Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Int. microbiol ; 25(3): 605-613, Ago. 2022. ilus
Article in English | IBECS | ID: ibc-216218

ABSTRACT

Aeromonas hydrophila is a common pathogen in fish that has caused severe economic losses in aquaculture worldwide. With the emergence of bacterial resistance, it is necessary to develop new drugs to combat bacterial infection, particularly for multidrug-resistant bacteria. In this study, the antibacterial activity of pinocembrin was investigated by observing bacterial growth and microscopic structure, and its mechanism of action was identified by investigating its effect on protein and DNA. The antibacterial susceptibility test indicated that pinocembrin inhibits A. hydrophila growth. The minimal inhibitory concentration and minimum bactericidal concentration were 256 μg/mL and 512 μg/mL, respectively. Ultrastructurally, the bacteria treated with pinocembrin showed surface roughness and plasmolysis. When bacteria were treated with 512 μg/mL pinocembrin, lactate dehydrogenase activity and soluble protein content decreased significantly, and electrical conductivity and DNA exosmosis levels increased by 4.21 ± 0.64% and 15.98 ± 1.93 mg/L, respectively. Staining with 4′, 6-Diamidino-2-phenylindole showed that the nucleic acid fluorescence intensity and density decreased after the treatment with pinocembrin. Pinocembrin may inhibit the growth of A. hydrophila by increasing cell membrane permeability and affecting protein and DNA metabolism. Thus, pinocembrin is a candidate drug for the treatment of A. hydrophila infection in aquaculture.(AU)


Subject(s)
Humans , Drug Resistance , Aeromonas hydrophila , Cell Nucleus Shape , Cell Membrane Permeability , Microbiology , Research
2.
Microb Pathog ; 167: 105572, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35561978

ABSTRACT

The protective effect of cinnamaldehyde on channel catfish infected by drug-resistant Aeromonas hydrophila CW strain was explored by observing the clinical signs and histopathology, measuring the cumulative mortality, serum biochemical and non-specific immune indicators, and intestinal microbiota in this study. The cumulative survival rate of the cinnamaldehyde within 14 days was significantly higher than that of the challenge group, which was 70% and 20%, respectively. Compared with the challenge group, the activities of lysozyme, superoxide dismutase, and glutathione peroxidase in the treatment group were increased, while there was no significant difference in catalase activity. Compared with the challenge group, the histopathology results showed that the injury of liver, spleen, and kidney was significantly alleviated after cinnamaldehyde treatment. The results of intestinal microbiota showed that the proportion of Proteobacteria in the challenge group was significantly increased, and the proportion of Aeromonas sp. reached 30% based on the analysis of species classification level. The composition of dominant species in the treatment group was similar to the control group. In conclusion, cinnamaldehyde increased the cumulative survival rate of channel catfish infected by A. hydrophila. It could protect channel catfish through improving the non-specific immune function of channel catfish, alleviating the pathological lesions of liver, spleen, kidney, and intestine, and maintaining the relative balance of the intestinal microbiota. Therefore, cinnamaldehyde could be a candidate drug for the treatment of A. hydrophila infection.


Subject(s)
Fish Diseases , Gram-Negative Bacterial Infections , Ictaluridae , Acrolein/analogs & derivatives , Aeromonas hydrophila , Animals , Fish Diseases/microbiology , Fish Proteins , Gram-Negative Bacterial Infections/drug therapy , Gram-Negative Bacterial Infections/veterinary
3.
Int Microbiol ; 25(3): 605-613, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35438439

ABSTRACT

Aeromonas hydrophila is a common pathogen in fish that has caused severe economic losses in aquaculture worldwide. With the emergence of bacterial resistance, it is necessary to develop new drugs to combat bacterial infection, particularly for multidrug-resistant bacteria. In this study, the antibacterial activity of pinocembrin was investigated by observing bacterial growth and microscopic structure, and its mechanism of action was identified by investigating its effect on protein and DNA. The antibacterial susceptibility test indicated that pinocembrin inhibits A. hydrophila growth. The minimal inhibitory concentration and minimum bactericidal concentration were 256 µg/mL and 512 µg/mL, respectively. Ultrastructurally, the bacteria treated with pinocembrin showed surface roughness and plasmolysis. When bacteria were treated with 512 µg/mL pinocembrin, lactate dehydrogenase activity and soluble protein content decreased significantly, and electrical conductivity and DNA exosmosis levels increased by 4.21 ± 0.64% and 15.98 ± 1.93 mg/L, respectively. Staining with 4', 6-Diamidino-2-phenylindole showed that the nucleic acid fluorescence intensity and density decreased after the treatment with pinocembrin. Pinocembrin may inhibit the growth of A. hydrophila by increasing cell membrane permeability and affecting protein and DNA metabolism. Thus, pinocembrin is a candidate drug for the treatment of A. hydrophila infection in aquaculture.


Subject(s)
Fish Diseases , Flavanones , Aeromonas hydrophila , Animals , Anti-Bacterial Agents/chemistry , Fish Diseases/drug therapy , Fish Diseases/microbiology , Flavanones/pharmacology , Flavanones/therapeutic use , Microbial Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...