Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
1.
Sci Total Environ ; 927: 172301, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38599411

ABSTRACT

The urgency of achieving carbon neutrality needs a reduction in greenhouse gas (GHG) emissions from the textile industry. Printing and dyeing wastewater (PDWW) plays a crucial role in the textile industry. The incomplete assessment of GHG emissions from PDWW impedes the attainment of carbon neutrality. Here, we firstly introduced a more standardized and systematic life-cycle GHG emission accounting method for printing and dyeing wastewater treatment and reuse system (PDWTRS) and proposed possible low-carbon pathways to achieve carbon neutrality. Utilizing case-specific operational data over 12 months, the study revealed that the PDWTRS generated 3.49 kg CO2eq/m3 or 1.58 kg CO2eq/kg CODrem in 2022. This exceeded the GHG intensity of municipal wastewater treatment (ranged from 0.58 to 1.14 kg CO2eq/m3). The primary contributor to GHG emissions was energy consumption (33 %), with the energy mix (sensitivity = 0.38) and consumption (sensitivity = 0.33) exerting the most significant impact on GHG emission intensity respectively. Employing prospective life cycle assessment (LCA), our study explored the potential of the anaerobic membrane bioreactor (AnMBR) to reduce emissions by 0.54 kg CO2eq/m3 and the solar-driven photocatalytic membrane reactor (PMR) to decrease by 0.20 kg CO2eq/m3 by 2050. Our projections suggested that the PDWTRS could achieve net-zero emissions before 2040 through an adoption of progressive transition to low-carbon management, with a GHG emission intensity of -0.10 kg CO2eq/m3 by 2050. Importantly, the study underscored the escalating significance of developing sustainable technologies for reclaimed water production amid water scarcity and climate change. The study may serve as a reminder of the critical role of PDWW treatment in carbon reduction within the textile industry and provides a roadmap for potential pathways towards carbon neutrality for PDWTRS.

2.
Int J Biol Macromol ; 263(Pt 2): 130082, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38423910

ABSTRACT

The surge in economic growth has spurred the expansion of the textile industry, resulting in a continuous rise in the discharge of printing and dyeing wastewater. In contrast, the photocatalytic method harnesses light energy to degrade pollutants, boasting low energy consumption and high efficiency. Nevertheless, traditional photocatalysts suffer from limited light responsiveness, inadequate adsorption capabilities, susceptibility to agglomeration, and hydrophilicity, thereby curtailing their practical utility. Consequently, integrating appropriate carriers with traditional photocatalysts becomes imperative. The combination of chitosan and semiconductor materials stands out by reducing band gap energy, augmenting reactive sites, mitigating carrier recombination, bolstering structural stability, and notably advancing the photocatalytic degradation of printing and dyeing wastewater. This study embarks on an exploration by initially elucidating the technical principles, merits, and demerits of prevailing printing and dyeing wastewater treatment methodologies, with a focal emphasis on the photocatalytic approach. It delineates the constraints encountered by traditional photocatalysts in practical scenarios. Subsequently, it comprehensively encapsulates the research advancements and elucidates the reaction mechanisms underlying chitosan based composite materials employed in treating printing and dyeing wastewater. Finally, this work casts a forward-looking perspective on the future research trajectory of chitosan based photocatalysts, particularly in the realm of industrial applications.


Subject(s)
Chitosan , Wastewater , Catalysis , Coloring Agents , Staining and Labeling , Printing
3.
Chemosphere ; 352: 141363, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38346508

