Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.999
Filter
1.
Article in English | MEDLINE | ID: mdl-39002060

ABSTRACT

Duck viral hepatitis, primarily caused by duck hepatitis A virus type 1 (DHAV-1), poses a significant threat to the global duck industry. Bacillus subtilis is commonly utilized as a safe probiotic in the development of mucosal vaccines. In this study, a recombinant strain of B. subtilis, designated as B. subtilis RV, was constructed to display the DHAV-1 capsid protein VP1 on its spore surface using the outer coat protein B as an anchoring agent. The immunogenicity of this recombinant strain was evaluated in a mouse model through mixed feeding immunization. The results indicated that B. subtilis RV could elicit specific systemic and mucosal immune responses in mice, as evidenced by the high levels of serum IgG, intestinal secretory IgA, and potent virus-neutralizing antibodies produced. Furthermore, the recombinant strain significantly upregulated the expression levels of IL-2, IL-6, IL-10, TNF-α, and IFN-γ in the intestinal mucosa. Thus, the recombinant strain maintained the balance of the Th1/Th2 immune response and demonstrated an excellent mucosal immune adjuvant function. In summary, this study suggests that B. subtilis RV can be a novel alternative for effectively controlling DHAV-1 infection as a vaccine-based feed additive.

2.
Poult Sci ; 103(9): 103997, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-39002372

ABSTRACT

Embryonic mortality is a significant problem in the commercial duck industry worldwide. Therefore, identification of new biomarkers for duck embryo development is necessary. In the chicken (order Galliformes), we previously showed that chemerin is a hormone locally produced by the reproductive tract in hens, particularly in the magnum area, leading to its accumulation in the egg white and within the embryo annexes during embryonic development. We therefore hypothesized that the chemerin concentration in egg white could be a biomarker of egg performance and reproductive parameters in Pekin ducks (order Anseriformes). Thus, we collected eggs from Pekin ducks over a 5-d period at three stages of the laying period (before the laying peak, after the laying peak, and at the end of the laying period) to measure the chemerin concentrations in egg white by enzyme-linked immunosorbent assay. The chemerin concentration in egg white decreased during the laying period and was not associated with reproductive parameters. We found negative correlations between the chemerin level in egg white and the albumen weight. Reverse-transcriptase quantitative polymerase chain reaction showed that chemerin and its three receptors CMKLR1, GPR1, and CCRL2 were expressed in the reproductive tract and within allantoic and amniotic annexes during embryo development. Chemerin concentrations strongly increased in amniotic fluid on embryonic day 16 (ED16) when the egg white was transferred into the amniotic sac. Finally, chemerin inhibition in egg white by in ovo injections of anti-chemerin antibodies (0.01, 0.1, and 1 µg) increased the embryo mortality rate. These data demonstrate the important role of the chemerin system during egg formation and embryo development in Pekin ducks, suggesting their potential use as biomarkers for determining the quality of poultry eggs and embryo development.

3.
Article in English | MEDLINE | ID: mdl-38997084

ABSTRACT

The predicted global warming of surface waters can be challenging to aquatic ectotherms like freshwater mussels. Especially animals in northern temperate latitudes may face and physiologically acclimate to significant stress from seasonal temperature fluctuations. Na+/K+-ATPase enzyme is one of the key mechanisms that allow mussels to cope with changing water temperatures. This enzyme plays a major role in osmoregulation, energy control, ion balance, metabolite transport and electrical excitability. Here, we experimentally studied the effects of temperature on Na+/K+-ATPase activity of gills in two freshwater mussel species, Anodonta anatina and Unio tumidus. The study animals were acclimated to three ambient temperatures (+4, +14, +24 °C) and Na+/K+-ATPase activity was measured at those temperatures for each acclimation group. Both species had their highest gill Na+/K+-ATPase activity at the highest acclimation temperature. Na+/K+-ATPase activity of gills exhibited species-specific differences, and was higher in A. anatina than U. tumidus in all test groups at all test temperatures. Temperature dependence of Na+/K+-ATPase was confirmed in both species, being highest at temperatures between +4 and + 14 °C when Q10 values in the acclimation groups varied between 5.06 and 6.71. Our results underline the importance of Na+/K+-ATPase of gills for the freshwater mussels in warming waters. Because Na+/K+-ATPase is the driving force behind ciliary motion, our results also suggest that in warming waters A. anatina may be more tolerant at sustaining vigorous ciliary action (associated with elevated respiration rates and filter-feeding) than U. tumidus. Overall, our results indicate great flexibility of the mussel's ecophysiological characteristics as response to changing conditions.

4.
Poult Sci ; 103(9): 103919, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38970847

ABSTRACT

In the spring of 2023, 10 to 21-day-old chicks in a broiler duck farm in Shandong Province, China, developed swelling of the head and neck, moist eyes with mucous discharge, difficulty in walking, shrinking of the neck, and loose and disorganized coat. Anatomical observation revealed hemorrhages in the esophageal mucosa, myocardium, and liver, and severe hemorrhages in the trachea with copious inflammatory secretions. Soon after, similar symptoms appeared in a large number of ducks in the flock, which eventually led to the elimination of all the 20,000-odd newly introduced ducklings on the farm, resulting in huge economic losses. We detected duck plague virus in the tissues of liver, spleen and lungs of diseased and dead ducks, and successfully isolated the pathogenic strain, named SD423, by inoculating duck embryos and inoculating duck embryo fibroblasts. We successfully conducted animal regression experiments with the isolated strain, and the experimental animals in the 1 d of age group showed symptoms of swollen eyes and tearing, shrinking of the neck, crouching, and hemorrhage in organs such as the liver and intestines successively from the 3rd d. We sequenced the whole genome of the isolated duck plague strain, and by comparing the homology with the published duck plague virus whole sequences in Genbank, the virus strain obtained in this study had the highest homology with the Chinese virulent strain SD (MN518864.1), with nucleotide (nt) homology of about 99.90% and amino acid (aa) homology of about 99.75%, which indicated that the isolate is a virulent strain. Previously, it was reported that the natural infection of duck plague virus mainly occurs above 30 d of age, but the duck plague virus found in this study can naturally infect ducklings up to 20 d of age, and the mortality rate is as high as 100%. In this study, the pathogenicity test and whole genome sequence analysis of this isolate provided data support and theoretical basis for further research on pathogenicity and virulence-related gene analysis of duck plague virus.

5.
Front Physiol ; 15: 1392968, 2024.
Article in English | MEDLINE | ID: mdl-38974520

ABSTRACT

Male and female mule ducks were subjected to a force-feeding diet to induce liver steatosis as it is generally done only with male ducks for the production of foie gras. The different biochemical measurements indicated that the course of hepatic steatosis development was present in both sexes and associated with a huge increase in liver weight mainly due to the synthesis and accumulation of lipids in hepatocytes. In livers of male and female ducks, this lipid accumulation was associated with oxidative stress and hypoxia. However, certain specific modifications (kinetics of lipid droplet development and hepatic inflammation) indicate that female ducks may tolerate force-feeding less well, at least at the hepatic level. This is in contradiction with what is generally reported concerning hepatic steatosis induced by dietary disturbances in mammals but could be explained by the very specific conditions imposed by force-feeding. Despite this, force-feeding female ducks seems entirely feasible, provided that the final quality of the product is as good as that of the male ducks, which will remain to be demonstrated in future studies.

