Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 128
Filter
1.
Tuberculosis (Edinb) ; 148: 102536, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38976934

ABSTRACT

Host-directed therapy (HDT) with vitamin D in tuberculosis (TB) is beneficial only if the subject is deficient in vitamin D. We investigated pulmonary delivery of 1,25-dihydroxy vitamin D3 (calcitriol) in mice infected with Mycobacterium tuberculosis (Mtb). We made two kinds of dry powder inhalations (DPI)- soluble particles or poly(lactide) (PLA) particles. We compared treatment outcomes when infected mice were dosed with a DPI alone or as an adjunct to standard oral anti-TB therapy (ATT). Mice infected on Day 0 were treated between Days 28-56 and followed up on Days 57, 71, and 85. Neither DPI significantly reduced Mtb colony forming units (CFU) in the lungs. Combining DPI with ATT did not significantly augment bactericidal activity in the lungs, but CFU were 2-log lower in the spleen. CFU showed a rising trend on stopping treatment, sharper in groups that did not receive calcitriol. Lung morphology and histology improved markedly in animals that received PLA DPI; with or without concomitant ATT. Groups receiving soluble DPI had high mortality. DPI elicited cathelicidin, interleukin (IL)-1 and induced autophagy on days 57, 71, and 85. Macrophage-targeted calcitriol is therefore bacteriostatic, evokes innate microbicidal mechanisms, and mitigates pathology arising from the host response to Mtb.

2.
Heliyon ; 10(9): e30761, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38765081

ABSTRACT

Andrographolide is a plant-based compound that showed promising activity against lung cancer. However, the compound's poor water solubility and low bioavailability limit its oral administration. Inhaled drug delivery of andrographolide is highly favourable as it delivers active ingredients directly into the affected lungs. In the current study, we compared in vitro aerosol performance, anti-cancer activity and storages stability of two (2) inhalable andrographolide formulations. Formulation 1 was prepared using precipitation and spray drying techniques, while Formulation 2 was prepared via direct spray drying technique. Drug morphology and physicochemical properties were confirmed using scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. In vitro aerosol dispersion profile was evaluated using the next-generation impactor (NGI). Formulation 1 consisted of elongated crystals while Formulation 2 was made up of amorphous spherical particles. Both formulations had an inhalable fraction (<5 µm) of more than 40 %, making them suitable for pulmonary drug delivery. The formulations also showed an IC25 of less than 100 µg/mL against the human lung carcinoma cells (A549). Formulation 1 and 2 was stable in a vacuum condition at 30 °C for up to 6 and 3 months, respectively. Novel inhalable andrographolide dry powders were successfully produced with a good aerosol profile, potent anti-cancer activity and adequate storage stability, which deserve further in vivo investigations.

3.
Int J Pharm X ; 7: 100251, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38799178

ABSTRACT

The contributions of fine excipient materials to drug dispersibility from carrier-based dry powder inhalation (DPI) formulations are well recognized, although they are not completely understood. To improve the understanding of these contributions, we investigated the influences of the particle size of the fine excipient materials on characteristics of carrier-based DPI formulations. We studied two particle size grades of silica microspheres, with volume median diameters of 3.31 µm and 8.14 µm, as fine excipient materials. Inhalation formulations, each composed of a lactose carrier material, one of the fine excipient materials (2.5% or 15.0% w/w), and a drug (fluticasone propionate) material (1.5% w/w) were prepared. The physical microstructure, the rheological properties, the aerosolization pattern, and the aerodynamic performance of the formulations were studied. At low concentration, the large silica microspheres had a more beneficial influence on the drug dispersibility than the small silica microspheres. At high concentration, only the small silica microspheres had a beneficial influence on the drug dispersibility. The results reveal influences of fine excipient materials on mixing mechanics. At low concentration, the fine particles improved deaggregation and distribution of the drug particles over the surfaces of the carrier particles. The large silica microspheres were associated with a greater mixing energy and a greater improvement in the drug dispersibility than the small silica microspheres. At high concentration, the large silica microspheres kneaded the drug particles onto the surfaces of the carrier particles and thus impaired the drug dispersibility. As a critical attribute of fine excipient materials in carrier-based dry powder inhalation formulations, the particle size demands robust specification setting.