ABSTRACT

Adsorptive separation membranes are widely utilized for the removal of toxic dyeing pollutants from dyeing wastewater. However, developing novel adsorption membranes with large adsorption capacities and enhanced adsorption performance for dyes in actual wastewater poses a significant challenge. This study focuses on the fabrication of crown ether-containing copolymer porous membrane (CRPM) and investigation of the adsorption performance of dyes from aqueous solutions. The morphology structure and pore size distribution revealed that the membrane was endowed with rich micropores and hierarchical porous structures. Three typical cationic dyes (MB, RhB, CV) and an anionic dye (MO) were selected to evaluate the adsorption behavior. The results of adsorption isotherms and kinetics demonstrated that the adsorption data could be well-fitted using the Freundlich and pseudo-first-order kinetic models, the thermodynamic parameters revealed that the adsorption process of dyes on CRPM is a spontaneous endothermic reaction. The membrane exhibited excellent adsorption performance for cationic dyes, with RhB displaying a higher maximum adsorption capacity than previously reported porous membranes. Notably, dynamic adsorption-desorption filtration demonstrated a rapid removal efficiency, with RhB, MB, and CV achieving removal rates of 99.09%, 98.63%, and 99.14% respectively, after five cycles. The filtration volume of the CRPM membrane was 2.4-fold greater than that of a traditional PVDF membrane when applied to actual dyeing wastewater. DFT theoretical calculations were employed to elucidate the adsorption mechanism. These calculations confirmed the significant roles of electrostatic interactions, H-bonds and π-π interactions in facilitating the high-efficiency adsorption of cationic dyes. These findings highlight the potential of the crown ether-containing copolymer as a promising material for adsorption separation membranes in the treatment of dyeing wastewater.


Subject(s)
Crown Ethers , Water Pollutants, Chemical , Coloring Agents/chemistry , Wastewater , Ether , Adsorption , Porosity , Water Pollutants, Chemical/analysis , Ethyl Ethers , Cations , Kinetics , Polymers
4.
Chemosphere ; 351: 141255, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38244870

ABSTRACT

The treatment of dye-containing wastewater generated from textile industries is still a challenge, and various technologies, including physical, chemical and biological ones have been used. In recent years, the ionizing radiation (usually including gamma ray generated by radionuclide, such as 60Co and 137Cs, and electron beam generated by electron accelerator) technology has received increasing attention for degrading refractory or toxic organic pollutants in wastewater because of its unique advantages, such as no chemical additives, fast reaction rate, strong degradation capacity, high efficiency, flexibility, controllability. Compared to the conventional wastewater treatment processes, ionizing radiation technology, as a disruptive wastewater treatment technology, is more efficient for the decolorization and degradation of dyes and the treatment of dye-containing wastewater. In this paper, the recent advances in the treatment of dye-containing wastewater by ionizing radiation, in particular by electron beam (EB) radiation were summarized and analyzed, focusing on the decolorization and degradation of various dyes. Firstly, the formation of various reactive species induced by radiation and their interactions with dye molecules, as well as the influencing factors on the removal efficiency of dyes were discussed. Secondly, the researches on the treating dye-containing wastewater by electron beam radiation technology were systematically reviewed. Then, the decolorization and degradation mechanisms by electron beam radiation were further discussed in detail. And the integrated processes that would contribute to the advancement of this technology in practical applications were examined. More importantly, the recent advances of electron beam radiation technology from laboratory to application were reviewed, especially successful operation of dye-containing wastewater treatment facilities in China. And eventually, current challenges, future research directions, and outlooks of electron beam radiation technology were proposed for further advancing this technology for the sustainable development of water resources.


Subject(s)
Water Pollutants, Chemical , Water Purification , Wastewater , Coloring Agents/chemistry , Electrons , Radiation, Ionizing , Water Pollutants, Chemical/analysis , Azo Compounds/chemistry
5.
Heliyon ; 9(9): e19167, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37662824

ABSTRACT

The frequent use of an industrial dye such as malachite green (MG) has caused major water body deterioration and is one of the most pressing global challenges, demanding effective treatment techniques. To solve these issues, a simplistic method was developed to synthesize zinc-tungstate (ZnWO4) nanoparticles and also dope the surface matrix of the ZnWO4 nanoparticles using nonmetals of boron (B), carbon (C), and nitrogen (N) at different ratios for enhanced MG removal from wastewater. The prepared nanomaterials were characterized by different methods for crystal structure composition, surface properties, surface morphology, microstructures, functional groups, and elemental oxidation states. The BET analysis revealed a mesoporous structure with surface areas of 30.740 m2/g for ZnWO4, 38.513 m2/g for ZnWO4@BCN, 37.368 m2/g for ZnWO4@BCN/B, 39.325 m2/g for ZnWO4@BCN/C, and 45.436 m2/g for ZnWO4@BCN/N nanocomposites. The best removal of MG was accomplished at pH (8), contact period (50 min), nanoadsorbent dose (0.8 g/L), initial MG concentration (20 mg/L), and temperature (303 K). The maximum adsorption capacities of ZnWO4 and ZnWO4@BCN/N towards MG were 218.645 and 251.758 mg/g, respectively. At equilibrium, the Freundlich isotherm and pseudo-second-order kinetic models were the best fits for the experimental data of MG adsorption on both nanoadsorbents. After eight cycles of adsorption and desorption, both ZnWO4 and ZnWO4@BCN/N were found to be good at removing MG, with efficiencies of 71.00 and 74.20%, respectively. Thermodynamic investigations further validated the spontaneity and endothermic nature of the adsorption process. All study findings confirm the nanoadsorbents exceptional capability and economic feasibility for removing MG dye.

6.
Environ Sci Pollut Res Int ; 30(37): 87899-87912, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37434052

ABSTRACT

Zeolitic imidazolate framework/carbon nanotube (ZIF-67/CNTs) was prepared by precipitation method. ZIF-67/CNTs maintained the characteristics of large specific surface area and high porosity of ZIFs, showing stable cubic structure. The adsorption capacities of ZIF-67/CNTs for Cong red (CR), Rhodamine B (RhB) and Cr(VI) were 36.82 mg/g, 1421.29 mg/g and 716.67 mg/g under the conditions of 2:1, 3:1 and 1:3 masses of ZIF-67 and CNTs, respectively. The optimum adsorption temperature of CR, RhB and Cr(VI) were 30 °C, and the removal rates at the adsorption equilibrium were 81.22%, 72.87% and 48.35%. The adsorption kinetic model of the three adsorbents on ZIF-67/CNTs was consistent with the quasi-second order reaction model, and the adsorption isotherms were more consistent with adsorption law of Langmuir. The adsorption mechanism for Cr(VI) was mainly electrostatic interaction, and the adsorption mechanism for azo dyes was the combination of physical and chemical adsorption. This study would provide theoretical basis for further developing metal organic framework (MOF) materials for environmental applications.


Subject(s)
Nanotubes, Carbon , Water Pollutants, Chemical , Zeolites , Nanotubes, Carbon/chemistry , Congo Red , Adsorption , Zeolites/chemistry , Water Pollutants, Chemical/analysis , Chromium/chemistry
7.
Int J Biol Macromol ; 247: 125677, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37406916

ABSTRACT

Dyeing wastewater is a carcinogenic pollutant, which is widely known for its harmful effects on humans and marine organisms. In this study, a novel composite was prepared by blending thiourea modified chitosan with zinc sulfide nanoparticles (T-CS/ZnS) to comprehensively remove methyl orange (MO), rhodamine B (Rh B), and methylene blue (MB) effectively. Characterization results suggested that the synthesized composite has an irregular and rough surface that provided high specific surface area for adsorption process, while the strong optical response and low bandgap width contributed to the subsequent photocatalytic degradation of adsorbed dye molecules. Under optimum experimental conditions, the removal rates of MO, Rh B, and MB were 99.59 %, 99.49 %, and 91.04 %, respectively. Amino and hydroxyl groups provide electrons in photocatalytic reactions. The reaction process is consistent with the quasi-first-order kinetic model, and the material has good stability and regeneration potential. This study indicated that T-CS/ZnS composite is a highly effective material for the treatment of dyeing wastewaters.