6.
Br Poult Sci ; : 1-8, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38995225

ABSTRACT

1. This trial investigated the effect on embryo injected with ochratoxin A (OTA) and the growth performance, jejunal morphology and barrier of ducklings to 21 d old.2. Two hundred forty, fertilised eggs were individually weighed and randomly assigned to two groups, a control (CON) and the OTA treatment, according to average egg weight. On d 13 of embryonic development, the treatment group was injected with 8 ng OTA/g egg and the CON group was injected with NaHCO3 solution as a placebo. All newly hatched ducklings were assigned to the CON or OTA group based on the different treatments. Each treatment consisted of six replicates and each included 10 ducklings and the experiment lasted until 21 d of age.3. The results showed that embryos injected with OTA affected the 21 d body weight (BW) and average daily gain (ADG) of ducklings (p < 0.05). OTA exposure increased the relative weights of the liver, pancreas, gizzard, proventriculus and jejunum (p < 0.05); and decreased the relative length of the jejunum of ducklings (p < 0.05). Moreover, jejunal crypt depth increased (p < 0.05) and the villus height-to-crypt depth ratio (Vh/Cd) decreased in the OTA-injected group (p < 0.05). Compared with those in the CON group, the mRNA expression of Zonula Occludens-1; (ZO-1) (p = 0.0582) and Occludin; (p = 0.0687) in the OTA treatment group was downregulated.4. The findings demonstrated that a single low-dose injection of OTA increased body weight and daily gain in ducklings. Moreover, embryo exposure to OTA had negative effects with increased relative weight of organs and the jejunal crypt depth, decreased relative length of the intestine and mRNA expression of tight junctions (ZO-1, Occludin).

7.
Poult Sci ; 103(9): 103894, 2024 May 30.
Article in English | MEDLINE | ID: mdl-39013293

ABSTRACT

In the late growth stage of commercial Pekin ducks, a significant increase in feed intake and a decline in body weight gain have been observed, leading to impaired feed conversion efficiency. To address this issue, we investigated alterations in production performance, blood biochemical indices, ileum tissue architecture, and microbial community structure in Pekin ducks. The primary objective was to provide robust data supporting the improvement of meat duck production efficiency during the late growth stage (28-42-days-old). Forty 28-day-old Pekin ducks were randomly assigned to 8 replicates, with five ducks per replicate. The rearing period lasted 14 days, with feed and water provided ad libitum. Our findings indicated a significant increase in Pekin duck body and heart weights with advancing age (P < 0.05). Moreover, serum antioxidant enzyme and high-density lipoprotein concentrations significantly increased, whereas triglyceride levels decreased (P < 0.05). Notably, the height of the ileal villi was significantly reduced (P < 0.05). The microbial community structure of the ileum exhibited significant changes as ducks aged, accompanied by a substantial increase in microbial flora diversity, particularly with the formation of more tightly connected microbial network modules. Time-dependent enrichment was observed in microbial gene functions related to energy metabolism pathways. At the genus level, Sphingomonas and Subdoligranulum have emerged as crucial players in microbial differential functional pathways and network formation. These bacteria likely serve as the key driving factors in the dynamic microbial changes that occur in Pekin ducks over time. Overall, our findings suggest a potential decline in the absorption function of the small intestine and fat deposition performance of Pekin ducks during later growth stages, which may be attributed to the maturation and proliferation of the gut microbial community.

8.
Poult Sci ; 103(9): 104024, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-39013296

ABSTRACT

Toxoplasma gondii (T. gondii) is an intracellular protozoan that can cause toxoplasmosis in all warm-blooded hosts. This study focused on the prevalence and genetic characterize of T. gondii in ducks from Fujian province, China. Genomic DNA was extracted from duck tissue samples (heart, liver, lung, and muscle). To assess the genetic diversity of the T. gondii isolates, it was determined by using multilocus polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technology. A total of 586 ducks from 5 cities in Fujian province were tested, and 35 (6.0%) of which were found to be positive for the T. gondii B1 gene. Further genotyping of these positive samples at 10 genetic markers (SAG1, SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1, and Apico) using PCR-RFLP revealed that one tissue samples (heart samples from Fuzhou ducks) were identified as Type I (ToxoDB#10). This study is the first report on the prevalence and genetic characterization of T. gondii in ducks in Fujian province, and Type I (ToxoDB#10) is found in ducks in China for the first time. The findings document the genetic characterization of T. gondii in free-range ducks from Fujian Province, thereby enriching the understanding of T. gondii genetic diversity in China. Moreover, these results provide essential data support for further prospective studies and underscores the "One Health" concept, emphasizing the integral link among human, animal, and environmental health.