4.
Int J Pharm ; 658: 124208, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38723731

ABSTRACT

Pseudomonas aeruginosa (PA), a predominant pathogen in lung infections, poses significant challenges due to its biofilm formation, which is the primary cause of chronic and recalcitrant pulmonary infections. Bacteria within these biofilms exhibit heightened resistance to antibiotics compared to their planktonic counterparts, and their secreted toxins exacerbate lung infections. Diverging from traditional antibacterial therapy for biofilm eradication, this study introduces a novel dry powder inhalation containing muco-inert ciprofloxacin and colistin co-encapsulated liposomes (Cipro-Col-Lips) prepared using ultrasonic spray freeze drying (USFD) technique. This USFD dry powder is designed to efficiently deliver muco-inert Cipro-Col-Lips to the lungs. Once deposited, the liposomes rapidly diffuse into the airway mucus, reaching the biofilm sites. The muco-inert Cipro-Col-Lips neutralize the biofilm-secreted toxins and simultaneously trigger the release of their therapeutic payload, exerting a synergistic antibiofilm effect. Our results demonstrated that the optimal USFD liposomal dry powder formulation exhibited satisfactory in vitro aerosol performance in terms of fine particle fraction (FPF) of 44.44 ± 0.78 %, mass median aerodynamic diameter (MMAD) of 4.27 ± 0.21 µm, and emitted dose (ED) of 99.31 ± 3.31 %. The muco-inert Cipro-Col-Lips effectively penetrate the airway mucus and accumulate at the biofilm site, neutralizing toxins and safeguarding lung cells. The triggered release of ciprofloxacin and colistin works synergistically to reduce the biofilm's antibiotic resistance, impede the development of antibiotic resistance, and eliminate 99.99 % of biofilm-embedded bacteria, including persister bacteria. Using a PA-beads induced biofilm-associated lung infection mouse model, the in vivo efficacy of this liposomal dry powder aerosol was tested, and the results demonstrated that this liposomal dry powder aerosol achieved a 99.7 % reduction in bacterial colonization, and significantly mitigated inflammation and pulmonary fibrosis. The USFD dry powder inhalation containing muco-inert Cipro-Col-Lips emerges as a promising therapeutic strategy for treating PA biofilm-associated lung infections.


Subject(s)
Anti-Bacterial Agents , Biofilms , Ciprofloxacin , Colistin , Dry Powder Inhalers , Liposomes , Pseudomonas Infections , Pseudomonas aeruginosa , Ciprofloxacin/administration & dosage , Ciprofloxacin/pharmacology , Ciprofloxacin/chemistry , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/physiology , Biofilms/drug effects , Colistin/administration & dosage , Colistin/pharmacology , Administration, Inhalation , Animals , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Pseudomonas Infections/drug therapy , Mice , Aerosols , Lung/microbiology , Lung/drug effects , Powders , Female , Particle Size
5.
Int J Pharm ; 657: 124165, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38663643

ABSTRACT

Aerosol drug delivery in the human airway is significantly affected by the morphology and size of the airway. This work developed a CFD-DEM model to simulate and analyze air flow and powder dynamics in combined inhaler-airway systems with different degrees of airway deformation (non-deformed, 50%, and 75% deformed) and sizes (adult, 0.80, and 0.62 scaled). The airways were generated based on a regular airway constructed from the MRI images through finite element method (for deformed airways) or scaling-down (for smaller airways). The airways were connected to Turbuhaler® through a connector. The results showed that under the same flow rate, the variation in the airway geometry and size had a minimum impact on the flow field and powder deposition in the device and the connector. However, deformation caused more particle deposition in the deformed region. Notably, the airway with 50% deformation had the most particles passing through the airway with the largest particle sizes due to its lower air velocity in the deformed area. Reducing airway size resulted in more powder deposition on the airway, particularly at the pharynx and mouth regions. This was because, with the same flow rate, the flow velocity in the smaller airway was higher, causing more particle-wall collisions in the mouth and pharynx regions. More importantly, the deposition efficiency in the 0.62-scaled airway was significantly higher than the other two airways, highlighting the importance of the different administration of aerosol drugs for young children.


