Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Mol Sci ; 24(13)2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37445955

ABSTRACT

Durvillaea antarctica is the seaweed that is the most consumed by the Chilean population. It is recognized worldwide for its high nutritional value in protein, vitamins, minerals, and dietary fiber. This is a narrative review in which an extensive search of the literature was performed to establish the immunomodulator, cardiometabolic, and gut microbiota composition modulation effect of Durvillaea antarctica. Several studies have shown the potential of Durvillaea antarctica to function as prebiotics and to positively modulate the gut microbiota, which is related to anti-obesity, anti-inflammatory, anticancer, lipid-lowering, and hypoglycemic effects. The quantity of Bacteroides was negatively correlated with that of inflammatory monocytes and positively correlated with the levels of several gut metabolites. Seaweed-derived polysaccharides modulate the quantity and diversity of beneficial intestinal microbiota, decreasing phenol and p-cresol, which are related to intestinal diseases and the loss of intestinal function. Additionally, a beneficial metabolic effect related to this seaweed was observed, mainly promoting the decrease in the glycemic levels, lower cholesterol levels and cardiovascular risk. Consuming Durvillaea antarctica has a positive impact on the immune system, and its bioactive compounds provide beneficial effects on glycemic control and other metabolic parameters.


Subject(s)
Cardiovascular Diseases , Gastrointestinal Microbiome , Seaweed , Humans , Prebiotics , Dietary Fiber/pharmacology , Vegetables , Cardiovascular Diseases/prevention & control
2.
Front Microbiol ; 11: 2006, 2020.
Article in English | MEDLINE | ID: mdl-33013743

ABSTRACT

Herpes simplex viruses (HSVs) type 1 (HSV-1) and type 2 (HSV-2) are highly prevalent in the human population, and the infections they produce are lifelong with frequent reactivations throughout life. Both viruses produce uncomfortable and sometimes painful lesions in the orofacial and genital areas, as well as herpetic gingivostomatitis, among other clinical manifestations. At present, the most common treatments against HSVs consist of nucleoside analogs that target the viral polymerases. However, such drugs are poorly effective for treating skin lesions, as they only reduce in 1-2 days the duration of the herpetic lesions. Additionally, viral isolates resistant to these drugs can emerge in immunosuppressed individuals, and second-line drugs for such variants are frequently accompanied by adverse effects requiring medical supervision. Thus, novel or improved therapeutic drugs for treating HSV lesions are needed. Here, we assessed the potential antiviral activity of aqueous extracts obtained from two brown macroalgae, namely Macrocystis pyrifera and Durvillaea antarctica against HSVs. Both extracts showed antiviral activity against acyclovir-sensitive and acyclovir-resistant HSV-1 and HSV-2. Our analyses show that there is a significant antiviral activity associated with proteins in the extract, although other compounds also seem to contribute to inhibiting the replication cycle of these viruses. Evaluation of the algae extracts as topical formulations in an animal model of HSV-1 skin infection significantly reduced the severity of the disease more than acyclovir, as well as the duration of the herpetic lesions, when compared to mock-treated animals, with the D. antarctica extract performing best. Taken together, these findings suggest that these algae extracts may be potential phytotherapeutics against HSVs and may be useful for the treatment and reduction of common herpetic manifestations in humans.

3.
Chemosphere ; 138: 164-9, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26066085

ABSTRACT

Sorption experiments for cadmium removal using two brown macroalgae Lessonia nigrescens and Durvillaea antarctica were carried out. Although both types of algae were capable of retaining cadmium, differences in their performance were observed. The optimum pH was 3.7±0.2, and to achieve the equilibrium, 5 days of contact time were necessary for both biosorbents. The maximum experimental uptake obtained was similar for the two biosorbents: 95.3 mg Cd g(-1) by D. antarctica and 109.5 mg Cd g(-1) by L. nigrescens. The Langmuir model described the equilibrium sorption isotherms very well for both biosorbents and the Lagergren pseudo primer order model described the sorption kinetics for L. nigrescens satisfactorily and the Ho and Mckay pseudo second order model for D. antarctica. It was found that cadmium uptake by D. antarctica was faster than by L. nigrescens.


Subject(s)
Cadmium/isolation & purification , Phaeophyceae/chemistry , Seaweed/chemistry , Wastewater/chemistry , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Adsorption , Hydrogen-Ion Concentration , Kinetics , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL