Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.301
Filter
1.
Sci Rep ; 14(1): 16073, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38992094

ABSTRACT

Triple-negative breast cancer (TNBC) is often treated with neoadjuvant systemic therapy (NAST). We investigated if radiomic models based on multiparametric Magnetic Resonance Imaging (MRI) obtained early during NAST predict pathologic complete response (pCR). We included 163 patients with stage I-III TNBC with multiparametric MRI at baseline and after 2 (C2) and 4 cycles of NAST. Seventy-eight patients (48%) had pCR, and 85 (52%) had non-pCR. Thirty-six multivariate models combining radiomic features from dynamic contrast-enhanced MRI and diffusion-weighted imaging had an area under the receiver operating characteristics curve (AUC) > 0.7. The top-performing model combined 35 radiomic features of relative difference between C2 and baseline; had an AUC = 0.905 in the training and AUC = 0.802 in the testing set. There was high inter-reader agreement and very similar AUC values of the pCR prediction models for the 2 readers. Our data supports multiparametric MRI-based radiomic models for early prediction of NAST response in TNBC.


Subject(s)
Multiparametric Magnetic Resonance Imaging , Neoadjuvant Therapy , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/diagnostic imaging , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/therapy , Triple Negative Breast Neoplasms/pathology , Female , Neoadjuvant Therapy/methods , Middle Aged , Multiparametric Magnetic Resonance Imaging/methods , Adult , Aged , Treatment Outcome , ROC Curve , Magnetic Resonance Imaging/methods , Radiomics
2.
Magn Reson Imaging ; 112: 89-99, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38971267

ABSTRACT

OBJECTIVE: To develop and validate a nomogram for quantitively predicting lymphovascular invasion (LVI) of breast cancer (BC) based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) radiomics and morphological features. METHODS: We retrospectively divided 238 patients with BC into training and validation cohorts. Radiomic features from DCE-MRI were subdivided into A1 and A2, representing the first and second post-contrast images respectively. We utilized the minimal redundancy maximal relevance filter to extract radiomic features, then we employed the least absolute shrinkage and selection operator regression to screen these features and calculate individualized radiomics score (Rad score). Through the application of multivariate logistic regression, we built a prediction nomogram that integrated DCE-MRI radiomics and MR morphological features (MR-MF). The diagnostic capabilities were evaluated by comparing C-indices and calibration curves. RESULTS: The diagnostic efficiency of the A1/A2 radiomics model surpassed that of the A1 and A2 alone. Furthermore, we incorporated the MR-MF (diffusion-weighted imaging rim sign, peritumoral edema) and optimized Radiomics into a hybrid nomogram. The C-indices for the training and validation cohorts were 0.868 (95% CI: 0.839-0.898) and 0.847 (95% CI: 0.787-0.907), respectively, indicating a good level of discrimination. Moreover, the calibration plots demonstrated excellent agreement in the training and validation cohorts, confirming the effectiveness of the calibration. CONCLUSION: This nomogram combined MR-MF and A1/A2 Radiomics has the potential to preoperatively predict LVI in patients with BC.

3.
Front Oncol ; 14: 1380793, 2024.
Article in English | MEDLINE | ID: mdl-38947892

ABSTRACT

Glioma is the most common type of primary malignant tumor of the central nervous system (CNS), and is characterized by high malignancy, high recurrence rate and poor survival. Conventional imaging techniques only provide information regarding the anatomical location, morphological characteristics, and enhancement patterns. In contrast, advanced imaging techniques such as dynamic contrast-enhanced (DCE) MRI or DCE CT can reflect tissue microcirculation, including tumor vascular hyperplasia and vessel permeability. Although several studies have used DCE imaging to evaluate gliomas, the results of data analysis using conventional tracer kinetic models (TKMs) such as Tofts or extended-Tofts model (ETM) have been ambiguous. More advanced models such as Brix's conventional two-compartment model (Brix), tissue homogeneity model (TH) and distributed parameter (DP) model have been developed, but their application in clinical trials has been limited. This review attempts to appraise issues on glioma studies using conventional TKMs, such as Tofts or ETM model, highlight advancement of DCE imaging techniques and provides insights on the clinical value of glioma management using more advanced TKMs.