Subject(s)
Aerosols , Particle Size , Powders , Humans , Administration, Inhalation , Dry Powder Inhalers , Drug Delivery Systems , Respiratory System , Magnetic Resonance Imaging , Pharynx/anatomy & histology , Adult , Computer Simulation
6.
Int J Pharm ; 654: 123984, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38461874

ABSTRACT

Both latent and multidrug-resistant tuberculosis (TB) have been causing significant concern worldwide. A novel drug, pretomanid (PA-824), has shown a potent bactericidal effect against both active and latent forms of Mycobacterium tuberculosis (MTb) and a synergistic effect when combined with pyrazinamide and moxifloxacin. This study aimed to develop triple combination spray dried inhalable formulations composed of antitubercular drugs, pretomanid, moxifloxacin, and pyrazinamide (1:2:8 w/w/w), alone (PaMP) and in combination with an aerosolization enhancer, L-leucine (20 % w/w, PaMPL). The formulation PaMPL consisted of hollow, spherical, dimpled particles (<5 µm) and showed good aerosolization behaviour with a fine particle fraction of 70 %. Solid-state characterization of formulations with and without L-leucine confirmed the amorphous nature of moxifloxacin and pretomanid and the crystalline nature of pyrazinamide with polymorphic transformation after the spray drying process. Further, the X-ray photoelectron spectroscopic analysis revealed the predominant surface composition of L-leucine on PaMPL dry powder particles. The dose-response cytotoxicity results showed pyrazinamide and moxifloxacin were non-toxic in both A549 and Calu-3 cell lines up to 150 µg/mL. However, the cell viability gradually decreased to 50 % when the pretomanid concentration increased to 150 µg/mL. The in vitro efficacy studies demonstrated that the triple combination formulation had more prominent antibacterial activity with a minimum inhibitory concentration (MIC) of 1 µg/mL against the MTb H37Rv strain as compared to individual drugs. In conclusion, the triple combination of pretomanid, moxifloxacin, and pyrazinamide as an inhalable dry powder formulation will potentially improve treatment efficacy with fewer systemic side effects in patients suffering from latent and multidrug-resistant TB.


Subject(s)
Nitroimidazoles , Pyrazinamide , Tuberculosis, Multidrug-Resistant , Humans , Pyrazinamide/pharmacology , Pyrazinamide/chemistry , Moxifloxacin/pharmacology , Moxifloxacin/chemistry , Powders/chemistry , Leucine/chemistry , Aerosols/chemistry , Antitubercular Agents/pharmacology , Antitubercular Agents/chemistry , Tuberculosis, Multidrug-Resistant/drug therapy , Administration, Inhalation , Dry Powder Inhalers/methods , Particle Size
7.
Int J Pharm ; 655: 123966, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38452834

ABSTRACT

The potential of fine excipient materials to improve the aerodynamic performance of carrier-based dry powder inhalation (DPI) formulations is well acknowledged but not fully elucidated. To improve the understanding of this potential, we studied two fine excipient materials: micronized lactose particles and silica microspheres. Inhalation formulations, each composed of a coarse lactose carrier, one of the two fine excipient materials (0.0-15.0 % w/w), and a spray-dried drug (fluticasone propionate) material (1.5 % w/w) were prepared. The physical structure, the flow behavior, the aerosolization behavior, and the aerodynamic performance of the formulations were studied. The two fine excipient materials similarly occupied carrier surface macropores. However, only the micronized lactose particles formed agglomerates and appeared to increase the tensile strength of the formulations. At 2.5 % w/w, the two fine excipient materials similarly improved drug dispersibility, whereas at higher concentrations, the micronized lactose material was more beneficial than the silica microspheres. The findings suggest that fine excipient materials improve drug dispersibility from carrier-based DPI formulations at low concentrations by filling carrier surface macropores and at high concentrations by forming agglomerates and/or enforcing fluidization. The study emphasizes critical attributes of fine excipient materials in carrier-based DPI formulations.