9.
Poult Sci ; 103(9): 104032, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39003796

ABSTRACT

Egg production is an important economic trait in layer ducks and understanding the genetics basis is important for their breeding. In this study, a genome-wide association study (GWAS) for egg production traits in 303 female Longyan Shan-ma ducks was performed based on a genotyping-by-sequencing strategy. Sixty-two single nucleotide polymorphisms (SNPs) associated with egg weight traits were identified (P < 9.48 × 10-5), including 8 SNPs at 5% linkage disequilibrium (LD)-based Bonferroni-corrected genome-wide significance level (P < 4.74 × 10-6). One hundred and nineteen SNPs were associated with egg number traits (P < 9.48 × 10-5), including 13 SNPs with 5% LD-based Bonferroni-corrected genome-wide significance (P < 4.74 × 10-6). These SNPs annotated 146 target genes which contained known candidate genes for egg production traits, such as prolactin and prolactin releasing hormone receptor. This study identified that these associated genes were significantly enriched in egg production-related pathways (P < 0.05), such as the oxytocin signaling, MAPK signaling, and calcium signaling pathways. It was notable that 18 genes were differentially expressed in ovarian tissues between higher and lower egg production in Shan-ma ducks. The identified potential candidate genes and pathways provide insight into the genetic basis underlying the egg production trait of layer ducks.

10.
Poult Sci ; 103(9): 104015, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-39003797

ABSTRACT

High-laying ducks are often fed high-energy, nutritious feeds to maintain high productivity, which predisposes them to lipid metabolism disorders and the development of fatty liver syndrome (FLS), which seriously affects production performance and has a substantial economic impact on the poultry industry. Therefore, it is necessary to elucidate the mechanisms underlying the development of fatty liver syndrome. In this study, seven Shan Partridge ducks, each with fatty liver syndrome and normal laying ducks, were selected, and Hematoxylin Eosin staining (HE staining), Masson staining, and transcriptome sequencing were performed on liver tissue. In addition to exploring key genes and pathways using conventional analysis methods, we constructed the first Kyoto Encyclopedia of Genes and Genomes (KEGG) database-based predefined gene set containing 12,764 pathways and 16,836 genes and further performed gene set enrichment analysis (GSEA) on the liver transcriptome data. Finally, key nodes and biological processes were identified via the protein-protein interaction (PPI) network. The results showed that the liver in the FL group exhibited steatosis and fibrosis, and a total of 3,663 genes with upregulated expression versus 2,296 downregulated genes were screened by conventional analysis. GSEA analysis and PPI network analysis revealed that the liver in the FL group exhibited disruption of the mitochondrial electron transport chain, leading to decreased oxidative phosphorylation and the secretion of excessive proinflammatory factors amid the continuous accumulation of lipids. Under continuous chronic inflammation, cell cycle arrest triggers apoptosis, while fibrosis becomes more severe, and procarcinogenic genes are activated, leading to the continuous development and deterioration of the liver. In conclusion, the predefined gene set constructed in this study can be used for GSEA, and the identified hub genes provide useful reference data and a solid foundation for the study of the genetic regulatory mechanism of fatty liver syndrome in ducks.