4.
Heliyon ; 10(12): e32619, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38952379

ABSTRACT

Purpose: It is difficult to differentiate between primary central nervous system lymphoma and primary glioblastoma due to their similar MRI findings. This study aimed to assess whether pharmacokinetic parameters derived from dynamic contrast-enhanced MRI could provide valuable insights for differentiation. Methods: Seventeen cases of primary central nervous system lymphoma and twenty-one cases of glioblastoma as confirmed by pathology, were retrospectively analyzed. Pharmacokinetic parameters, including Ktrans, Kep, Ve, and the initial area under the Gd concentration curve, were measured from the enhancing tumor parenchyma, peritumoral parenchyma, and contralateral normal parenchyma. Statistical comparisons were made using Mann-Whitney U tests for Ve and Matrix Metallopeptidase-2, while independent samples t-tests were used to compare pharmacokinetic parameters in the mentioned regions and pathological indicators of enhancing tumor parenchyma, such as vascular endothelial growth factor and microvessel density. The pharmacokinetic parameters with statistical differences were evaluated using receiver-operating characteristics analysis. Except for the Wilcoxon rank sum test for Ve, the pharmacokinetic parameters were compared within the enhancing tumor parenchyma, peritumoral parenchyma, and contralateral normal parenchyma of the primary central nervous system lymphomas and glioblastomas using variance analysis and the least-significant difference method. Results: Statistical differences were observed in Ktrans and Kep within the enhancing tumor parenchyma and in Kep within the peritumoral parenchyma between these two tumor types. Differences were also found in Matrix Metallopeptidase-2, vascular endothelial growth factor, and microvessel density within the enhancing tumor parenchyma of these tumors. When compared with the contralateral normal parenchyma, pharmacokinetic parameters within the peritumoral parenchyma and enhancing tumor parenchyma exhibited variations in glioblastoma and primary central nervous system lymphoma, respectively. Moreover, the receiver-operating characteristics analysis showed that the diagnostic efficiency of Kep in the peritumoral parenchyma was notably higher. Conclusion: Pharmacokinetic parameters derived from dynamic contrast-enhanced MRI can differentiate primary central nervous system lymphoma and glioblastoma, especially Kep in the peritumoral parenchyma.

5.
World J Gastrointest Oncol ; 16(6): 2804-2815, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38994130

ABSTRACT

BACKGROUND: Non-invasive differential diagnosis between hepatocellular carcinoma (HCC) and other liver cancer (i.e. cholangiocarcinoma or metastasis) is highly challenging and definitive diagnosis still relies on histological exam. The patterns of enhancement and wash-out of liver nodules can be used to stratify the risk of malignancy only in cirrhotic patients and HCC frequently shows atypical features. Dynamic contrast-enhanced ultrasound (DCEUS) with standardized software could help to overcome these obstacles, providing functional and quantitative parameters and potentially improving accuracy in the evaluation of tumor perfusion. AIM: To explore clinical evidence regarding the application of DCEUS in the differential diagnosis of liver nodules. METHODS: A comprehensive literature search of clinical studies was performed to identify the parameters of DCEUS that could relate to histological diagnosis. In accordance with the study protocol, a qualitative and quantitative analysis of the evidence was planned. RESULTS: Rise time was significantly higher in HCC patients with a standardized mean difference (SMD) of 0.83 (95%CI: 0.48-1.18). Similarly, other statistically significant parameters were mean transit time local with a SMD of 0.73 (95%CI: 0.20-1.27), peak enhancement with a SMD of 0.37 (95%CI: 0.03-0.70), area wash-in area under the curve with a SMD of 0.47 (95%CI: 0.13-0.81), wash-out area under the curve with a SMD of 0.55 (95%CI: 0.21-0.89) and wash-in and wash-out area under the curve with SMD of 0.51 (95%CI: 0.17-0.85). SMD resulted not significant in fall time and wash-in rate, but the latter presented a trend towards greater values in HCC compared to intrahepatic cholangiocarcinoma. CONCLUSION: DCEUS could improve non-invasive diagnosis of HCC, leading to less liver biopsy and early treatment. This quantitative analysis needs to be applied on larger cohorts to confirm these preliminary results.

6.
Res Sq ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38947100

ABSTRACT

Purpose: Best current practice in the analysis of dynamic contrast enhanced (DCE)-MRI is to employ a voxel-by-voxel model selection from a hierarchy of nested models. This nested model selection (NMS) assumes that the observed time-trace of contrast-agent (CA) concentration within a voxel, corresponds to a singular physiologically nested model. However, admixtures of different models may exist within a voxel's CA time-trace. This study introduces an unsupervised feature engineering technique (Kohonen-Self-Organizing-Map (K-SOM)) to estimate the voxel-wise probability of each nested model. Methods: Sixty-six immune-compromised-RNU rats were implanted with human U-251N cancer cells, and DCE-MRI data were acquired from all the rat brains. The time-trace of change in the longitudinalrelaxivity Δ R 1 for all animals' brain voxels was calculated. DCE-MRI pharmacokinetic (PK) analysis was performed using NMS to estimate three model regions: Model-1: normal vasculature without leakage, Model-2: tumor tissues with leakage without back-flux to the vasculature, Model-3: tumor vessels with leakage and back-flux. Approximately two hundred thirty thousand (229,314) normalized Δ R 1 profiles of animals' brain voxels along with their NMS results were used to build a K-SOM (topology-size: 8×8, with competitive-learning algorithm) and probability map of each model. K-fold nested-cross-validation (NCV, k=10) was used to evaluate the performance of the K-SOM probabilistic-NMS (PNMS) technique against the NMS technique. Results: The K-SOM PNMS's estimation for the leaky tumor regions were strongly similar (Dice-Similarity-Coefficient, DSC=0.774 [CI: 0.731-0.823], and 0.866 [CI: 0.828-0.912] for Models 2 and 3, respectively) to their respective NMS regions. The mean-percent-differences (MPDs, NCV, k=10) for the estimated permeability parameters by the two techniques were: -28%, +18%, and +24%, for v p , K trans , and v e , respectively. The KSOM-PNMS technique produced microvasculature parameters and NMS regions less impacted by the arterial-input-function dispersion effect. Conclusion: This study introduces an unsupervised model-averaging technique (K-SOM) to estimate the contribution of different nested-models in PK analysis and provides a faster estimate of permeability parameters.