Subject(s)
Excipients , Lactose , Excipients/chemistry , Powders/chemistry , Lactose/chemistry , Drug Carriers/chemistry , Dry Powder Inhalers , Administration, Inhalation , Surface Properties , Silicon Dioxide , Particle Size , Aerosols/chemistry
8.
Article in English | MEDLINE | ID: mdl-38381317

ABSTRACT

Afatinib (AT), an FDA-approved aniline-quinazoline derivative, is a first-line treatment for metastatic non-small cell lung cancer (NSCLC). Combining it with cetuximab (CX), a chimeric human-murine derivative immunoglobulin-G1 monoclonal antibody (mAb) targeting the extracellular domain of epidermal growth factor receptor (EGFR), has shown significant improvements in median progression-free survival. Previously, we developed cetuximab-conjugated immunoliposomes loaded with afatinib (AT-MLP) and demonstrated their efficacy against NSCLC cells (A549 and H1975). In this study, we aimed to explore the potential of pulmonary delivery to mitigate adverse effects associated with oral administration and intravenous injection. We formulated AT-MLP dry powders (AT-MLP-DPI) via freeze drying using tert-butanol and mannitol as cryoprotectants in the hydration medium. The physicochemical and aerodynamic properties of dry powders were well analyzed firstly. In vitro cellular uptake and cytotoxicity study revealed concentration- and time-dependent cellular uptake behavior and antitumor efficacy of AT-MLP-DPI, while Transwell assay demonstrated the superior inhibitory effects on NSCLC cell invasion and migration. Furthermore, in vivo pharmacokinetic study showed that pulmonary delivery of AT-MLP-DPI significantly increased bioavailability, prolonged blood circulation time, and exhibited higher lung concentrations compared to alternative administration routes and formulations. The in vivo antitumor efficacy study carried on tumor-bearing nude mice indicated that inhaled AT-MLP-DPI effectively suppressed lung tumor growth.

9.
Mol Pharm ; 21(2): 564-580, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38215042

ABSTRACT

Asthma is a common chronic disease affecting the airways in the lungs. The receptors of allergic cytokines, including interleukin (IL)-4, IL-5, and IL-13, trigger the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway, which involves the pathogenesis of asthma. GDC-0214 is a JAK inhibitor that was developed as a potent and selective target for the treatment of asthma, specifically targeting the lungs. While inhaled GDC-0214 is a promising novel treatment option against asthma, improvement is still needed to achieve increased potency of the powder formulation and a reduced number of capsules containing powder to be inhaled. In this study, high-potency amorphous powder formulations containing GDC-0214 nanoaggregates for dry powder inhalation were developed using particle engineering technology, thin film freezing (TFF). A high dose per capsule was successfully achieved by enhancing the solubility of GDC-0214 and powder conditioning. Lactose and/or leucine as excipients exhibited optimum stability and aerosolization of GDC-0214 nanoaggregates, and aerosolization of the dose was independent of air flow through the device between 2 and 6 kPa pressure drops. In the rat PK study, formulation F20, which contains 80% GDC-0214 and 20% lactose, resulted in the highest AUC0-24h in the lungs with the lowest AUC0-24h in the plasma that corresponds to a 4.8-fold higher ratio of the lung-to-plasma exposures compared to micronized crystalline GDC-0214 powder administered by dry powder inhalation. Therefore, GDC-0214 nanoaggregates produced by TFF provided an improved dry powder for inhalation that can lead to enhanced therapeutic efficacy with a lower risk of systemic toxicity.


Subject(s)
Asthma , Janus Kinase Inhibitors , Rats , Animals , Powders/chemistry , Freezing , Lactose , Administration, Inhalation , Asthma/drug therapy , Dry Powder Inhalers , Particle Size , Respiratory Aerosols and Droplets
10.
Int J Pharm X ; 6: 100216, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37953972

ABSTRACT

Although the amount of amorphous content in lactose is low, its impact on the performance of a dry powder inhalation formulation might be high. Many formulators and regulatory agencies believe that the levels of amorphous content should be controlled once there is a relationship with the final product performance. This is however not an easy task. The current paper elaborates on multiple challenges and complexities that are related to the control of the amorphous content in lactose. The definition and quantification methods of amorphous lactose are reviewed, as well as challenges related to thermodynamic instability. Additionally, current monographs and recent position papers considering this parameter are discussed to provide an overview of the regulatory landscape. Development of a control strategy is recommended, provided that the amorphous content at a specific moment in the process has shown to have an impact on the performance of the dry powder inhaler.