Subject(s)
Chitosan , Water Pollutants, Chemical , Humans , Coloring Agents , Wastewater , Sulfides , Adsorption , Water Pollutants, Chemical/analysis , Methylene Blue
8.
Environ Sci Pollut Res Int ; 30(40): 92495-92506, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37491487

ABSTRACT

Reverse osmosis (RO) alone has low water recovery efficiency because of membrane fouling and limited operating pressure. In this study, a combined reverse osmosis-forward osmosis (RO-FO) process was used for the first time to improve the water recovery efficiency of secondary effluent in printing and dyeing wastewater. The effects of operating pressure and pH on water recovery and removal efficiency of RO-FO were investigated. The results showed that the optimum conditions were an operating pressure of 1.5 MPa and a feed solution pH of 9.0. Under optimal operating conditions, most of the organic and inorganic substances in the wastewater can be removed, and the rejection of total organic carbon (TOC), Sb, Ca, and K were 98.7, 99.3, 97.0, and 92.7%, respectively. Fluorescence excitation-emission matrices coupled with parallel factor (EEM-PARAFAC) analysis indicated that two components (tryptophan and tyrosine) in the influent were effectively rejected by the hybrid process. The maximum water recovery (Rw, max) could reach 95%, which was higher than the current single RO process (75%). This research provided a feasible strategy to effectively recover water from printing and dyeing wastewater.


Subject(s)
Wastewater , Water Purification , Water , Coloring Agents , Osmosis , Water Purification/methods , Membranes, Artificial , Printing, Three-Dimensional
9.
Water Res ; 243: 120376, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37516077

ABSTRACT

Membrane distillation (MD) for water desalination and purification has been gaining prominence to address the issues relating to water security and the destruction of aquatic ecosystems globally. Recent advances in electrospun membranes for MD application have improved antifouling and anti-wetting performance. However, the environmental impacts associated with producing novel electrospun membranes still need to be clarified. It is imperative to quantify and analyze the tradeoffs between membrane performance and impacts at the early stages of research on these novel membranes. Life Cycle Assessment (LCA) is an appropriate tool to systematically account for environmental performance, all the way from raw material extraction to the disposal of any product, process, or technology. The inherent lack of detailed datasets for emerging technologies contributes to significant uncertainties, making the adoption of traditional LCA challenging. A dynamic LCA (dLCA) is performed to guide the sustainable design and selection of emerging electrospun poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) electrospun membrane (E-PH) and hybridizing polydimethylsiloxane (PDMS) on E-PH membrane (E-PDMS) for dyeing wastewater treatment technologies. The associated environmental impacts are related to the high energy demands required for fabricating electrospun nanofibrous membranes. After LCA analysis, the E-PDMS membrane emerges as a promising membrane, due to the relatively low impact/benefit ratio and the high performance achieved in treating dyeing wastewater.


Subject(s)
Nanofibers , Water Purification , Animals , Distillation , Ecosystem , Membranes, Artificial , Life Cycle Stages
10.
J Hazard Mater ; 457: 131744, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37285789

ABSTRACT

High energy consumption is impedimental for eliminating refractory organics in wastewater by current technologies. Herein, we develop an efficient self-purification process for actual non-biodegradable dyeing wastewater at pilot scale, using N-doped graphene-like (CN) complexed Cu-Al2O3 supported Al2O3 ceramics (HCLL-S8-M) fixed-bed reactor without additional input. About 36% chemical oxygen demand removal was achieved within 20 min empty bed retention time and maintained stability for almost one year. The HCLL-S8-M structure feature and its interface on microbial community structure, functions, and metabolic pathways were analyzed by density-functional theory calculation, X-ray photoelectron spectroscopy, multiomics analysis of metagenome, macrotranscriptome and macroproteome. On the surface of HCLL-S8-M, a strong microelectronic field (MEF) was formed by the electron-rich/poor area due to Cu-π interaction from the complexation between phenolic hydroxy of CN and Cu species, driving the electrons of the adsorbed dye pollutants to the microorganisms through extracellular polymeric substance and the direct transfer of extracellular electrons, causing their degradation into CO2 and intermediates, which was degraded partly via intracellular metabolism. The lower energy feeding for the microbiome produced less adenosine triphosphate, resulting in little sludge throughout reaction. The MEF from electronic polarization is greatly potential to develop low-energy wastewater treatment technology.