7.
Front Oncol ; 14: 1356173, 2024.
Article in English | MEDLINE | ID: mdl-38860001

ABSTRACT

Purpose: The primary aim of this study was to explore whether intravoxel incoherent motion (IVIM) can offer a contrast-agent-free alternative to dynamic contrast-enhanced (DCE)-MRI for measuring breast tumor perfusion. The secondary aim was to investigate the relationship between tissue diffusion measures from DWI and DCE-MRI measures of the tissue interstitial and extracellular volume fractions. Materials and methods: A total of 108 paired DWI and DCE-MRI scans were acquired at 1.5 T from 40 patients with primary breast cancer (median age: 44.5 years) before and during neoadjuvant chemotherapy (NACT). DWI parameters included apparent diffusion coefficient (ADC), tissue diffusion (Dt), pseudo-diffusion coefficient (Dp), perfused fraction (f), and the product f×Dp (microvascular blood flow). DCE-MRI parameters included blood flow (Fb), blood volume fraction (vb), interstitial volume fraction (ve) and extracellular volume fraction (vd). All were extracted from three tumor regions of interest (whole-tumor, ADC cold-spot, and DCE-MRI hot-spot) at three MRI visits: pre-treatment, after one, and three cycles of NACT. Spearman's rank correlation was used for assessing between-subject correlations (r), while repeated measures correlation was employed to assess within-subject correlations (rrm) across visits between DWI and DCE-MRI parameters in each region. Results: No statistically significant between-subject or within-subject correlation was found between the perfusion parameters estimated by IVIM and DCE-MRI (f versus vb and f×Dp versus Fb; P=0.07-0.81). Significant moderate positive between-subject and within-subject correlations were observed between ADC and ve (r=0.461, rrm=0.597) and between Dt and ve (r=0.405, rrm=0.514) as well as moderate positive within-subject correlations between ADC and vd and between Dt and vd (rrm=0.619 and 0.564, respectively) in the whole-tumor region. Conclusion: No correlations were observed between the perfusion parameters estimated by IVIM and DCE-MRI. This may be attributed to imprecise estimates of fxDp and vb, or an underlying difference in what IVIM and DCE-MRI measure. Care should be taken when interpreting the IVIM parameters (f and f×Dp) as surrogates for those measured using DCE-MRI. However, the moderate positive correlations found between ADC and Dt and the DCE-MRI parameters ve and vd confirms the expectation that as the interstitial and extracellular volume fractions increase, water diffusion increases.

8.
Acta Radiol ; : 2841851241259924, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38881364

ABSTRACT

BACKGROUND: Few studies have investigated the feasibility of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) using a free-breathing golden-angle radial stack-of-stars volume-interpolated breath-hold examination (FB radial VIBE) sequence in the lung. PURPOSE: To investigate whether DCE-MRI using the FB radial VIBE sequence can assess morphological and kinetic parameters in patients with pulmonary lesions, with computed tomography (CT) as the reference. MATERIAL AND METHODS: In total, 43 patients (30 men; mean age = 64 years) with one lesion each were prospectively enrolled. Morphological and kinetic features on MRI were calculated. The diagnostic performance of morphological MR features was evaluated using a receiver operating characteristic (ROC) curve. Kinetic features were compared among subgroups based on histopathological subtype, lesion size, and lymph node metastasis. RESULTS: The maximum diameter was not significantly different between CT and MRI (3.66 ± 1.62 cm vs. 3.64 ± 1.72 cm; P = 0.663). Spiculation, lobulation, cavitation or bubble-like areas of low attenuation, and lymph node enlargement had an area under the ROC curve (AUC) >0.9, while pleural indentation yielded an AUC of 0.788. The lung cancer group had significantly lower Ktrans, Ve, and initial AUC values than the other cause inflammation group (0.203, 0.158, and 0.589 vs. 0.597, 0.385, and 1.626; P < 0.05) but significantly higher values than the tuberculosis group (P < 0.05). CONCLUSION: Morphology features derived from FB radial VIBE have high correlations with CT, and kinetic analyses show significant differences between benign and malignant lesions. DCE-MRI with FB radial VIBE could serve as a complementary quantification tool to CT for radiation-free assessments of lung lesions.

