Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
1.
J Environ Manage ; 367: 122025, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39079489

ABSTRACT

Urban surface temperatures are high in summertime, and thermal pollution caused by heat transfer from pavement to stormwater runoff is harmful to aquatic ecosystems. However, there is a lack of studies investigating the temperature change pattern during rainstorms and evaluating the effects of bioretention on dynamic characteristics of thermal pollution. Therefore, this study selected a 1.05 ha parking lot retrofitted with five individual bioretention cells in Beijing as the object to compare the temperature and volume of stormwater runoff before and after bioretention treatment. In the LID parking lot, the average EMT and EMXT (event maximum temperature) of runoff decreased by 2.28 °C and 4.18 °C, respectively, and the median percent thermal load reduction was 90.6%. Data analysis from 15 summer rainfall events showed that the sequence of factors affecting runoff EMT (event mean temperature) was average air temperature, max air temperature, max solar radiation, and rainfall peak 5-min intensity. Bioretention profoundly changed the thermal dynamic characteristics of stormwater runoff. Surface runoff temperatures generally showed a decreasing trend over time. The temperature change pattern of LID parking lot outflow was synchronized with that of the inflow and varied with different grades of precipitation. The probability of the peak temperature ahead of peak flow decreased from 80% to 53%, suggesting that 27% of the thermal first-flush effect of thermal pollution from the urban surface was alleviated by site-scale bioretention implementation. The site-scale bioretention combination had a lower effluent temperature and a higher thermal load reduction rate than single-scale solutions. These results fill the gap in research on the thermal pollution reduction process of bioretention. Furthermore, they can guide the optimization of bioretention design methods and strategies to protect urban water bodies from the stormwater runoff thermal pollution.

2.
Front Public Health ; 12: 1341455, 2024.
Article in English | MEDLINE | ID: mdl-38699420

ABSTRACT

Background: Population ageing is inseparable from technological innovation, social progress and the development of human civilization, and constitutes a new element in the development of contemporary human history. Objective: To dynamically analyses the developmental, structural and growth characteristics of population ageing in 31 provincial capitals and municipalities in China, using the data of the fifth national census in 2000 and the seventh national census in 2020. Methods: The development characteristics and spatial and temporal patterns of population aging in the 31 cities were measured using the population aging index growth model, Theil's index, coefficient of variation, population aging index and other analytical methods. Results: (1) From 2000 to 2020, the population aging rate of the 31 central cities generally increased, and the population aging level of the cities showed the characteristics of "East-Central-Northeast-West" to "Northeast-East-Central-West" decreasing. (2) Regional differences in the ratio of old to young are relatively high, while regional differences in the level of population ageing are relatively small. The level of population ageing is classified with the indicators of size structure, family structure and age structure in the first and third quadrants, and with the geographic concentration rate in the second and fourth quadrants. (3) China's population ageing has a T-shaped spatial distribution characteristic pointing along the coast - along the Yangtze Rivers. Conclusion: The 31 central cities are the center of gravity of China's economy and have strong economic power in dealing with the challenges of population ageing, but how to make population ageing compatible with the economy and society, and then promote sustainable population development, is a topic that needs further attention in the study.


Subject(s)
Cities , Population Dynamics , Spatio-Temporal Analysis , China , Humans , Cities/statistics & numerical data , Population Dynamics/trends , Population Dynamics/statistics & numerical data , Aged
3.
Environ Int ; 186: 108641, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38621323

ABSTRACT

People generally spend most of their time indoors, making a comprehensive evaluation of air pollution characteristics in various indoor microenvironments of great significance for accurate exposure estimation. In this study, field measurements were conducted in Kunming City, Southwest China, using real-time PM2.5 sensors to characterize indoor PM2.5 in ten different microenvironments including three restaurants, four public places, and three household settings. Results showed that the daily average PM2.5 concentrations in restaurants, public spaces, and households were 78.4 ± 24.3, 20.1 ± 6.6, and 18.0 ± 4.3 µg/m3, respectively. The highest levels of indoor PM2.5 in restaurants were owing to strong internal emissions from cooking activities. Dynamic changes showed that indoor PM2.5 levels increased during business time in restaurants and public places, and cooking time in residential kitchens. Compared with public places, restaurants generally exhibit more rapid increases in indoor PM2.5 due to cooking activities, which can elevate indoor PM2.5 to high levels (5.1 times higher than the baseline) in a short time. Furthermore, indoor PM2.5 in restaurants were dominated by internal emissions, while outdoor penetration contributed mostly to indoor PM2.5 in public places and household settings. Results from this study revealed large variations in indoor PM2.5 in different microenvironments, and suggested site-specific measures for indoor PM2.5 pollution alleviation.


