Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.418
Filter
1.
Cancers (Basel) ; 16(13)2024 Jun 22.
Article in English | MEDLINE | ID: mdl-39001361

ABSTRACT

Cadherins are cell-cell adhesion proteins which have been strongly implicated in cancer invasion, dissemination and metastasis capacity; thus, they are key players in the epithelial-to-mesenchymal transition (EMT) program. However, their role in glioblastoma (GBM), a primary central nervous system aggressive tumor, remains to be clarified. N-, E- and P-cadherin expression was analyzed on a large series of GBMs, characterized with clinical, imaging and neuropathological parameters, as well as with patients' survival data. In addition, cadherins' expression was studied in match-recurrent cases. Using TCGA data, cadherin expression profiles were also evaluated according to GBM transcription subtypes. N-cadherin expression was observed in 81.5% of GBM, followed by E-cadherin in 31% and P-cadherin in 20.8%. Upon tumor recurrence, P-cadherin was the only significantly upregulated cadherin compared with the primary tumor, being positive in 65.8% of the cases. Actually, P-cadherin gain was observed in 51.4% of matched primary-recurrent cases. Cadherins' co-expression was also explored. Interestingly, E- and N-cadherin co-expression identified a GBM subgroup with frequent epithelial differentiation and a significant survival benefit. On the other hand, subgroups with P-cadherin expression carried the worse prognosis. P- and N-cadherin co-expression correlated with the presence of a mesenchymal phenotype. Expressions of isolated P-cadherin or E- and P-cadherin co-expression were associated with imaging characteristics of aggressiveness, to highly heterogeneous tumors, an d to worse patient survival. Classical cadherins co-expression subgroups present consistent clinical, imaging, neuropathological and survival differences, which probably reflect different states of an EMT-like program in GBM.

2.
World J Nephrol ; 13(2): 95410, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38983761

ABSTRACT

Renal epithelial-to-mesenchymal transition (EMT) is a process in which epithelial cells undergo biochemical changes and transform into mesenchymal-like cells, resulting in renal abnormalities, including fibrosis. EMT can cause diabetic nephropathy through triggering kidney fibrosis, inflammation, and functional impairment. The diverse molecular pathways that drive EMT-mediated renal fibrosis are not utterly known. Targeting key signaling pathways involved in EMT may help ameliorate diabetic nephropathy and improve renal function. In such settings, understanding precisely the complicated signaling networks is critical for developing customized therapies to intervene in EMT-mediated diabetic nephropathy.

3.
Front Oral Health ; 5: 1425937, 2024.
Article in English | MEDLINE | ID: mdl-39035711

ABSTRACT

Introduction: Degradation of host proteins by bacterial proteases leads to the subversion of the host response and disruption of oral epithelial integrity, which is considered an essential factor in the progression of periodontitis. High-temperature requirement A (HtrA) protease, which is critical for bacterial survival and environmental adaptation, is found in several oral bacteria, including the periodontal pathogen Tannerella forsythia. This study investigated the proteolytic activity of HtrA from T. forsythia and its ability to modulate the host response. Methods: HtrA of T. forsythia was identified bioinformatically and produced as a recombinant protein. T. forsythia mutants with depleted and restored HtrA production were constructed. The effect of T. forsythia wild-type, mutants and recombinant HtrA on the degradation of casein and E-cadherin was tested in vitro. Additionally, the responses of human gingival fibroblasts and U937 macrophages to the different HtrA-stimuli were investigated and compared to those triggered by the HtrA-deficient mutant. Results: T. forsythia wild-type producing HtrA as well as the recombinant enzyme exhibited proteolytic activity towards casein and E-cadherin. No cytotoxic effect of either the wild-type, T. forsythia mutants or rHtrA on the viability of host cells was found. In hGFB and U937 macrophages, both T. forsythia species induced an inflammatory response of similar magnitude, as indicated by gene and protein expression of interleukin (IL)-1ß, IL-6, IL-8, tumour necrosis factor α and monocyte chemoattractant protein (MCP)-1. Recombinant HtrA had no significant effect on the inflammatory response in hGFBs, whereas in U937 macrophages, it induced a transient inflammatory response at the early stage of infection. Conclusion: HtrA of T. forsythia exhibit proteolytic activity towards the host adhesion molecule E-cadherin and has the potential to influence the host response. Its role in the progression of periodontitis needs further clarification.

4.
Med Mol Morphol ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39039188

ABSTRACT

The current study aims to evaluate the levels of miR-34a, RASSF1A, and E-cadherin in relation to the levels of isoform B of progesterone receptor (PRB) in endometrioid carcinoma (EC) and atypical hyperplasia (AEH) and their association with clinicopathological parameters. 105 cases (35 EC, 35 AEH, and 35 control) were involved in this study. Cases of AEH received treatment, and other samples were obtained after 6 months to assess the response. E-cadherin and PRB were assessed by immunohistochemistry (IHC), RASSFA methylation by MSP-PCR, and its serum level by ELISA and miR-34a via quantitative PCR. The expressions of miR-34a, RASSF1A, E-cadherin, and PRB differ among the studied groups; all were higher in normal compared with AEH and EC, with a statistically significant difference. The higher PRB expression and decreased miR-34a and RASSF1A expression were associated with resistance to hormonal therapy in AEH. High PRB in EC is associated with lower RASSFA1, E-cadherin, and miR-34a. Decreased expressions of RASSF1A, miR-34a, and E-cadherin had a significant connection to advanced stages. Expression of PRB and miR-34a and serum levels of RASSF1A predict response to treatment in cases of AEH. High PRB and low E-cadherin expression are associated with progressive disease in EC.