11.
Bioresour Technol ; 379: 129060, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37075851

ABSTRACT

Eco-friendly treatment of complex textile and dyeing wastewaters poses a pressing environmental concern. An approach adopting different treatment paths and integrated anaerobic-aerobic processes for high-strength and recalcitrant textile dyeing wastewater was examined. The study demonstrated that over 97% of suspended solids (SS) and more than 70% of chemical oxygen demand (COD) were removed by polyaluminum chloride pre-coagulation of suede fabric dyeing stream. Up to 58% of COD and 83% of SS were removed through hydrolysis pretreatment of other low-strength streams. Notable COD removal of up to 99% from a feed of 20,862 mg COD/L was achieved by integrated anaerobic-aerobic treatment of high strength stream. Besides achieving high COD removal of 97%, the anaerobic granular sludge process demonstrated multi-faceted attributes, including high feed loading, smaller footprint, little sludge production, and good stability. The integrated anaerobic-aerobic treatment offers a robust and viable option for highly contaminated and recalcitrant textile dyeing wastewater.


Subject(s)
Sewage , Wastewater , Waste Disposal, Fluid , Anaerobiosis , Bioreactors , Coloring Agents , Textiles , Textile Industry
12.
Environ Sci Pollut Res Int ; 30(18): 53674-53684, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36864334

ABSTRACT

Strict standards have been put forward for the treatment and discharge of dyeing wastewater worldwide. However, there are still traces amount of pollutants, especially emerging pollutants in dyeing wastewater treatment plant (DWTP) effluent. Few studies have focused on the chronic biological toxicity effect and mechanism of DWTP effluent. In this study, 3-month chronic compound toxic effects were investigated by the exposure of DWTP effluent using adult zebrafish. Significantly higher mortality and fatness and significantly lower body weight and body length were found in the treatment group. In addition, long-term exposure to DWTP effluent also obviously reduced liver-body weight ratio of zebrafish, causing abnormal liver development of zebrafish. Moreover, DWTP effluent led to obvious changes in the gut microbiota and microbial diversity of zebrafish. At phylum level, significantly higher of Verrucomicrobia but lower Tenericutes, Actinobacteria, and Chloroflexi were found in the control group. At genus level, the treatment group had significantly higher abundance of Lactobacillus, but significantly lower abundance of Akkermansia, Prevotella, Bacteroides, and Sutterella. These results suggested that long-term exposure to DWTP effluent led to imbalance of gut microbiota in zebrafish. In general, this research indicated that DWTP effluent pollutants could result in negative health outcomes to aquatic organisms.


Subject(s)
Environmental Pollutants , Gastrointestinal Microbiome , Water Pollutants, Chemical , Water Purification , Animals , Zebrafish , Water Pollutants, Chemical/toxicity , Body Weight
13.
Polymers (Basel) ; 15(6)2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36987174

ABSTRACT

Microplastic pollution has become a global environmental problem. Textile microplastics are an important component of microplastic pollution, but little is known about their contamination in the industrial environment. The lack of standardized methods for detecting and quantifying textile microplastics is a major obstacle to determining the risks they pose to the natural environment. This study systematically examines the pretreatment options for the extraction of microplastics from printing and dyeing wastewater. The effectiveness of potassium hydroxide, nitric acid-hydrogen peroxide mixed solution, hydrogen peroxide, and Fenton's reagent for the removal of organic matter from textile wastewater is compared. Three textile microplastics, polyethylene terephthalate, polyamide, and polyurethane, are studied. The effects of the digestion treatment on the physicochemical properties of textile microplastics are characterized. The separation efficiency of sodium chloride, zinc chloride, sodium bromide, sodium iodide, and sodium chloride-sodium iodide mixed solution on the textile microplastics is tested. The results showed that Fenton's reagent achieved a 78% removal rate of organic matter from printing and dyeing wastewater. Meanwhile, it has less of an effect on the physicochemical properties of textile microplastics after digestion and is the best reagent for digestion. The zinc chloride solution achieved a 90% recovery for separating textile microplastics with good reproducibility. It does not affect the subsequent characterization analysis after separation and is the best solution for density separation.