11.
Poult Sci ; 103(9): 103928, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-39003794

ABSTRACT

Semen quality is an important indicator that can directly affect fertility. In mammals, miRNAs in seminal plasma extracellular vesicles (SPEVs) and sperms can regulate semen quality. However, relevant regulatory mechanism in duck sperms remains largely unclear. In this study, duck SPEVs were isolated and characterized by transmission electron microscopy (TEM), western blot (WB), and nanoparticle tracking analysis (NTA). To identify the important molecules affecting semen quality, we analysed the miRNA expression in sperms and SPEVs of male ducks in high semen quality group ((DHS, DHSE) and low semen quality group (DLS, DLSE). We identified 94 differentially expressed (DE) miRNAs in the comparison of DHS vs. DLS, and 21 DE miRNAs in DHSE vs. DLSE. Target genes of SPEVs DE miRNAs were enriched in ErbB signaling pathway, glycometabolism, and ECM-receptor interaction pathways (P < 0.05), while the target genes of sperm DE miRNAs were enriched in ribosome (P < 0.05). The miRNA-target-pathway interaction network analyses indicated that 5 DE miRNAs (miR-34c-5p, miR-34b-3p, miR-449a, miR-31-5p, and miR-128-1-5p) targeted the largest number of target genes enriched in MAPK, Wnt and calcium signaling pathways, of which FZD9 and ANAPC11 were involved in multiple biological processes related to sperm functions, indicating their regulatory effects on sperm quality. The comparison of DE miRNAs of SPEVs and sperms found that mir-31-5p and novel-273 could potentially serve as biomarkers for semen quality detection. Our findings enhance the insight into the crucial role of SPEV and sperm miRNAs in regulating semen quality and provide a new perspective for subsequent studies.

12.
J Wildl Dis ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39005143

ABSTRACT

Scaup, including both Lesser and Greater (Aythya affinis and Aythya marila, respectively), are a grouping of populous and widespread North American diving ducks. Few influenza type A viruses (IAV) have been reported from these species despite a high prevalence of antibodies to IAV being reported. Existing virologic and serologic data indicate that IAV infection routinely occurs in scaup, yet it is unknown which IAV subtypes are linked to these infections. In this study, we aimed to gain a more complete picture of IAV natural history in Lesser and Greater Scaup from two coastal flyways in North America in 2015-18 (302 samples from California in the Pacific Flyway and 471 samples from Maryland in the Atlantic Flyway). Low prevalence of active IAV infection was detected by real-time reverse-transcription PCR in Lesser Scaup sampled in Maryland and California (2.8% and 8.1%, respectively). A single IAV (H1N1) was isolated in embryonated chicken eggs from a bird sampled in California. Similarly low levels were observed in Greater Scaup in California (3.3%). Antibodies to the nucleoprotein as detected with a commercial blocking ELISA were observed in all species and flyway combinations. Antibody seroprevalence estimates were higher in adult Lesser Scaup than in juveniles at both the ≤0.5 (P<0.001, z=-3.582) and ≤0.7 serum-sample-to-negative-control absorbance thresholds (P=0.003, z=-2.996). Neutralizing antibodies to H1-H12, H14, and H15 were detected using a microtiter virus neutralization assay, with the highest prevalence of antibodies against H1 (38%), H6 (36%), and H11 (35%). The high prevalence of antibodies to IAV and evidence of previous exposure to numerous subtypes are consistent with a high level of population immunity and a low prevalence of infection. These results must be interpreted in the context of season (winter sampling), as results may vary with the annual influx of naïve juvenile birds.

13.
Open Life Sci ; 19(1): 20220877, 2024.
Article in English | MEDLINE | ID: mdl-38867923

ABSTRACT

To elucidate the molecular genetic mechanisms underpinning feather color in Muscovy ducks. A cohort of 100 Muscovy ducks was meticulously selected for this research. Follicular tissues from ducks exhibiting black and white plumage served as the experimental samples. From these tissues, RNA and proteins were extracted for further analysis. The RNA underwent reverse transcription polymerase chain reaction amplification, followed by validation through western blot assays. The data revealed a significant upregulation in the expression of FN domain-containing protein 1 (FNDC1) and ADAMTS12 genes in Muscovy ducks with white plumage traits as opposed to those with black plumage traits. Specifically, individuals with pure white plumage demonstrated a markedly elevated expression of the FNDC1 gene in comparison to their pure black counterparts. Conversely, expression levels of the ADAMTS12 gene were found to be reduced in ducks with pure black plumage relative to those with pure white plumage. Notably, the expression patterns of FNDC1 and ADAMTS12 genes exhibited inconsistencies between mRNA and protein levels. This study offers significant insights into the molecular genetic mechanisms underlying feather color variation in Muscovy ducks. FNDC1 and ADAMTS12 could be considered potential targets for genetic manipulation or selective breeding strategies aimed at achieving specific feather color phenotypes in Muscovy ducks.