11.
Mol Pharm ; 20(11): 5332-5344, 2023 11 06.
Article in English | MEDLINE | ID: mdl-37783568

ABSTRACT

Dry powder inhaler (DPI) products are commonly formulated as a mixture of micronized drug particles and large carrier particles, with or without additional fine particle excipients, followed by final powder filling into dose containment systems such as capsules, blisters, or reservoirs. DPI product manufacturing consists of a series of unit operations, including particle size reduction, blending, and filling. This review provides an overview of the relevant critical process parameters used for jet milling, high-shear blending, and dosator/drum capsule filling operations across commonly utilized instruments. Further, this review describes the recent achievements regarding the application of empirical and mechanistic models, especially discrete element method (DEM) simulation, in DPI process development. Although to date only limited modeling/simulation work has been accomplished, in the authors' perspective, process design and development are destined to be more modeling/simulation driven with the emphasis on evaluating the impact of material attributes/process parameters on process performance. The advancement of computational power is expected to enable modeling/simulation approaches to tackle more complex problems with better accuracy when dealing with real-world DPI process operations.


Subject(s)
Drug Carriers , Dry Powder Inhalers , Powders , Drug Compounding/methods , Administration, Inhalation , Computer Simulation , Particle Size , Aerosols
12.
Int J Pharm ; 646: 123426, 2023 Nov 05.
Article in English | MEDLINE | ID: mdl-37729976

ABSTRACT

Delivering protein drugs through dry powder inhalation (DPI) remains a significant challenge. Liposomes offer a promising solution, providing protection for proteins from external environment and controlled release capabilities. Furthermore, the use of non-ionic surfactants plays a crucial role in protecting the activity of proteins because of how the surfactants positioning themselves at the liquid-gas interface during the spray-drying process. In this study, lysozyme-loaded liposomal DPI formulations were prepared using various non-ionic surfactants, including polysorbate 80, poloxamer 188, poloxamer 407, and sucrose stearate. Lysozyme solution and 1,2-distearoyl-sn-glycero-3-phosphatidylcholine liposomes were subjected through high-pressure homogenization to form lysozyme-loaded liposomes. Formulations of homogenized lysozyme liposomes were spray-dried and further characterized. The particle size of reconstituted liposomal lysozyme DPI was from 129.5 to 816.9 nm. The formulations showed encapsulation efficiency up to 32.5% with zeta potential value of around - 30 mV, and spherical structures were observed. The aerosol dispersion performance of the dry powder inhalers was evaluated with emitted doses reaching up to 103% and fine particle fractions up to 28.4%. Significantly higher lysozyme activity was confirmed in formulation with drug to PS 80 ratio of 1: 0.5 w/w (92.1%) compared to that of formulation containing no surfactant (59.8%). The formulation stood out as the only formulation that maintained protein activity while demonstrating good aerosol performance.