9.
Neural Netw ; 178: 106426, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38878640

ABSTRACT

Multi-phase dynamic contrast-enhanced magnetic resonance imaging image registration makes a substantial contribution to medical image analysis. However, existing methods (e.g., VoxelMorph, CycleMorph) often encounter the problem of image information misalignment in deformable registration tasks, posing challenges to the practical application. To address this issue, we propose a novel smooth image sampling method to align full organic information to realize detail-preserving image warping. In this paper, we clarify that the phenomenon about image information mismatch is attributed to imbalanced sampling. Then, a sampling frequency map constructed by sampling frequency estimators is utilized to instruct smooth sampling by reducing the spatial gradient and discrepancy between all-ones matrix and sampling frequency map. In addition, our estimator determines the sampling frequency of a grid voxel in the moving image by aggregating the sum of interpolation weights from warped non-grid sampling points in its vicinity and vectorially constructs sampling frequency map through projection and scatteration. We evaluate the effectiveness of our approach through experiments on two in-house datasets. The results showcase that our method preserves nearly complete details with ideal registration accuracy compared with several state-of-the-art registration methods. Additionally, our method exhibits a statistically significant difference in the regularity of the registration field compared to other methods, at a significance level of p < 0.05. Our code will be released at https://github.com/QingRui-Sha/SFM.

10.
Bioengineering (Basel) ; 11(6)2024 May 31.
Article in English | MEDLINE | ID: mdl-38927793

ABSTRACT

In DCE-MRI, the degree of contrast uptake in normal fibroglandular tissue, i.e., background parenchymal enhancement (BPE), is a crucial biomarker linked to breast cancer risk and treatment outcome. In accordance with the Breast Imaging Reporting & Data System (BI-RADS), it should be visually classified into four classes. The susceptibility of such an assessment to inter-reader variability highlights the urgent need for a standardized classification algorithm. In this retrospective study, the first post-contrast subtraction images for 27 healthy female subjects were included. The BPE was classified slice-wise by two expert radiologists. The extraction of radiomic features from segmented BPE was followed by dataset splitting and dimensionality reduction. The latent representations were then utilized as inputs to a deep neural network classifying BPE into BI-RADS classes. The network's predictions were elucidated at the radiomic feature level with Shapley values. The deep neural network achieved a BPE classification accuracy of 84 ± 2% (p-value < 0.00001). Most of the misclassifications involved adjacent classes. Different radiomic features were decisive for the prediction of each BPE class underlying the complexity of the decision boundaries. A highly precise and explainable pipeline for BPE classification was achieved without user- or algorithm-dependent radiomic feature selection.

11.
Cancers (Basel) ; 16(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38893075

ABSTRACT

BACKGROUND: The decreased perfusion of osteosarcoma in dynamic contrast-enhanced (DCE) MRI, reflecting a good histological response to neoadjuvant chemotherapy, has been described. PURPOSE: In this study, we aim to explore the potential of the relative wash-in rate as a prognostic factor for event-free survival (EFS). METHODS: Skeletal high-grade osteosarcoma patients, treated in two tertiary referral centers between 2005 and 2022, were retrospectively included. The relative wash-in rate (rWIR) was determined with DCE-MRI before, after, or during the second cycle of chemotherapy (pre-resection). A previously determined cut-off was used to categorize patients, where rWIR < 2.3 was considered poor and rWIR ≥ 2.3 a good radiological response. EFS was defined as the time from resection to the first event: local recurrence, new metastases, or tumor-related death. EFS was estimated using Kaplan-Meier's methodology. Multivariate Cox proportional hazard model was used to estimate the effect of histological response and rWIR on EFS, adjusted for traditional prognostic factors. RESULTS: Eighty-two patients (median age: 17 years; IQR: 14-28) were included. The median follow-up duration was 11.8 years (95% CI: 11.0-12.7). During follow-up, 33 events occurred. Poor histological response was not significantly associated with EFS (HR: 1.8; 95% CI: 0.9-3.8), whereas a poor radiological response was associated with a worse EFS (HR: 2.4; 95% CI: 1.1-5.0). In a subpopulation without initial metastases, the binary assessment of rWIR approached statistical significance (HR: 2.3; 95% CI: 1.0-5.2), whereas its continuous evaluation demonstrated a significant association between higher rWIR and improved EFS (HR: 0.7; 95% CI: 0.5-0.9), underlining the effect of response to chemotherapy. The 2- and 5-year EFS for patients with a rWIR ≥ 2.3 were 85% and 75% versus 55% and 50% for patients with a rWIR < 2.3. CONCLUSION: The predicted poor chemo response with MRI (rWIR < 2.3) is associated with shorter EFS even when adjusted for known clinical covariates and shows similar results to histological response evaluation. rWIR is a potential tool for future response-based individualized healthcare in osteosarcoma patients before surgical resection.