Subject(s)
Air Pollution, Indoor , Cities , Environmental Monitoring , Particulate Matter , Humans , Air Pollution, Indoor/adverse effects , Air Pollution, Indoor/analysis , Air Pollution, Indoor/prevention & control , Cooking , Housing , Particulate Matter/adverse effects , Particulate Matter/analysis , Particulate Matter/chemistry , Particulate Matter/classification , Restaurants , Surveys and Questionnaires , Time Factors , Urban Health/statistics & numerical data
4.
Micromachines (Basel) ; 15(3)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38542615

ABSTRACT

The magnetic properties of soft magnetic materials, including their saturation magnetic induction strength and permeability, significantly affect the dynamic characteristics of electromagnetic relays. However, the soft materials most commonly used for relays in the magnetic conductive components of electromagnetic systems, such as electrical pure iron, limit further relay design improvement and optimization to a certain extent. Thus, this paper proposes the use of amorphous and nanocrystalline soft magnetic materials with good high-frequency magnetic properties in magnetic circuits. A wavelet analysis was conducted on the high-frequency components of the coil current while the relay operated, and the corresponding magnetic materials were selected. Considering the challenges in processing amorphous and nanocrystalline materials and collecting test data for the accuracy verification of simulation methods, we prepared a scaled-up prototype for use in dynamic characteristic tests. The simulation method was improved, yielding more accurate simulation results regarding the relay's dynamic characteristics. On this basis, six replacement schemes using amorphous and nanocrystalline materials were considered. The test results proved that this application could improve the relay's dynamic characteristics. Finally, a full-size sample with an iron core consisting of nanocrystalline alloy 1K107B was prepared, and the conclusions were verified in tests.

5.
Heliyon ; 10(3): e24580, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38317938

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused a global pandemic. Early and accurate diagnosis and quarantine remain the most effective mitigation strategy. Although reverse transcriptase polymerase chain reaction (RT-qPCR) is the gold standard for COVID-19 diagnosis, recent studies suggest that nucleic acids were undetectable in a significant number of cases with clinical features of COVID-19.Serological assays for SARS-CoV-2 play a role in diagnosis of COVID-19, in understanding viral epidemiology and screening convalescent sera for therapeutic and prophylactic purposes, to better understand the immune response to the virus, and to assess the degree and duration of the response of specific antibodies. In this article, we retrieved PubMed, Embase, China National Knowledge Infrastructure (CNKI) and WEB OF SCI databases for articles and reviews published before December 1, 2022. Using "IgM, IgG,IgA, neutralizing antibody, specific antibody,COVID-19, dynamic characteristics" as keywords, and comprehensively reviewed on their basis.According to the authors' criteria, only articles deemed relevant were included, covering original articles, case series, experimental studies, reviews, and case reports. Articles on performance evaluation, opinion pieces, and technical issues were excluded. From the onset of COVID-19 symptoms, the median time of seroconversion was 11 days for immunoglobulin A (IgA), the median time of peak antibody titer was 23 (16-30 days) for IgA.Immunoglobulin M (IgM) is detected prior to immunoglobulin G (IgG), peaking 2-5 weeks post symptom onset and detectable for a minimum of 8 weeks in the immunocompetent.Neutralizing antibodies were earliest detectable within 6-7 days following disease onset, with levels increasing until days 14-22 before levelling and then decreasing, but titres were lower in clinically mild disease. Different clinical types of patients showed different antibody responses to SARS-CoV-2, with severe COVID-19 patients > non-severe COVID-19 patients > asymptomatic infected persons, but no difference in the early stage of the disease. Usually, IgM and IgA antibodies are detectable earlier than IgG antibodies.IgA antibodys plays an important role in local mucosal immunity.Detection of IgM antibodies tends to indicate recent exposure to SARS-CoV-2, whereas the detection of COVID-19 IgG antibodies indicates virus exposure some time ago. The detection of potent neutralizing antibodies in convalescent plasma is important in the context of development of therapeutics and vaccines.With the emergence of immune escape variants of SARS-CoV-2, humoral immunity is being challenged, and a detailed understanding of Specific antibodies is critical to guide vaccine design strategies and antibody-mediated therapies.