13.
Mol Pharm ; 20(9): 4491-4504, 2023 09 04.
Article in English | MEDLINE | ID: mdl-37590399

ABSTRACT

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a leading cause of death with 1.6 million deaths worldwide reported in 2021. Oral pyrazinamide (PZA) is an integral part of anti-TB regimens, but its prolonged use has the potential to drive the development of PZA-resistant Mtb. PZA is converted to the active moiety pyrazinoic acid (POA) by the Mtb pyrazinamidase encoded by pncA, and mutations in pncA are associated with the majority of PZA resistance. Conventional oral and parenteral therapies may result in subtherapeutic exposure in the lung; hence, direct pulmonary administration of POA may provide an approach to rescue PZA efficacy for treating pncA-mutant PZA-resistant Mtb. The objectives of the current study were to (i) develop novel dry powder POA formulations, (ii) assess their feasibility for pulmonary delivery using physicochemical characterization, (iii) evaluate their pharmacokinetics (PK) in the guinea pig model, and (iv) develop a mechanism-based pharmacokinetic model (MBM) using in vivo PK data to select a formulation providing adequate exposure in epithelial lining fluid (ELF) and lung tissue. We developed three POA formulations for pulmonary delivery and characterized their PK in plasma, ELF, and lung tissue following passive inhalation in guinea pigs. Additionally, the PK of POA following oral, intravenous, and intratracheal administration was characterized in guinea pigs. The MBM was used to simultaneously model PK data following administration of POA and its formulations via the different routes. The MBM described POA PK well in plasma, ELF, and lung tissue. Physicochemical analyses and MBM predictions suggested that POA maltodextrin was the best among the three formulations and an excellent candidate for further development as it has: (i) the highest ELF-to-plasma exposure ratio (203) and lung tissue-to-plasma exposure ratio (30.4) compared with POA maltodextrin and leucine (75.7/16.2) and POA leucine salt (64.2/19.3) and (ii) the highest concentration in ELF (CmaxELF: 171 nM) within 15.5 min, correlating with a fast transfer into ELF after pulmonary administration (KPM: 22.6 1/h). The data from the guinea pig allowed scaling, using the MBM to a human dose of POA maltodextrin powder demonstrating the potential feasibility of an inhaled product.


Subject(s)
Body Fluids , Pyrazinamide , Humans , Animals , Guinea Pigs , Leucine , Powders
14.
Front Nutr ; 10: 1190912, 2023.
Article in English | MEDLINE | ID: mdl-37476406

ABSTRACT

Natural ingredients have many applications in modern medicine and pharmaceutical projects. However, they often have low solubility, poor chemical stability, and low bioavailability in vivo. Spray drying technology can overcome these challenges by enhancing the properties of natural ingredients. Moreover, drug delivery systems can be flexibly designed to optimize the performance of natural ingredients. Among the various drug delivery systems, dry powder inhalation (DPI) has attracted much attention in pharmaceutical research. Therefore, this review will focus on the spray drying of natural ingredients for DPI and discuss their synthesis and application.

15.
Open Forum Infect Dis ; 10(6): ofad302, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37383252

ABSTRACT

Children living in war-torn and geographically remote regions often die from measles due to undervaccination. Protective community immunity could be safely improved through the comprehensive use of small, inexpensive, easy-to-use, dry-powder aerosolized measles vaccination inhalers. Influential local community members could be engaged to provide risk counseling and inform their peers of measles risks to inspire vaccine uptake. Vaccination by inhaled live attenuated measles vaccine has been shown to be safe and protective among several million research subjects and omits (1) needles, syringes, glass vials, and specialized disposal systems; (2) deadly vaccine reconstitution errors; (3) cold chain technology to protect temperature-sensitive vaccine; (4) vaccine wastage associated with suboptimal use of multidose vials; (5) trained vaccinators; (6) food, housing, and transportation costs associated with centralized vaccination campaigns; and (7) risk of violence to vaccinators and associated staff. All elements for inhaler-based measles vaccination are readily available. Dry-powder measles vaccine inhalers can be assembled and distributed to save lives.