12.
Insights Imaging ; 15(1): 149, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38886267

ABSTRACT

OBJECTIVES: To construct a combined model based on bi-regional quantitative dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), as well as clinical-radiological (CR) features for predicting microvascular invasion (MVI) in solitary Barcelona Clinic Liver Cancer (BCLC) stage A hepatocellular carcinoma (HCC), and to assess its ability for stratifying the risk of recurrence after hepatectomy. METHODS: Patients with solitary BCLC stage A HCC were prospective collected and randomly divided into training and validation sets. DCE perfusion parameters were obtained both in intra-tumoral region (ITR) and peritumoral region (PTR). Combined DCE perfusion parameters (CDCE) were constructed to predict MVI. The combined model incorporating CDCE and CR features was developed and evaluated. Kaplan-Meier method was used to investigate the prognostic significance of the model and the survival benefits of different hepatectomy approaches. RESULTS: A total of 133 patients were included. Total blood flow in ITR and arterial fraction in PTR exhibited the best predictive performance for MVI with areas under the curve (AUCs) of 0.790 and 0.792, respectively. CDCE achieved AUCs of 0.868 (training set) and 0.857 (validation set). A combined model integrated with the α-fetoprotein, corona enhancement, two-trait predictor of venous invasion, and CDCE could improve the discrimination ability to AUCs of 0.966 (training set) and 0.937 (validation set). The combined model could stratify the prognosis of HCC patients. Anatomical resection was associated with a better prognosis in the high-risk group (p < 0.05). CONCLUSION: The combined model integrating DCE perfusion parameters and CR features could be used for MVI prediction in HCC patients and assist clinical decision-making. CRITICAL RELEVANCE STATEMENT: The combined model incorporating bi-regional DCE-MRI perfusion parameters and CR features predicted MVI preoperatively, which could stratify the risk of recurrence and aid in optimizing treatment strategies. KEY POINTS: Microvascular invasion (MVI) is a significant predictor of prognosis for hepatocellular carcinoma (HCC). Quantitative DCE-MRI could predict MVI in solitary BCLC stage A HCC; the combined model improved performance. The combined model could help stratify the risk of recurrence and aid treatment planning.

13.
J Egypt Natl Canc Inst ; 36(1): 20, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38853190

ABSTRACT

BACKGROUND: The goal is to use three different machine learning models to predict the recurrence of breast cancer across a very heterogeneous sample of patients with varying disease kinds and stages. METHODS: A heterogeneous group of patients with varying cancer kinds and stages, including both triple-negative breast cancer (TNBC) and non-triple-negative breast cancer (non-TNBC), was examined. Three distinct models were created using the following five machine learning techniques: Adaptive Boosting (AdaBoost), Random Under-sampling Boosting (RUSBoost), Extreme Gradient Boosting (XGBoost), support vector machines (SVM), and Logistic Regression. The clinical model used both clinical and pathology data in conjunction with the machine learning algorithms. The machine learning algorithms were combined with dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) imaging characteristics in the radiomic model, and the merged model combined the two types of data. Each technique was evaluated using several criteria, including the receiver operating characteristic (ROC) curve, precision, recall, and F1 score. RESULTS: The results suggest that the integration of clinical and radiomic data improves the predictive accuracy in identifying instances of breast cancer recurrence. The XGBoost algorithm is widely recognized as the most effective algorithm in terms of performance. CONCLUSION: The findings presented in this study offer significant contributions to the field of breast cancer research, particularly in relation to the prediction of cancer recurrence. These insights hold great potential for informing future investigations and clinical interventions that seek to enhance the accuracy and effectiveness of recurrence prediction in breast cancer patients.


Subject(s)
Breast Neoplasms , Machine Learning , Magnetic Resonance Imaging , Neoplasm Recurrence, Local , Humans , Female , Neoplasm Recurrence, Local/diagnostic imaging , Neoplasm Recurrence, Local/pathology , Magnetic Resonance Imaging/methods , Retrospective Studies , Middle Aged , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Adult , Algorithms , ROC Curve , Aged , Support Vector Machine , Prognosis , Triple Negative Breast Neoplasms/diagnostic imaging , Triple Negative Breast Neoplasms/pathology , Neoplasm Staging , Radiomics
14.
J Immunother Cancer ; 12(6)2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38910009

ABSTRACT

PURPOSE: This study aimed to investigate the prognostic significance of pretreatment dynamic contrast-enhanced (DCE)-MRI parameters concerning tumor response following induction immunochemotherapy and survival outcomes in patients with locally advanced non-small cell lung cancer (NSCLC) who underwent immunotherapy-based multimodal treatments. MATERIAL AND METHODS: Unresectable stage III NSCLC patients treated by induction immunochemotherapy, concurrent chemoradiotherapy (CCRT) with or without consolidative immunotherapy from two prospective clinical trials were screened. Using the two-compartment Extend Tofts model, the parameters including Ktrans, Kep, Ve, and Vp were calculated from DCE-MRI data. The apparent diffusion coefficient was calculated from diffusion-weighted-MRI data. The receiver operating characteristic (ROC) curve and the area under the curve (AUC) were used to assess the predictive performance of MRI parameters. The Cox regression model was used for univariate and multivariate analysis. RESULTS: 111 unresectable stage III NSCLC patients were enrolled. Patients received two cycles of induction immunochemotherapy and CCRT, with or without consolidative immunotherapy. With the median follow-up of 22.3 months, the median progression-free survival (PFS) and overall survival (OS) were 16.3 and 23.8 months. The multivariate analysis suggested that Eastern Cooperative Oncology Group score, TNM stage and the response to induction immunochemotherapy were significantly related to both PFS and OS. After induction immunochemotherapy, 67 patients (59.8%) achieved complete response or partial response and 44 patients (40.2%) had stable disease or progressive disease. The Ktrans of primary lung tumor before induction immunochemotherapy yielded the best performance in predicting the treatment response, with an AUC of 0.800. Patients were categorized into two groups: high-Ktrans group (n=67, Ktrans>164.3×10-3/min) and low-Ktrans group (n=44, Ktrans≤164.3×10-3/min) based on the ROC analysis. The high-Ktrans group had a significantly higher objective response rate than the low-Ktrans group (85.1% (57/67) vs 22.7% (10/44), p<0.001). The high-Ktrans group also presented better PFS (median: 21.1 vs 11.3 months, p=0.002) and OS (median: 34.3 vs 15.6 months, p=0.035) than the low-Ktrans group. CONCLUSIONS: Pretreatment Ktrans value emerged as a significant predictor of the early response to induction immunochemotherapy and survival outcomes in unresectable stage III NSCLC patients who underwent immunotherapy-based multimodal treatments. Elevated Ktrans values correlated positively with enhanced treatment response, leading to extended PFS and OS durations.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Chemoradiotherapy , Immunotherapy , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/therapy , Carcinoma, Non-Small-Cell Lung/mortality , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Female , Male , Chemoradiotherapy/methods , Lung Neoplasms/therapy , Lung Neoplasms/mortality , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Middle Aged , Aged , Immunotherapy/methods , Adult , Magnetic Resonance Imaging/methods , Contrast Media , Treatment Outcome , Induction Chemotherapy , Neoplasm Staging , Prospective Studies
15.
Ultrasound Med Biol ; 50(8): 1194-1202, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38734528

ABSTRACT

OBJECTIVES: To assess the value of 3D multiparametric ultrasound imaging, combining hemodynamic and tissue stiffness quantifications by machine learning, for the prediction of prostate biopsy outcomes. METHODS: After signing informed consent, 54 biopsy-naïve patients underwent a 3D dynamic contrast-enhanced ultrasound (DCE-US) recording, a multi-plane 2D shear-wave elastography (SWE) scan with manual sweeping from base to apex of the prostate, and received 12-core systematic biopsies (SBx). 3D maps of 18 hemodynamic parameters were extracted from the 3D DCE-US quantification and a 3D SWE elasticity map was reconstructed based on the multi-plane 2D SWE acquisitions. Subsequently, all the 3D maps were segmented and subdivided into 12 regions corresponding to the SBx locations. Per region, the set of 19 computed parameters was further extended by derivation of eight radiomic features per parameter. Based on this feature set, a multiparametric ultrasound approach was implemented using five different classifiers together with a sequential floating forward selection method and hyperparameter tuning. The classification accuracy with respect to the biopsy reference was assessed by a group-k-fold cross-validation procedure, and the performance was evaluated by the Area Under the Receiver Operating Characteristics Curve (AUC). RESULTS: Of the 54 patients, 20 were found with clinically significant prostate cancer (csPCa) based on SBx. The 18 hemodynamic parameters showed mean AUC values varying from 0.63 to 0.75, and SWE elasticity showed an AUC of 0.66. The multiparametric approach using radiomic features derived from hemodynamic parameters only produced an AUC of 0.81, while the combination of hemodynamic and tissue-stiffness quantifications yielded a significantly improved AUC of 0.85 for csPCa detection (p-value < 0.05) using the Gradient Boosting classifier. CONCLUSIONS: Our results suggest 3D multiparametric ultrasound imaging combining hemodynamic and tissue-stiffness features to represent a promising diagnostic tool for biopsy outcome prediction, aiding in csPCa localization.