6.
Article in English | MEDLINE | ID: mdl-38235712

ABSTRACT

The study aimed to investigate the dynamic characteristics of the cervical spine and determine the effect of the material properties of the cervical spinal components on it. A finite element model of the head-cervical spine was developed based on CT scan data, and the first six orders of modes (e.g. flexion-extension, lateral bending, and vertical, etc.) were verified by experimental and simulation studies. The material sensitivity study was conducted by varying elasticity modulus of cervical hard tissues (cortical bone, cancellous bone, endplates, and posterior elements) and soft tissues (intervertebral disc and ligaments). The results showed that increasing the elastic modulus of ligaments by 4 times increased the natural frequency by 77%, while increasing that of cancellous bone by 4 times only increased the natural frequency by 6%. In the axial mode, the cervical spine had not only axial deformation but also anterior-posterior deformation, with the largest deformation located at the intervertebral disc C6-C7. Decreasing the elastic modulus of a component in soft tissues by 80% increased modal displacement by up to 62%. The material properties of the intervertebral discs and ligaments had opposite effects on the modal displacement and deformation of the cervical spine. Low cervical discs were more susceptible to injury in a vertical vibration environment. Cervical spine dynamics were more sensitive to soft tissue material properties than to hard tissue material properties. Disc degeneration could reduce the range of vibratory motion of the cervical spine, thereby reducing the ability of the cervical spine to cushion head impacts.

7.
Sensors (Basel) ; 23(21)2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37960609

ABSTRACT

Dynamic characteristics play a crucial role in evaluating the performance of weight sensors and are essential for achieving fast and accurate weight measurements. This study focuses on a weight sensor based on optical coherence displacement. Using finite element analysis, the sensor was numerically simulated. Frequency domain and time domain dynamic response characteristics were explored through harmonic response analysis and transient dynamic analysis. The superior dynamic performance and reduced conditioning time of the non-contact optical coherence-based displacement weight sensor were confirmed via a negative step response experiment that compared the proposed sensing method to strain sensing. Moreover, dynamic performance metrics for the optical coherence displacement-type weight sensor were determined. Ultimately, the sensor's dynamic performance was enhanced using the pole-zero placement method, decreasing the overshoot to 4.72% and reducing the response time to 0.0132 s. These enhancements broaden the sensor's operational bandwidth and amplify its dynamic response capabilities.

8.
Materials (Basel) ; 16(17)2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37687436

ABSTRACT

The dynamic characteristics of sandwich panels with a hierarchical hexagonal honeycomb (SP-HHHs) show significant improvements due to their distinct hierarchy configurations. However, this also increases the complexity of structural analysis. To address this issue, the variational asymptotic method was utilized to homogenize the unit cell of the SP-HHH and obtain the equivalent stiffness, establishing a two-dimensional equivalent plate model (2D-EPM). The accuracy and effectiveness of the 2D-EPM were then verified through comparisons with the results from a detailed 3D FE model in terms of the free vibration and frequency- and time-domain forced vibration, as well as through local field recovery analysis at peak and trough times. Furthermore, the tailorability of the typical unit cell was utilized to perform a parametric analysis of the effects of the length and thickness ratios of the first-order hierarchy on the dynamic characteristics of the SP-HHH under periodic loading. The results reveal that the vertices serve as weak points in the SP-HHH, while the vertex cell pattern significantly influences the specific stiffness and stiffness characteristics of the panel. The SP-HHH with hexagonal vertex cells has superior specific stiffness compared to panels with circular and rectangular vertex cells, resulting in a more lightweight design and enhanced stiffness.

