the recovered 13C (60%) was respired by shoots within 2weeks in control plots. In rain shortage treatment, 13C remained incorporated in aboveground plant parts. Residence time of 13C in leaves was longer under the rain shortage because less 13C was lost by shoot respiration and because 13C was re-allocated to leaves from woody tissues. The belowground C sink was weak (3-4% of recovered 13C) and independent on rain manipulation. Extended rain shortage promoted C exudation into rhizosphere soil in expense of roots. Together with lowered photosynthesis, this "save" economy of new C metabolites reduces the growing season under rain shortage resulting in decrease of shrub cover and C losses from the system on the long-term.


Subject(s)
Carbon Sequestration , Climate Change , Environmental Monitoring , Plants , Carbon , Carbon Isotopes , Droughts , Ecosystem , Italy , Plant Roots , Rain , Rhizosphere
16.
Biota neotrop. (Online, Ed. port.) ; 16(3): e20160159, tab, graf
Article in English | LILACS | ID: lil-787373

ABSTRACT

Abstract Drought events will become more frequent due the climate change. In floodplains, periphytic algae are responsible for part of the primary production, are the principal source of organic carbon deposition, play an important role in mineralization and nutrient cycling, and are the base of the food web for many organisms. As algae distribution in aquatic environments is a strong indicator of physical and chemical conditions of the sites, we aimed to determine the structure of periphytic algae in lentic and lotic environments during drought conditions and to uncover the main local abiotic factors in community structuring. We hypothesized diatoms would be more frequent than green algae and desmids at both sites, due to their resistance characteristics, and that higher periphyton algal richness, density and diversity would occur in the lake due to the greater availability of nutrients and the absence of flow. The study was carried out in the Finado Raimundo lake and the Ivinhema river in the Upper Paraná river floodplain during the low water period of 2011. Petioles of the aquatic macrophyte Eichhornia azurea (Sw.) Kunth were used as a substrate for periphytic algae. We found a total of 171 species, 104 species in the lake and 80 in the river. Diatoms were predominant at both sites due to their strategic traits, and between sites, there were different patterns in the periphytic algal community structure, owing to the distinctive physical and chemical characteristics of the lake and the river. Achnanthidium minutissimum (Kützing) Czarnecki and Nitzschia palea (Kützing) W. Smith were the most abundant species in both environments. Our results showed patterns of periphytic algae in a floodplain during drought conditions, which will assist in understanding their structuring during future drought scenarios.


Resumo Eventos de seca serão mais frequentes, devido as mudanças climáticas. Em planícies de inundação, as algas perifíticas são responsáveis por parte da produção primária, são a principal fonte de deposição de carbono orgânico, desempenham um papel importante na mineralização e ciclagem de nutrientes, e são a base da cadeia alimentar de muitos organismos. Considerando que a distribuição de algas nos ambientes aquáticos é uma forte indicadora das condições físicas e químicas dos locais, objetivamos determinar a estrutura de algas perifíticas em ambientes lênticos e lóticos em condições de seca e de descobrir os principais fatores abióticos locais na estruturação da comunidade. Nossa hipótese é que as diatomáceas seriam mais frequentes do que as algas verdes e desmídias em ambos os locais, devido as suas características de resistência, e que a maior riqueza, densidade e diversidade de algas perifíticas que ocorreria no lago devido à maior disponibilidade de nutrientes e a ausência de fluxo. O estudo foi realizado no lago Finado Raimundo e rio Ivinhema na planície de inundação do alto rio Paraná, durante o período de águas baixas de 2011. Pecíolos das macrófitas aquáticas Eichhornia azurea (Sw.) Kunth foram utilizados como substrato para algas perifíticas. As diatomáceas foram predominantes em ambos os locais, devido às suas características estratégicas, e entre os locais, houve padrões diferentes na estrutura da comunidade de algas perifíticas, devido as características físicas e químicas distintas do lago e do rio. Achnanthidium minutissimum (Kützing) Czarnecki e Nitzschia palea (Kützing) W. Smith foram as espécies mais abundantes em ambos os ambientes. Nossos resultados mostraram padrões de algas perifíticas em uma planície de inundação em condições de seca, o que vai ajudar na compreensão de sua estruturação em futuros cenários de secas.

SELECTION OF CITATIONS
SEARCH DETAIL
...