16.
Pharmaceutics ; 15(6)2023 May 23.
Article in English | MEDLINE | ID: mdl-37376022

ABSTRACT

Addressing antimicrobial resistance requires new approaches in various disciplines of pharmaceutical sciences. The fluoroquinolone levofloxacin (LEV) plays an important role in the therapy of lung infections. However, its effectiveness is limited by its severe side effects involving tendinopathy, muscle weakness and psychiatric disturbance. Therefore, there is a need for the development of an effective formulation of LEV with reduced systemic drug concentrations, thereby also reducing the consumption and excretion of antibiotics or metabolites. This study aimed for the development of a pulmonary-applicable LEV formulation. Co-amorphous LEV-L-arginine (ARG) particles were prepared by spray drying and characterised by scanning electron microscopy, modulated differential scanning calorimetry, X-ray powder diffraction, Fourier-transform infrared spectroscopy and next generation impactor analysis. Co-amorphous LEV-ARG salts were produced independently of varying process parameters. The use of 30% (v/v) ethanol as a solvent led to better aerodynamic properties compared to an aqueous solution. With a mass median aerodynamic diameter of just over 2 µm, a fine particle fraction of over 50% and an emitted dose of over 95%, the product was deemed suitable for a pulmonary application. The created process was robust towards the influence of temperature and feed rate, as changing these parameters did not have a significant influence on the critical quality attributes, indicating the feasibility of producing pulmonary-applicable co-amorphous particles for sustainable antibiotic therapy.

17.
Eur J Pharm Sci ; 188: 106509, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37356463

ABSTRACT

Pirfenidone (PFND) is a recommended oral drug used to treat idiopathic pulmonary fibrosis, but have low bioavailability and high hepatotoxicity. The study, therefore, seeks to improve the therapeutic activities of the drug via increased bioavailability and reduced associated side effects by developing a novel drug delivery system. The electrostatic spray technology was used to prepare a sustained release pirfenidone-loaded microsphere dry powder inhalation with PEG-modified chitosan (PFND-mPEG-CS-MS). The entrapment efficiency, drug loading, and in vitro cumulative drug release rate (at 24 h and with a sustained release effect) of PFND-mPEG-CS-MS were 77.35±3.01%, 11.45±0.64%, and 90.4%, respectively. The Carr's index of PFND-mPEG-CS-MS powder was 17.074±2.163% with a theoretical mass median aerodynamic diameter (MMADt) of 0.99±0.07 µm, and a moisture absorption weight gain rate (Rw) of 4.61±0.72%. The emptying rate, pulmonary deposition rate (fine particle fraction) and actual mass median aerodynamic diameter (MMADa) were 90%∼95%, 48.72±7.04% and 3.10±0.16 µm, respectively. MTT bioassay showed that mPEG-CS-MS (200 µg/mL) had good biocompatibility (RGR = 90.25%) and PFND-mPEG-CS-MS (200 µg/mL) had significant inhibitory activity (RGR = 49.82%) on fibroblast growth. The pharmacokinetic data revealed that the t1/2 (5.02 h) and MRT (10.66 h) of PFND-mPEG-CS-MS were prolonged compared with the free PFND (t1/2, 1.67 h; MRT, 2.71 h). The pharmacodynamic results also showed that the formulated-drug group had slight pathological changes, lower lung hydroxyproline content, and reduced hepatotoxicity compared with the free-drug group. The PFND-mPEG-CS-MS further significantly down-regulated TGF-ß cytokines, Collagen I, and α-SMA protein expression levels compared with the free drug. The findings indicated that the PFND-mPEG-CS-MS had a good sustained release effect, enhanced bioavailability, decreased toxicity, and increased anti-fibrotic activities.


Subject(s)
Chemical and Drug Induced Liver Injury , Idiopathic Pulmonary Fibrosis , Humans , Powders , Delayed-Action Preparations , Microspheres , Idiopathic Pulmonary Fibrosis/drug therapy , Administration, Inhalation , Particle Size
18.
AAPS PharmSciTech ; 24(5): 130, 2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37291443

ABSTRACT

Chemotherapy of multi-drug-resistant tuberculosis (TB) requires prolonged administration of multiple drugs. We investigated whether pulmonary delivery of minute doses of drugs, along with reduced oral doses of the same agents, would affect preclinical efficacy. We prepared dry powder inhalation (DPI) formulations comprising sutezolid (SUT), the second-generation pretomanid analog TBA-354 (TBA), or a fluorinated derivative of TBA-354 (32,625) in a matrix of the biodegradable polymer poly(L-lactide). We established formulation characteristics, doses inhaled by healthy mice, and preclinical efficacy in a mouse model of TB. Oral doses of 100 mg/kg/day or DPI doses of 0.25-0.5 mg/kg/day of drugs SUT, TBA-354, or 32,625 administered over 28 days were sub-optimally effective in reducing lung and spleen burden of Mycobacterium tuberculosis (Mtb) in infected mice. The addition of 0.25-0.5 mg/kg/day of SUT, TBA-354, or 32,625 as DPI to oral doses of 50 mg/kg/day was non-inferior in clearing Mtb from the lungs of infected mice. We concluded that adjunct therapy with inhaled second-line agents has the potential to reduce the efficacious oral dose.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Animals , Mice , Antitubercular Agents , Pharmaceutical Preparations , Drug Tapering , Tuberculosis, Multidrug-Resistant/drug therapy , Administration, Inhalation , Powders
19.
Eur J Pharm Biopharm ; 188: 243-253, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37224929