9.
Sensors (Basel) ; 23(14)2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37514813

ABSTRACT

In this paper, the wind-induced responses of the Shanghai World Financial Center (SWFC) under Super Typhoon Lekima are measured using the health monitoring system. Based on the measurements, the characteristics of vibration, including probability density distribution of accelerations, power spectra, and mode shapes are studied. The curve method and the standard deviation method are used to analyze the relationship of the first- and second-order natural frequencies and damping ratios with amplitudes and the mean wind speed. The results show the following: (1) The structural wind-induced responses in the X and Y directions have high consistencies, and the vibration signals exhibit a peak state; moreover, response amplitudes and acceleration signals disperse when the floor height increases. (2) The first- and second-order natural frequencies in the X and Y directions decrease with the increasing amplitudes and are negatively correlated with mean wind speed; the maximum decrease in natural frequency is 5.794%. The first- and second-order damping ratios in the X and Y directions increase with the increasing amplitudes and are positively correlated with the mean wind speed; the maximum increase in damping ratio is 95.7%. (3) The curve method and the standard deviation method are similar in identifying dynamic characteristic parameters, but the discreteness of the natural frequencies obtained by the curve method is lesser. (4) Under excitations of various typhoons, the mode shapes of SWFC are basically the same, and the mode shapes in the X and Y directions increase with the height and have nonlinearity.

10.
Front Bioeng Biotechnol ; 11: 993274, 2023.
Article in English | MEDLINE | ID: mdl-37251568

ABSTRACT

Introduction: This paper presents its kinematic-dynamic computational model (3D) used for numerical simulations of the unilateral chewing of selected foods. The model consists of two temporomandibular joints, a mandible, and mandibular elevator muscles (the masseter, medial pterygoid, and temporalis muscles). The model load is the food characteristic (i), in the form of the function Fi = f(Δhi)-force (Fi) vs change in specimen height (Δhi). Functions were developed based on experimental tests in which five food products were tested (60 specimens per product). Methods: The numerical calculations aimed to determine: dynamic muscle patterns, maximum muscle force, total muscle contraction, muscle contraction corresponding to maximum force, muscle stiffness and intrinsic strength. The values of the parameters above were determined according to the mechanical properties of the food and according to the working and non-working sides. Results and Discussion: Based on the numerical simulations carried out, it can be concluded that: (1) muscle force patterns and maximum muscle forces depend on the food and, in addition, the values of maximum muscle forces on the non-working side are 14% lower than on the working side, irrespective of the muscle and the food; (2) the value of total muscle contraction on the working side is 17% lower than on the non-working side; (3) total muscle contraction depends on the initial height of the food; (4) muscle stiffness and intrinsic strength depend on the texture of the food, the muscle and the side analysed, i.e., the working and non-working sides.

11.
Polymers (Basel) ; 15(4)2023 Feb 18.
Article in English | MEDLINE | ID: mdl-36850307

ABSTRACT

Vitrimers brought new properties in thermosets by allowing their reshaping, self-healing, reprocessing, and network rearrangement without changing structural integrity. In this study, epoxidized castor oil (ECO) was successfully used for the straightforward synthesis of a bio-based solvent-free vitrimer. The synthesis was based on a UV-curing process, which proceeded at low temperatures in the absence of any solvents, and within a short time. Real time Fourier-transformed infrared spectroscopy and photo-DSC were exploited to monitor the cationic photocurable process. The UV-cured polymer networks were able to efficiently undergo thermo-activated bond exchange reactions due to the presence of dibutyl phosphate as a transesterification catalyst. Mechanical properties, thermal resistance, glass transition temperature, and stress relaxation were investigated as a function of the amount of transesterification catalyst. Mechanical properties were determined by both DMTA and tensile tests. Glass transition temperature (Tg) was evaluated by DMTA. Thermal stability was assessed by thermogravimetric analysis, whilst vitrimeric properties were studied by stress relaxation experiments. Overall, the ECO-based vitrimer showed high thermal resistance (up to 200 °C) and good mechanical properties (elastic modulus of about 10 MPa) and can therefore be considered as a promising starting point for obtaining more sustainable vitrimers.