Subject(s)
Elasticity Imaging Techniques , Imaging, Three-Dimensional , Prostate , Prostatic Neoplasms , Ultrasonography , Humans , Male , Prostate/diagnostic imaging , Prostate/pathology , Middle Aged , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology , Aged , Imaging, Three-Dimensional/methods , Elasticity Imaging Techniques/methods , Ultrasonography/methods , Predictive Value of Tests , Biopsy
16.
Diagnostics (Basel) ; 14(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38732285

ABSTRACT

Tofts models have failed to produce reliable quantitative markers for prostate cancer. We examined the differences between prostate zones and lesion PI-RADS categories and grade group (GG) using regions of interest drawn in tumor and normal-appearing tissue for a two-compartment uptake (2CU) model (including plasma volume (vp), plasma flow (Fp), permeability surface area product (PS), plasma mean transit time (MTTp), capillary transit time (Tc), extraction fraction (E), and transfer constant (Ktrans)) and exponential (amplitude (A), arrival time (t0), and enhancement rate (α)), sigmoidal (amplitude (A0), center time relative to arrival time (A1 - T0), and slope (A2)), and empirical mathematical models, and time to peak (TTP) parameters fitted to high temporal resolution (1.695 s) DCE-MRI data. In 25 patients with 35 PI-RADS category 3 or higher tumors, we found Fp and α differed between peripheral and transition zones. Parameters Fp, MTTp, Tc, E, α, A1 - T0, and A2 and TTP all showed associations with PI-RADS categories and with GG in the PZ when normal-appearing regions were included in the non-cancer GG. PS and Ktrans were not associated with any PI-RADS category or GG. This pilot study suggests early enhancement parameters derived from ultrafast DCE-MRI may become markers of prostate cancer.

17.
Jpn J Radiol ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789911

ABSTRACT

PURPOSE: A classification-based segmentation method is proposed to quantify synovium in rheumatoid arthritis (RA) patients using a deep learning (DL) method based on time-intensity curve (TIC) analysis in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). MATERIALS AND METHODS: This retrospective study analyzed a hand MR dataset of 28 RA patients (six males, mean age 53.7 years). A researcher, under expert guidance, used in-house software to delineate regions of interest (ROIs) for hand muscles, bones, and synovitis, generating a dataset with 27,255 pixels with corresponding TICs (muscle: 11,413, bone: 8502, synovitis: 7340). One experienced musculoskeletal radiologist performed ground truth segmentation of enhanced pannus in the joint bounding box on the 10th DCE phase, or around 5 min after contrast injection. Data preprocessing included median filtering for noise reduction, phase-only correlation algorithm for motion correction, and contrast-limited adaptive histogram equalization for improved image contrast and noise suppression. TIC intensity values were normalized using zero-mean normalization. A DL model with dilated causal convolution and SELU activation function was developed for enhanced pannus segmentation, tested using leave-one-out cross-validation. RESULTS: 407 joint bounding boxes were manually segmented, with 129 synovitis masks. On the pixel-based level, the DL model achieved sensitivity of 85%, specificity of 98%, accuracy of 99% and precision of 84% for enhanced pannus segmentation, with a mean Dice score of 0.73. The false-positive rate for predicting cases without synovitis was 0.8%. DL-measured enhanced pannus volume strongly correlated with ground truth at both pixel-based (r = 0.87, p < 0.001) and patient-based levels (r = 0.84, p < 0.001). Bland-Altman analysis showed the mean difference for hand joints at the pixel-based and patient-based levels were -9.46 mm3 and -50.87 mm3, respectively. CONCLUSION: Our DL-based DCE-MRI TIC shape analysis has the potential for automatic segmentation and quantification of enhanced synovium in the hands of RA patients.

18.
Acta Radiol ; : 2841851241246364, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715339

ABSTRACT

BACKGROUND: Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) with an extended Tofts linear (ETL) model for tissue and tumor evaluation has been established, but its effectiveness in evaluating the pancreas remains uncertain. PURPOSE: To understand the pharmacokinetics of normal pancreas and serve as a reference for future studies of pancreatic diseases. MATERIAL AND METHODS: Pancreatic pharmacokinetic parameters of 54 volunteers were calculated using DCE-MRI with the ETL model. First, intra- and inter-observer reliability was assessed through the use of the intra-class correlation coefficient (ICC) and coefficient of variation (CoV). Second, a subgroup analysis of the pancreatic DCE-MRI pharmacokinetic parameters was carried out by dividing the 54 individuals into three groups based on the pancreatic region, three groups based on age, and two groups based on sex. RESULTS: There was excellent agreement and low variability of intra- and inter-observer to pancreatic DCE-MRI pharmacokinetic parameters. The intra- and inter-observer ICCs of Ktrans, kep, ve, and vp were 0.971, 0.952, 0.959, 0.944 and 0.947, 0.911, 0.978, 0.917, respectively. The intra- and inter-observer CoVs of Ktrans, kep, ve, vp were 9.98%, 5.99%, 6.47%, 4.76% and 10.15%, 5.22%, 6.28%, 5.40%, respectively. Only the pancreatic ve of the older group was higher than that of the young and middle-aged groups (P = 0.042, 0.001), and the vp of the pancreatic head was higher than that of the pancreatic body and tail (P = 0.014, 0.043). CONCLUSION: The application of DCE-MRI with an ETL model provides a reliable, robust, and reproducible means of non-invasively quantifying pancreatic pharmacokinetic parameters.