14.
Int J Mol Sci ; 25(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38891852

ABSTRACT

Salmonella diarizonae (IIIb) is frequently isolated from reptiles and less frequently from birds and mammals. However, its isolation from invasive human infections has not been widely reported. Migratory mallard ducks are excellent bioindicators of pathogen presence and pathogen antibiotic resistance (AMR). We present the first isolation from a mallard duck in central Europe of the antibiotic-resistant Salmonella enterica subsp. diarizonae with the unique antigenic pattern 58:r:z53 and report its whole-genome sequencing, serosequencing, and genotyping, which enabled the prediction of its pathogenicity and comparison with phenotypic AMR. The isolated strain was highly similar to S. diarizonae isolated from humans and food. Twenty-four AMR genes were detected, including those encoding aminoglycoside, fluoroquinolone, macrolide, carbapenem, tetracycline, cephalosporin, nitroimidazole, peptide antibiotic, and disinfecting agent/antiseptic resistance. Six Salmonella pathogenicity islands were found (SPI-1, SPI-2, SPI-3, SPI-5, SPI-9, and SPI-13). An iron transport system was detected in SPI-1 centisome C63PI. Plasmid profile analyses showed three to be present. Sequence mutations in the invA and invF genes were noted, which truncated and elongated the proteins, respectively. The strain also harbored genes encoding type-III secretion-system effector proteins and many virulence factors found in S. diarizonae associated with human infections. This study aims to elucidate the AMR and virulence genes in S. enterica subsp. diarizonae that may most seriously threaten human health.


Subject(s)
Ducks , Animals , Ducks/microbiology , Humans , Salmonella/genetics , Salmonella/pathogenicity , Salmonella/isolation & purification , Salmonella/drug effects , Whole Genome Sequencing , Genomic Islands/genetics , Salmonella Infections, Animal/microbiology , Anti-Bacterial Agents/pharmacology , Salmonella enterica/genetics , Salmonella enterica/pathogenicity , Salmonella enterica/isolation & purification , Salmonella enterica/drug effects , Drug Resistance, Multiple, Bacterial/genetics , Genome, Bacterial , Phylogeny , Drug Resistance, Bacterial/genetics , Plasmids/genetics
15.
BMC Genomics ; 25(1): 551, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824564

ABSTRACT

Because number of matured muscle fibers in poultry does not increase after birth, the meat yield is mainly determined during embryogenesis. We previously indicated breast muscle grew rapidly from 18th day after hatching (E18) to E27, and almost stopped from E27 to E34 of Jiaji ducks, while the mechanism is unclear. This study utilized RNA-seq to explore the related genes of muscle development and their relationship with small molecule metabolites at E18, E27 and E34 of Jiaji ducks. Several thousand differentially expressed genes (DEGs) were detected among E18, E27 and E34. DEGs expression profiles included 8 trend maps, among which trend 1 was opposite to and trend 6 was consistent with breast muscle development trend of Jiaji ducks. Through joint analysis between trend 1 of DEGs and trend 1 of differential metabolites (DEMs), protein digestion and absorption pathway stood out. The decrease of COL8A2 gene expression will lead to the decrease of arginine content, which will inhibit the development of breast muscle in embryonic Jiaji duck. Similarly, joint analysis between trend 6 of DEGs and trend 6 of DEMs indicated the increase of GAMT gene expression will cause the increase of proline content, and then promote the development of breast muscle of Jiaji duck in embryonic period. These results will be helpful for further understanding the mechanism of muscle yields of Jiaji ducks.


Subject(s)
Ducks , Metabolomics , Animals , Ducks/metabolism , Ducks/genetics , Ducks/embryology , Metabolomics/methods , Gene Expression Profiling , Transcriptome , Muscle, Skeletal/metabolism , Gene Expression Regulation, Developmental
16.
Vet J ; 306: 106161, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38849027

ABSTRACT

Irisin is a 112-amino acid peptide hormone that is cleaved from fibronectin type III domain-containing protein 5 (FNDC5), a type I transmembrane protein abundantly found in muscle tissue. Irisin is a putative mediator of the benefits of exercise, neuroprotection, bone growth, and cardiac health. However, few studies have focused on irisin in domestic animals. Further, whether processed irisin is detectable in domestic animal tissues remains uncertain. To address this, we determined FNDC5 mRNA and protein concentration in anatine (duck) and porcine (pig) skeletal muscle, and in equine (horse), swine, and anatine serum samples. RT-PCR analysis identified FNDC5 mRNA in all pig and duck skeletal muscle samples. An approximately 25 kDa band representing FNDC5 was detected in both pig and duck skeletal muscle. Fluorescence immunohistochemistry using a rabbit monoclonal FNDC5/irisin primary antibody and a goat polyclonal anti-rabbit secondary antibody localized FNDC5/irisin-like immunoreactivity in both the glandular and muscular regions of pig stomach. FNDC5/irisin-like immunoreactivity was also identified in horse, pig, and duck serum using a multispecies irisin ELISA. The average values of irisin-like immunoreactivity were 13.7 (duck), 15.4 (horse), and 7.0 (pig) ng/mL in samples tested. Our results support the presence of irisin precursor in several domestic animals. Processed irisin, however, was not detectable. Further studies are required to validate reliable tools to detect and quantify processed irisin in domestic animals.

17.
Chemosphere ; 362: 142571, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38876325

ABSTRACT

Nonylphenol (NP) is a ubiquitous endocrine disruptor that persists in the environment and can significantly contribute to serious health hazards, particularly intestinal barrier injury. Plant essential oils (EOs) have recently gained widespread interest due to their potential for improving intestinal health. However, the precise mechanism and protective effects of EOs ameliorating the intestinal damages induced by NP exposure remain unclear. To clarify the potential mechanism and protective impact of EOs against intestinal injury induced by NP, a total of 144 one-day-old male ducks were randomly allocated to four groups: CON (basal diet), EO (basal diet + 200 mg/kg EOs), NP (basal diet + 40 mg/kg NP), and NPEO (basal diet + 200 mg/kg EOs + 40 mg/kg NP). The data revealed that NP exposure significantly damaged intestinal barrier, as evidenced by a reduction in the levels of tight junction gene expression and an increase in intestinal permeability. Additionally, it disturbed gut microbiota, as well as interfered with tryptophan (Trp) metabolism. The NP-induced disorder of Trp metabolism restrained the activation of aryl hydrocarbon receptor (AhR) and resulted in decreased the expression levels of CYP1A1, IL-22, and STAT3 genes, which were alleviated after treatment with EOs. Taken together, NP exposure resulted in impairment of the intestinal barrier function, disruption of gut microbiota, and disturbances in Trp metabolism. Dietary EOs supplementation alleviated the intestinal barrier injury induced by NP through the Trp/AhR/IL-22 signaling pathway.

18.
Poult Sci ; 103(8): 103936, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38909502

ABSTRACT

Goose circovirus (GoCV) is a common pathogen that causes immunosuppression and promotes secondary infections with other infectious agents in geese worldwide. In the present study, we identified GoCV in 2 out of 93 duck flocks from China and successfully sequenced the complete genomes of 2 strains (AH22du and HN20du). The whole genome of the two strains shared a high identity of 90.5 to 98.63% with China GoCV reference, and low identity of 58.98% with DuCV reference, respectively. Phylogenetic tree constructed on the two and other genome sequences of GoCV revealed three main branches. Both strains sequenced in this study were distributed on different sub-branches with most other Chinese GoCV strains, and AH22du clustered into an independent sub-branch within the cluster. Recombination analysis predicted that HN20du might potentially recombine from the major parent of yk4 (Zhejiang Province, China, 2007) and minor parent of GD/YJ/g2 (Guangdong Province, China, 2020). To the best of our knowledge, this is the first report of GoCV in ducks from China. This broadened host spectrum of GoCVs requires attention from the waterfowl industry and researchers.

19.
Poult Sci ; 103(8): 103879, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38833748

ABSTRACT

Feed efficiency (FE) is a crucial economic indicator of meat duck production. The objective of this study was to assess the impact of residual feed intake (RFI), defined as the difference between the actual and expected feed intake based on animal's production and maintenance requirements, on the growth performance (GP), slaughter and internal organ characteristics of fast-growing meat ducks. In total, 1,300 healthy 14-day-old male fast-growing meat ducks were housed in individual cages until slaughter at the age of 35 d. The characteristics of the carcass and internal organs of 30 ducks with the highest RFI (HRFI) and the lowest RFI (LRFI) were respectively determined. RFI, the feed conversion ratio (FCR), and average day feed intake (ADFI) were significantly lower in the LRFI group than the HRFI group (P < 0.001), while there were no significant differences in marketing BW or BW gain (BWG) (P > 0.05). The thigh muscle and lean meat yields were higher, and the abdominal fat content was lower (P < 0.001) in the LRFI group, while there were no significant differences in other carcass traits between the groups (P > 0.05). The liver and gizzard yields were significantly higher (P < 0.001) in the LRFI group, while there were no significant differences (P > 0.05) in intestinal length between the groups. RFI was highly positively correlate with FCR and ADFI (P < 0.01), but negatively correlated the yields of thigh muscle, lean meat, liver, and gizzard, and positively correlated with abdominal fat content. These results indicate that selection for low RFI could improve the FE of fast-growing meat ducks without affecting the marketing BW and BWG, while increasing yields of thigh muscle and lean meat and reducing abdominal fat content. These findings offer useful insights into the biological processes that influence FE of fast-growing meat ducks.

20.
Toxins (Basel) ; 16(6)2024 May 24.
Article in English | MEDLINE | ID: mdl-38922135

ABSTRACT

The aim of this study was to investigate the effects of aflatoxin B1 (AFB1) on cholestasis in duck liver and its nutritional regulation. Three hundred sixty 1-day-old ducks were randomly divided into six groups and fed for 4 weeks. The control group was fed a basic diet, while the experimental group diet contained 90 µg/kg of AFB1. Cholestyramine, atorvastatin calcium, taurine, and emodin were added to the diets of four experimental groups. The results show that in the AFB1 group, the growth properties, total bile acid (TBA) serum levels and total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px), and glutathione (GSH) liver levels decreased, while the malondialdehyde (MDA) and TBA liver levels increased (p < 0.05). Moreover, AFB1 caused cholestasis. Cholestyramine, atorvastatin calcium, taurine, and emodin could reduce the TBA serum and liver levels (p < 0.05), alleviating the symptoms of cholestasis. The qPCR results show that AFB1 upregulated cytochrome P450 family 7 subfamily A member 1 (CYP7A1) and cytochrome P450 family 8 subfamily B member 1 (CYP8B1) gene expression and downregulated ATP binding cassette subfamily B member 11 (BSEP) gene expression in the liver, and taurine and emodin downregulated CYP7A1 and CYP8B1 gene expression (p < 0.05). In summary, AFB1 negatively affects health and alters the expression of genes related to liver bile acid metabolism, leading to cholestasis. Cholestyramine, atorvastatin calcium, taurine, and emodin can alleviate AFB1-induced cholestasis.


Subject(s)
Aflatoxin B1 , Cholestasis , Ducks , Liver , Animals , Aflatoxin B1/toxicity , Cholestasis/chemically induced , Cholestasis/metabolism , Liver/drug effects , Liver/metabolism , Bile Acids and Salts/metabolism , Bile Acids and Salts/blood , Poultry Diseases/chemically induced , Cholestyramine Resin/pharmacology , Animal Feed
SELECTION OF CITATIONS
SEARCH DETAIL
...