14.
Polymers (Basel) ; 15(6)2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36987240

ABSTRACT

The in situ electrochemical oxidation process has received considerable attention for the removal of dye molecules and ammonium from textile dyeing and finishing wastewater. Nevertheless, the cost and durability of the catalytic anode have seriously limited industrial applications of this technique. In this work, the lab-based waste polyvinylidene fluoride membrane was employed to fabricate a novel lead dioxide/polyvinylidene fluoride/carbon cloth composite (PbO2/PVDF/CC) via integrated surface coating and electrodeposition processes. The influences of operating parameters (pH, Cl- concentration, current density, and initial concentration of pollutant) on the oxidation efficiency of PbO2/PVDF/CC were evaluated. Under optimal conditions, this composite achieves a 100% decolorization of methyl orange (MO), 99.48% removal of ammonium, and 94.46% conversion for ammonium-based nitrogen to N2, as well as an 82.55% removal of chemical oxygen demand (COD). At the coexistent condition of ammonium and MO, MO decolorization, ammonium, and COD removals still remain around 100%, 99.43%, and 77.33%, respectively. It can be assigned to the synergistic oxidation effect of hydroxyl radical and chloride species for MO and the chlorine oxidation action for ammonium. Based on the determination of various intermediates, MO is finally mineralized to CO2 and H2O, and ammonium is mainly converted to N2. The PbO2/PVDF/CC composite exhibits excellent stability and safety.

15.
J Hazard Mater ; 452: 131273, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-36996540

ABSTRACT

To achieve economical and efficient decolorization, two novel flocculants, weakly hydrophobic comb-like chitosan-graft-poly (N, N-Dimethylacrylamide) (CSPD) and strongly hydrophobic chain-like chitosan-graft-L-Cyclohexylglycine (CSLC) were synthesized in this study. To assess the effectiveness and application of CSPD and CSLC, the impacts of factors, including flocculant dosages, initial pH, initial dye concentrations, co-existing inorganic ions and turbidities, on the decolorization performance were explored. The results suggested that the optimum decolorizing efficiencies of the five anionic dyes ranged from 83.17% to 99.40%. Moreover, for accurately controlling flocculation performance, the responses to flocculant molecular structures and hydrophobicity in flocculation using CSPD and CSLC were studied. The Comb-like structure gives CSPD a wider dosage range for effective decolorization and better efficiencies with large molecule dyes under weak alkaline conditions. The strong hydrophobicity makes CSLC more effective in decolorization and more suitable for removing small molecule dyes under weak alkaline conditions. Meanwhile, the responses of removal efficiency and floc size to flocculant hydrophobicity are more sensitive. Mechanism studies revealed that charge neutralization, hydrogen bonding and hydrophobic association worked together in the decolorization of CSPD and CSLC. This study has provided meaningful guidance for developing flocculants in the treatment of diverse printing and dyeing wastewater.

16.
Huan Jing Ke Xue ; 44(2): 878-888, 2023 Feb 08.
Article in Chinese | MEDLINE | ID: mdl-36775611

ABSTRACT

With the aim of addressing the difficult problem of biodegradable organic nitrogen in biochemical effluent of a printing and dyeing industrial park, the combined ozonation-sequencing batch biofilm reactor (O3-SBBR) process was used for advanced treatment. The influencing factors and degradation kinetics were analyzed; quenching experiments were carried out; and the types of free radicals, succinate dehydrogenase activity, and denitrification function genes were determined. The results showed that the suitable ozonation condition was pH 8.0-8.5, O3 concentration was approximately 35.0 mg·L-1, O3 dosage was approximately 100.0 mg·L-1, and reaction time was 90.0-120.0 min. Organic nitrogen in the biochemical effluent by ozonation conformed to the pseudo first-order kinetic model, and the maximum rate constant k was 0.01035 min-1 (experimental conditions:pH 8.0, ozone dosage 150.0 mg·L-1, and ozone concentration 35.0 mg·L-1). Ozonation significantly improved the denitrification performance of the sequencing biofilm batch reactor (SBBR), and the denitrification efficiency increased from 19.8% (SBBR) to 32.9% (O3-SBBR). Ozonation could convert organic nitrogen and organic substances with strong toxicity and difficult biological utilization into small molecular substances with low toxicity and biodegradability. The abundance of functional genes (nirS, nirK, and nor) in the O3-SBBR combined process was significantly higher than that in the single SBBR, which further confirmed that ozonation could improve the nitrogen removal performance of SBBR. The operation cost of the combined process was 0.74-1.07 yuan·m-3, with good technical economy. This study provided a basis for the application of the O3-SBBR combined process in the advanced treatment of biochemical effluent in printing and dyeing industrial parks.