12.
Materials (Basel) ; 15(15)2022 Jul 30.
Article in English | MEDLINE | ID: mdl-35955204

ABSTRACT

As one of the important load-bearing components of a truck, the drive axle housing must meet the requirements of stiffness and strength. The traditional design method uses redundancy design to meet the performance requirements. The joint design between the three-dimensional mathematical model and finite element model is adopted, and the optimal design of the drive axle housing is realized based on topology optimization and multiobjective optimization. Firstly, the static analysis of the drive axle housing of a rear axle drive truck was carried out with four typical working conditions. It was concluded that the four working conditions all operate under the yield limit of the material, and it was found that the maximum equivalent stress of the four working conditions occurs at the step of the half-shaft casing. Among the four working conditions, the most critical one is the maximum vertical force working condition. Then, based on the maximum vertical force working condition, the fatigue life analysis is conducted, and the minimum fatigue life appears at the transition position of the half-shaft sleeve and the arc transition position of the main reducer chamber. The remaining parts can meet the design requirements. The overall safety factor of the drive axle housing is mainly between 1 and 5 when operating under this working condition. Then, through modal analysis, the first to sixth natural frequency and vibration modes of the drive axle housing are extracted. Based on the modal analysis, the dynamic characteristics of the drive axle housing are further studied by harmonic response analysis and random vibration analysis. Finally, two kinds of lightweight optimization schemes for the drive axle housing are given. Topology optimization reduces the mass of the drive axle housing by 17.4%, but the overall performance slightly decreases. Then, the five dimensional parameters of the drive axle housing are selected as design variables. The mass, maximum deformation, equivalent stress, service life, and the first-, second- and third-order natural frequencies are defined as objective functions. Through the optimal space-filling design method, the experimental designs are performed and the sample points are obtained. Based on the results of experiment design, the multiobjective genetic algorithm and response surface method are combined to optimize the objective functions. The analysis results show that the mass is reduced by 4.35%, the equivalent stress is reduced by 21.05%, the minimum life is increased by 72.28%, and the first-, second-, and third-order natural frequency are also increased to varying degrees. Two different optimization strategies are provided for the design of the drive axle housing.

13.
Front Oncol ; 12: 876861, 2022.
Article in English | MEDLINE | ID: mdl-35875108

ABSTRACT

Purpose: Tumor voxel dose-response matrix (DRM) can be quantified using feedback from serial FDG-PET/CT imaging acquired during radiotherapy. This study investigated the dynamic characteristics and the predictive capability of DRM. Methods: FDG-PET/CT images were acquired before and weekly during standard chemoradiotherapy with the treatment dose 2 Gy × 35 from 31 head and neck cancer patients. For each patient, deformable image registration was performed between the pretreatment/baseline PET/CT image and each weekly PET/CT image. Tumor voxel DRM was derived using linear regression on the logarithm of the weekly standard uptake value (SUV) ratios for each tumor voxel, such as SUV measured at a dose level normalized to the baseline SUV0. The dynamic characteristics were evaluated by comparing the DRMi estimated using a single feedback image acquired at the ith treatment week (i = 1, 2, 3, or 4) to the DRM estimated using the last feedback image for each patient. The predictive capability of the DRM estimated using 1 or 2 feedback images was evaluated using the receiver operating characteristic test with respect to the treatment outcome of tumor local-regional control or failure. Results: The mean ± SD of tumor voxel SUV measured at the pretreatment and the 1st, 2nd, 3rd, 4th, and last treatment weeks was 6.76 ± 3.69, 5.72 ± 3.43, 3.85 ± 2.22, 3.27 ± 2.25, 2.5 ± 1.79, and 2.23 ± 1.27, respectively. The deviations between the DRMi estimated using the single feedback image obtained at the ith week and the last feedback image were 0.86 ± 4.87, -0.06 ± 0.3, -0.09 ± 0.17, and -0.09 ± 0.12 for DRM1, DRM2, DRM3, and DRM4, respectively. The predictive capability of DRM3 and DRM4 was significant (p < 0.001). The area under the curve (AUC) was increased with the increase in treatment dose level. The DRMs constructed using the single feedback image achieved an AUC of 0.86~1. The AUC was slightly improved to 0.94~1 for the DRMs estimated using 2 feedback images. Conclusion: Tumor voxel metabolic activity measured using FDG-PET/CT fluctuated noticeably during the first 2 treatment weeks and obtained a stabilized reduction rate thereafter. Tumor voxel DRM constructed using a single FDG-PET/CT feedback image after the 2nd treatment week (>20 Gy) has a good predictive capability. The predictive capability improved continuously using a later feedback image and marginally improved when two feedback images were applied.