19.
J Biomed Opt ; 29(6): 066003, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38745983

ABSTRACT

Significance: Necrotizing soft-tissue infections (NSTIs) are life-threatening infections with a cumulative case fatality rate of 21%. The initial presentation of an NSTI is non-specific, frequently leading to misdiagnosis and delays in care. No current strategies yield an accurate, real-time diagnosis of an NSTI. Aim: A first-in-kind, observational, clinical pilot study tested the hypothesis that measurable fluorescence signal voids occur in NSTI-affected tissues following intravenous administration and imaging of perfusion-based indocyanine green (ICG) fluorescence. This hypothesis is based on the established knowledge that NSTI is associated with local microvascular thrombosis. Approach: Adult patients presenting to the Emergency Department of a tertiary care medical center at high risk for NSTI were prospectively enrolled and imaged with a commercial fluorescence imager. Single-frame fluorescence snapshot and first-pass perfusion kinetic parameters-ingress slope (IS), time-to-peak (TTP) intensity, and maximum fluorescence intensity (IMAX)-were quantified using a dynamic contrast-enhanced fluorescence imaging technique. Clinical variables (comorbidities, blood laboratory values), fluorescence parameters, and fluorescence signal-to-background ratios (SBRs) were compared to final infection diagnosis. Results: Fourteen patients were enrolled and imaged (six NSTI, six cellulitis, one diabetes mellitus-associated gangrene, and one osteomyelitis). Clinical variables demonstrated no statistically significant differences between NSTI and non-NSTI patient groups (p-value≥0.22). All NSTI cases exhibited prominent fluorescence signal voids in affected tissues, including tissue features not visible to the naked eye. All cellulitis cases exhibited a hyperemic response with increased fluorescence and no distinct signal voids. Median lesion-to-background tissue SBRs based on snapshot, IS, TTP, and IMAX parameter maps ranged from 3.2 to 9.1, 2.2 to 33.8, 1.0 to 7.5, and 1.5 to 12.7, respectively, for the NSTI patient group. All fluorescence parameters except TTP demonstrated statistically significant differences between NSTI and cellulitis patient groups (p-value<0.05). Conclusions: Real-time, accurate discrimination of NSTIs compared with non-necrotizing infections may be possible with perfusion-based ICG fluorescence imaging.


Subject(s)
Indocyanine Green , Optical Imaging , Soft Tissue Infections , Humans , Indocyanine Green/chemistry , Female , Male , Soft Tissue Infections/diagnostic imaging , Middle Aged , Optical Imaging/methods , Pilot Projects , Aged , Prospective Studies , Adult , Necrosis/diagnostic imaging
20.
J Magn Reson Imaging ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807358

ABSTRACT

BACKGROUND: Challenges persist in achieving automatic and efficient inflammation quantification using dynamic contrast-enhanced (DCE) MRI in rheumatoid arthritis (RA) patients. PURPOSE: To investigate an automatic artificial intelligence (AI) approach and an optimized dynamic MRI protocol for quantifying disease activity in RA in whole hands while excluding arterial pixels. STUDY TYPE: Retrospective. SUBJECTS: Twelve RA patients underwent DCE-MRI with 27 phases for creating the AI model and tested on images with a variable number of phases from 35 RA patients. FIELD STRENGTH/SEQUENCE: 3.0 T/DCE T1-weighted gradient echo sequence (mDixon, water image). ASSESSMENT: The model was trained with various DCE-MRI time-intensity number of phases. Evaluations were conducted for similarity between AI segmentation and manual outlining in 51 ROIs with synovitis. The relationship between synovial volume via AI segmentation with rheumatoid arthritis magnetic resonance imaging scoring (RAMRIS) across whole hands was then evaluated. The reference standard was determined by an experienced musculoskeletal radiologist. STATISTICAL TEST: Area under the curve (AUC) of receiver operating characteristic (ROC), Dice and Spearman's rank correlation coefficients, and interclass correlation coefficient (ICC). A P-value <0.05 was considered statistically significant. RESULTS: A minimum of 15 phases (acquisition time at least 2.5 minutes) was found to be necessary. AUC ranged from 0.941 ± 0.009 to 0.965 ± 0.009. The Dice score was 0.557-0.615. Spearman's correlation coefficients between the AI model and ground truth were 0.884-0.927 and 0.736-0.831, for joint ROIs and whole hands, respectively. The Spearman's correlation coefficient for the additional test set between the model trained with 15 phases and RAMRIS was 0.768. CONCLUSION: The AI-based classification model effectively identified synovitis pixels while excluding arteries. The optimal performance was achieved with at least 15 phases, providing a quantitative assessment of inflammatory activity in RA while minimizing acquisition time. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 2.

SELECTION OF CITATIONS
SEARCH DETAIL
...