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and often fatal lung disease caused by multiple factors. Currently, safe, and effective drugs for the treatment of IPF have been extremely scarce. Baicalin (BA) is used to treat pulmonary fibrosis, IPF, chronic obstructive pulmonary disease, and other lung diseases. Ambroxol hydrochloride (AH), a respiratory tract lubricant and expectorant, is often used to treat chronic respiratory diseases, such as bronchial asthma, emphysema, tuberculosis, and cough. The combination of BA and AH can relieve cough and phlegm, improve lung function, and potentially treat IPF and its symptoms. However, given the extremely low solubility of BA, its bioavailability for oral absorptions is also low. AH, on the other hand, has been associated with certain side effects, such as gastrointestinal tract and acute allergic reactions, which limit its applicability. Therefore, an efficient drug delivery system is urgently needed to address the mentioned problems. This study combined BA and AH as model drugs with L-leucine (L-leu) as the excipient to prepare BA/AH dry powder inhalations (BA/AH DPIs) using the co-spray drying method. We the performed modern pharmaceutical evaluation, which includes particle size, differential scanning calorimetry analysis, X-ray diffraction, scanning electron microscope, hygroscopicity, in vitro aerodynamic analysis, pharmacokinetics, and pharmacodynamics. Notably, BA/AH DPIs were found to be advantageous over BA and AH in treating IPF and had better efficacy in improving lung function than did the positive drug pirfenidone. The BA/AH DPI is a promising preparation for the treatment of IPF given its lung targeting, rapid efficacy, and high lung bioavailability.


Subject(s)
Ambroxol , Idiopathic Pulmonary Fibrosis , Humans , Powders/chemistry , Cough , Respiratory Aerosols and Droplets , Administration, Inhalation , Lung , Idiopathic Pulmonary Fibrosis/drug therapy , Dry Powder Inhalers , Particle Size
20.
J Control Release ; 357: 264-273, 2023 05.
Article in English | MEDLINE | ID: mdl-37015293

ABSTRACT

Respiratory viruses including the respiratory syncytial virus (RSV) aggravate the global burden of virus-inflicted morbidity and mortality. Entry inhibitors are a promising class of antiviral drugs for combating these viruses, as they can prevent infection at the site of viral entry, i.e., the respiratory tract. Here we used a broad-spectrum entry inhibitor, composed of a ß-cyclodextrin backbone, functionalized with 11-mercapto-1-undecanesulfonate (CD-MUS) that is capable of neutralizing a variety of viruses that employ heparan sulfate proteoglycans (HSPG) to infect host cells. CD-MUS inactivates viral particles irreversibly by binding to viral attachment proteins through a multivalent binding mechanism. In the present study, we show that CD-MUS is well tolerated when administered to the respiratory tract of mice. Based on this, we developed an inhalable spray-dried powder formulation that fits the size requirements for lung deposition and disperses well upon use with the Cyclops dry powder inhaler (DPI). Using an in vitro dose-response assay, we show that the compound retained its activity against RSV after the spray drying process. Our study sets the stage for further in vivo studies, exploring the efficacy of pulmonary administered CD-MUS in animal models of RSV infection.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Viruses , Animals , Respiratory Syncytial Viruses/metabolism , Powders/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Respiratory Syncytial Virus Infections/drug therapy , Administration, Inhalation , Viral Proteins/metabolism , Dry Powder Inhalers
SELECTION OF CITATIONS
SEARCH DETAIL
...