Subject(s)
Ozone , Water Pollutants, Chemical , Wastewater , Ozone/chemistry , Biofilms , Nitrogen , Printing, Three-Dimensional , Water Pollutants, Chemical/analysis
17.
J Colloid Interface Sci ; 636: 378-387, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36638576

ABSTRACT

In this study, zeolitic imidazolate framework (ZIF-8)/polyvinylidene fluoride (PVDF) loose nanofiltration (NF) hollow fiber membranes were fabricated by constructing ZIF-8 functional layer on the PVDF supporting membranes based on the vacuum-assisted assembly process. The ZIF-8 synthesis was completed in a water system, and the synthesized ZIF-8 suspension was directly added to polyvinyl alcohol (PVA) and halloysite nanotubes (HNTs) aqueous solution system without drying to prepare the casting solution, which could solve the agglomeration and poor dispersion problem of ZIF-8 particles. In addition, the embedded HNTs and the loaded PVA among the ZIF-8 layer could improve the bonding strength between the ZIF-8 layer and the supporting membranes. After constructing ZIF-8 functional layer, the pore size of supporting membranes decreased from more than 300 nm to several nanometers. Furthermore, the water contact angle reduced from 91.1° to 54.2°. Applied to treat dye wastewater, the prepared ZIF-8/PVDF membranes maintained high dye rejection (˃99.0 %) for Congo red (CR), but low salt rejection for NaCl (about 2 %). In addition, the flux could reach 21.6 L m-2h-1 after continuous filtration 360 min, exhibiting a potential for treating the dye/salt wastewater. In particular, there were no organic solvents used in the work, which provided a promising idea for solvent-free fabrication of loose NF membranes.

18.
Environ Res ; 216(Pt 2): 114590, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36252834

ABSTRACT

Reactive red 2 (RR2) azo dye wastewater poses a serious hazard to the water environment health, so using a novel and efficient Electro- Ce(III) (E- Ce(III)) process takes on a critical significance in treating RR2 dye wastewater. In this study, the effects of a variety of single-factor conditions on RR2 removal efficiency were evaluated in depth. The results indicated that the optimal experimental conditions are as reaction temperature of 25 °C, Na2SO4 concentration of 25 mM, Ce(III) concentration of 0.3 mM, pH of 4.0, and current density of 40.0 mA/cm2. When the RR2 dye wastewater was treated for 40 min under the optimal experimental conditions, a high removal rate of 99.8% for RR2 was obtained. It is suggested that the background ion PO43- in the dye wastewater inhibits the E-Ce (III) process, whereas Cl- facilitates this process. Moreover, the yield of Ce(IV) increases with the increase of the current density. At the current density of 40.0 mA/cm2, a reasonable energy consumption of 3.85 kW h/gTOC for the process was obtained after the 3-h treatment. The effects of different degradation processes (including Direct Electrooxidation (DEO), single Ce(III), and E-Ce (III)) on RR2 removal efficiency and TOC change were compared. The types of oxidizing substances in the E-Ce (III) process were detected, and the mechanism of RR2 oxidative degradation in the E-Ce (III) process was summarized. The result suggests that the E-Ce (III) process has low power consumption. Meanwhile, in the E-Ce (III) process, free reactive Ce(IV) with strong oxidation is continuously generated, RR2 can be efficiently degraded. And the continuous cycle transformation between Ce(III) and Ce(IV) maintains the strong oxidation of the process. The contribution of free reactive Ce(IV) and DEO to RR2 degradation was obtained as 58.8% and 39.8%, respectively. The combined effect of Ce(IV) and DEO played a major role in the E-Ce (III) process, while ·OH exhibited a relatively weak effect (nearly 1.4%). RR2 was comprised of 13 major intermediates, and the biodegradability of wastewater was improved significantly after treatment, thus facilitating the further mineralization and biodegradation of the products. The E- Ce(III) process is novel, efficient, and environment-friendly, and has a large market application space, suggesting that it can be applied as an efficient, economic, and sustainable water treatment process.