14.
Materials (Basel) ; 15(13)2022 Jul 04.
Article in English | MEDLINE | ID: mdl-35806815

ABSTRACT

In this study, we investigated the viscosity, squeeze-film damping, and a SiC-based capacitive micro-accelerometer in rarefied air. A specific expression for the effective viscosity coefficient of the air was derived, and when the air pressure drops from the standard atmospheric pressure, the viscosity of the air will decrease accordingly. Decreases in the air pressure and the viscosity of the air lead to the change in the squeeze-film air damping in the micro-accelerometer, and both the viscous damping force and the elastic damping force of the air film between the moving electrode plate and the fixed electrode plate will also decrease. The damping coefficient and relative damping ratio of the micro-accelerometer in rarefied air were calculated, which was also confirmed by simulations. The changes of the damping coefficient and the relative damping ratio of the system will directly affect the dynamic characteristics of the micro-accelerometer. When the air pressure in the working environment is below the standard atmospheric pressure, the micro-accelerometer will be in an underdamping state. With the decrease in the air pressure, the working bandwidth of the micro-accelerometer will decrease significantly, and the resonant phenomenon may appear. However, the decrease in the air pressure will not have a notable impact on the response time of the micro-accelerometer. Therefore, this work provides a theoretical basis for the study of the performance characteristics of a SiC-based capacitive accelerometer in rarefied air.

15.
J Int Med Res ; 50(6): 3000605221108100, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35766023

ABSTRACT

OBJECTIVE: To investigate the correlation between corneal biomechanical properties and topographic parameters using machine learning networks for automatic severity diagnosis and reference benchmark construction. METHODS: This was a retrospective study involving 31 eyes from 31 patients with keratonus. Two clustering approaches were used (i.e., shape-based and feature-based). The shape-based method used a keratoconus benchmark validated for indicating the severity of keratoconus. The feature-based method extracted imperative features for clustering analysis. RESULTS: There were strong correlations between the symmetric modes and the keratoconus severity and between the asymmetric modes and the location of the weak centroid. The Pearson product-moment correlation coefficient (PPMC) between the symmetric mode and normality was 0.92 and between the asymmetric mode and the weak centroid value was 0.75. CONCLUSION: This study confirmed that there is a relationship between the keratoconus signs obtained from topography and the corneal dynamic behaviour captured by the Corvis ST device. Further studies are required to gather more patient data to establish a more extensive database for validation.


Subject(s)
Keratoconus , Cluster Analysis , Cornea , Corneal Topography/methods , Humans , Keratoconus/diagnosis , Retrospective Studies
16.
Foods ; 11(10)2022 May 21.
Article in English | MEDLINE | ID: mdl-35627071

ABSTRACT

Staphylococcus simulans and Lactobacillus plantarum screened from Guizhou specialty food were used to prepare fermented pork loin ham. The sensory qualities and flavor profiles of fermented pork loin hams from 0 to 42 days were investigated in order to reveal the dynamics of fermented pork loin ham. The results show that total free amino acids (TFAA) content reached the highest value on the 35th day, and the umami amino acids, including aspartic acid (ASP), glutamic acid (GLU), glycine (GLY), and alanine (ALA), were the main amino acids in all periods. Notably, the RV coefficient (0.875) indicates that free amino acids (FAA) are highly correlated with the sensory score of the E-tongue. In terms of the volatile compounds identified, the esters content gradually increased between 7 and 42 days, and ethyl octanoate was the most abundant compound during all periods. These esters imparted a characteristic aroma component to the fermented pork loin ham. The most important finding was that the increase in the content of esters represented by octanoic acid-ethyl ester might be related to the increase in the content of FAA with the increase in fermentation time. Both the E-nose and E-tongue showed good discrimination ability for fermented tenderloin ham with different fermentation times, which was crucial in cases with large clusters. In addition, the multiple factor analysis (MFA) indicated that the E-nose aroma value might be the key factor in distinguishing fermented pork loin ham with different fermentation times.

17.
Sensors (Basel) ; 22(7)2022 Mar 27.
Article in English | MEDLINE | ID: mdl-35408172

ABSTRACT

Measurements of the properties of gas-sensitive materials are a subject of constant research, including continuous developments and improvements of measurement methods and, consequently, measurement set-ups. Preparation of the test set-up is a key aspect of research, and it has a significant impact on the tested sensor. This paper aims to review the current state of the art in the field of gas-sensing measurement and provide overall conclusions of how the different set-ups impact the obtained results.