Subject(s)
Wastewater , Water Pollutants, Chemical , Wastewater/chemistry , Coloring Agents/chemistry , Naphthalenesulfonates , Azo Compounds/chemistry , Oxidation-Reduction , Water Pollutants, Chemical/analysis
19.
J Environ Manage ; 325(Pt B): 116587, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36323118

ABSTRACT

In this study, magnetic CoMoO4/CoFe2O4 (CMO/CFO) nanospheres with a core-shell structure were synthesized via two-step hydrothermal methods. The obtained particles were employed as catalysts to activate peroxymonosulfate (PMS) and degrade methylene blue (MB). The physico-chemical characterizations of the synthesized CMO/CFO showed that the CMO shell contributed to the enhancement of redox conversion and the increase in the concentration of oxygen vacancies (OVs). By examining reactive oxygen species (ROS) in the CMO/CFO/PMS system, the MB degradation was dominated by a non-radical pathway, and 1O2 was identified as the most abundant ROS. Besides, the CMO/CFO exhibited faster reaction kinetics than the pristine CFO. Moreover, the magnetic properties guaranteed the recycling and reuse of CMO/CFO, and the removal rate of MB was maintained at ∼94% after continuous use five times. Both the tolerance to SO42-and the wide pH range where the material is applicable make it a promising catalyst for dyeing wastewater treatment.


Subject(s)
Methylene Blue , Peroxides , Methylene Blue/chemistry , Reactive Oxygen Species , Peroxides/chemistry , Magnetic Phenomena
20.
Sci Total Environ ; 855: 158912, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36162577

ABSTRACT

Microbial electrolysis cell (MEC) has been existing problems such as poor applicability to real wastewater and lack of cost-effective electrode materials in the practical application of refractory wastewater. A hydrolysis-acidification combined MEC system (HAR-MECs) with four inexpensive stainless-steel and conventional carbon cloth cathodes for the treatment of real textile-dyeing wastewater, which was fully evaluated the technical feasibility in terms of parameter optimization, spectral analysis, succession and cooperative/competition effect of microbial. Results showed that the optimum performance was achieved with a 12 h hydraulic retention time (HRT) and an applied voltage of 0.7 V in the HAR-MEC system with a 100 µm aperture stainless-steel mesh cathode (SSM-100 µm), and the associated optimum BOD5/COD improvement efficiency (74.75 ± 4.32 %) and current density (5.94 ± 0.03 A·m-2) were increased by 30.36 % and 22.36 % compared to a conventional carbon cloth cathode. The optimal system had effective removal of refractory organics and produced small molecules by electrical stimulation. The HAR segment could greatly alleviate the imbalance between electron donors and electron acceptors in the real refractory wastewater and reduce the treatment difficulty of the MEC segment, while the MEC system improved wastewater biodegradability, amplified the positive and specific interactions between degraders, fermenters and electroactive bacteria due to the substrate complexity. The SSM-100 µm-based system constructed by phylogenetic molecular ecological network (pMEN) exhibited moderate complexity and significantly strong positive correlation between electroactive bacteria and fermenters. It is highly feasible to use HAR-MEC with inexpensive stainless-steel cathode for textile-dyeing wastewater treatment.


Subject(s)
Bioelectric Energy Sources , Water Purification , Wastewater/chemistry , Stainless Steel , Hydrolysis , Phylogeny , Electrolysis/methods , Electrodes , Carbon/chemistry , Bacteria , Textiles , Hydrogen-Ion Concentration
SELECTION OF CITATIONS
SEARCH DETAIL
...