18.
Micromachines (Basel) ; 13(3)2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35334685

ABSTRACT

At present, piezoelectric sensors are primarily applied in health monitoring areas. They may fall off owing to the adhesive's durability, and even damage the monitored equipment. In this paper, a piezoelectric film sensor (PFS) based on a positive piezoelectric effect (PPE) is presented and a ZnO film is deposited on a GH4169 superalloy steel (GSS) substrate using magnetron sputtering. The microstructure and micrograph of ZnO piezoelectric thin films were analyzed by an X-ray diffractometer (XRD), energy dispersive spectrometer (EDS), scanning electron microscope (SEM), and atomic force microscope (AFM). The results showed that the surface morphology was dense and uniform and had a good c-axis-preferred orientation. According to the test results of five piezoelectric sensors, the average value of the longitudinal piezoelectric coefficient was 1.36 pC/N, and the average value of the static calibration sensitivity was 19.77 mV/N. We selected the sensor whose parameters are closest to the average value for the dynamic test experiment and we drew the output voltage response curve of the piezoelectric film sensor under different loads. The measurement error was 4.03% when repeating the experiment six times. The research achievements reveal the excellent performance of the piezoelectric film sensor directly deposited on a GH4169 superalloy steel substrate. This method can reduce measurement error caused by the adhesive and reduce the risk of falling off caused by the aging of the adhesive, which provides a basis for the research of smart bolts and guarantees a better application in structural health monitoring (SHM).

19.
Med Biol Eng Comput ; 60(4): 1123-1138, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35235133

ABSTRACT

Intra-arterial blood pressure measurement is the cornerstone of hemodynamic monitoring in intensive care units (ICU). Accuracy of the measurement is dependent on the dynamic response of the measuring system, defined by its natural frequency (fnatural) and damping coefficient (Zdamping). Gardner's plot (1981) has long been the only way to determine the accuracy of the pressure measurement. Specific objectives: (i) estimation of the amplitude of error in pressure measurement through simulations based on real-world data, (ii) a novel method to correct the error. Simulated blood pressure waveforms of various heart rates were passed through simulated measurement systems with varying fnatural and Zdamping. The numerical errors in systolic and diastolic pressures and mean error in the measured pressure were used to generate heat maps for the various recording conditions, in the same plot as that by Gardner (1981). fnatural and Zdamping from 121 patient recordings are plotted on these heat maps to demonstrate the fraction of unacceptable recordings. Performance of a tunable filter to correct the error is demonstrated. In many clinical settings, the measurement of intra-arterial pressure is prone to significant error. The proposed tunable filter is shown to improve the accuracy of intra-arterial pressure recording.


Subject(s)
Arterial Pressure , Blood Pressure Determination , Blood Pressure/physiology , Blood Pressure Determination/methods , Heart Rate , Humans
20.
J Adv Pharm Technol Res ; 13(1): 30-37, 2022.
Article in English | MEDLINE | ID: mdl-35223438

ABSTRACT

Metered-dose nasal sprays (MDNS) are the most widely used for treating rhinitis. Medicinal preparations in the pharmaceutical market vary in their characteristics. To identify the most effective drug, it is necessary to compare the preparations regarding various parameters. The purpose of the research was to compare oxymetazoline MDNS of different brands regarding their dispersion qualities. To that end, nine oxymetazoline sprays available in the Russian market were chosen and analyzed considering their dynamic characteristics and the spraying dispersion composition. The research was conducted with the shadow photography method, the selection of which was justified by its simplicity, the possibilities for detecting the spray jet composition, the process of its formation in dynamics, and the possibility for measuring droplets of all forms. Momentary images of spray activation phases, as well as an averaged image of 100 shots of the spraying main phase, were obtained. According to a range of characteristics, such as spraying duration, a cone angle and cone structure, all the preparations were grouped into three categories. It was found out that the sprays from Group 2 had the best dynamic rates of dispersion, with Vicks Sinex having the best results. Regarding the distribution of particles of different size, the most optimal composition was found for the drugs from Group 2, particularly, Vicks Sinex and Afrin preparations. Hence, Vicks Sinex spraying regimen and microsprayer design were found the most effective for delivering the medicinal substance to the destination.

SELECTION OF CITATIONS
SEARCH DETAIL
...