5.
Int J Mol Sci ; 25(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39000189

ABSTRACT

Impaired E-cadherin (Cdh1) functions are closely associated with cellular dedifferentiation, infiltrative tumor growth and metastasis, particularly in gastric cancer. The class-I carcinogen Helicobacter pylori (H. pylori) colonizes gastric epithelial cells and induces Cdh1 shedding, which is primarily mediated by the secreted bacterial protease high temperature requirement A (HtrA). In this study, we used human primary epithelial cell lines derived from gastroids and mucosoids from different healthy donors to investigate HtrA-mediated Cdh1 cleavage and the subsequent impact on bacterial pathogenesis in a non-neoplastic context. We found a severe impairment of Cdh1 functions by HtrA-induced ectodomain cleavage in 2D primary cells and mucosoids. Since mucosoids exhibit an intact apico-basal polarity, we investigated bacterial transmigration across the monolayer, which was partially depolarized by HtrA, as indicated by microscopy, the analyses of the transepithelial electrical resistance (TEER) and colony forming unit (cfu) assays. Finally, we investigated CagA injection and observed efficient CagA translocation and tyrosine phosphorylation in 2D primary cells and, to a lesser extent, similar effects in mucosoids. In summary, HtrA is a crucially important factor promoting the multistep pathogenesis of H. pylori in non-transformed primary gastric epithelial cells and organoid-based epithelial models.


Subject(s)
Bacterial Proteins , Cadherins , Epithelial Cells , Gastric Mucosa , Helicobacter pylori , Organoids , Humans , Cadherins/metabolism , Organoids/metabolism , Epithelial Cells/metabolism , Epithelial Cells/microbiology , Gastric Mucosa/metabolism , Gastric Mucosa/microbiology , Gastric Mucosa/pathology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Antigens, Bacterial/metabolism , Helicobacter Infections/metabolism , Helicobacter Infections/microbiology , Helicobacter Infections/pathology , Antigens, CD/metabolism , Stomach/microbiology , Stomach/pathology , Cell Line , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Stomach Neoplasms/microbiology , Serine Proteases
6.
Curr Biol ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39013464

ABSTRACT

Adhesion between epithelial cells enables the remarkable mechanical behavior of epithelial tissues during morphogenesis. However, it remains unclear how cell-cell adhesion influences mechanics in both static and dynamically flowing confluent epithelial tissues. Here, we systematically modulate E-cadherin-mediated adhesion in the Drosophila embryo and study the effects on the mechanical behavior of the germband epithelium before and during dramatic tissue remodeling and flow associated with body axis elongation. Before axis elongation, we find that increasing E-cadherin levels produces tissue comprising more elongated cells and predicted to be more fluid-like, providing reduced resistance to tissue flow. During axis elongation, we find that the dominant effect of E-cadherin is tuning the speed at which cells proceed through rearrangement events. Before and during axis elongation, E-cadherin levels influence patterns of actomyosin-dependent forces, supporting the notion that E-cadherin tunes tissue mechanics in part through effects on actomyosin. Notably, the effects of ∼4-fold changes in E-cadherin levels on overall tissue structure and flow are relatively weak, suggesting that the system is tolerant to changes in absolute E-cadherin levels over this range where an intact tissue is formed. Taken together, these findings reveal dual-and sometimes opposing-roles for E-cadherin-mediated adhesion in controlling tissue structure and dynamics in vivo, which result in unexpected relationships between adhesion and flow in confluent tissues.

7.
Heliyon ; 10(12): e33069, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39022057

ABSTRACT

Re-epithelialization is an important step in skin wound healing, referring to the migration, proliferation, and differentiation of keratinocytes around the wound. During this process, the edges of the wound begin to form new epithelial cells, which migrate from the periphery of the wound towards the center, gradually covering the entire wound area. These newly formed epithelial cells proliferate and differentiate, ultimately forming a protective layer over the exposed dermal surface. Wound endogenous electric fields (EFs) are known as the dominant factor to facilitate the epidermal migration to wound center. However, the precise mechanisms by which EFs promote epidermal migration remains elusive. Here, we found that in a model of cultured keratinocyte monolayer in vitro, EFs application reversed the differentiation of cells, as indicated by the reduction of the early differentiation markers K1 and K10. Genetic manipulation confirmed that EFs reversed keratinocyte differentiation through down-regulating the E-cadherin-mediated adhesion. By RNA-sequencing analysis, we screened out Snail as the transcription suppressor of E-cadherin. Snail knockdown abolished the down-regulation of E-cadherin and the reversal of differentiation induced by EFs. KEGG analysis identified PI3K/AKT signaling for Snail induction under EFs. Inhibition of PI3K by LY294002 diminished the EFs-induced AKT activation and Snail augmentation, largely restoring the level of E-cadherin reduced by EFs. Finally, in model of full-thickness skin wounds in pigs, we found that weakening of the wound endogenous EFs by the direction-reversed exogenous EFs resulted in an up-regulation of E-cadherin and earlier differentiation in newly formed epidermis in vivo. Our research suggests that electric fields (EFs) decrease E-cadherin expression by suppressing the PI3K/AKT/Snail pathway, thereby reversing the differentiation of keratinocytes. This discovery provides us with new insights into the role of electric fields in wound healing. EFs intervene in intracellular signaling pathways, inhibiting the expression of E-cadherin, which results in a lower differentiation state of keratinocytes. In this state, keratinocytes exhibit increased migratory capacity, facilitating the migration of epidermal cells and wound reepithelialization.

8.
Mod Pathol ; : 100570, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39025406

ABSTRACT

Invasive lobular carcinomas (ILC) are characterized by a loss of E-cadherin expression and CDH1 gene inactivation. Diagnostic reproducibility for this tumor type is currently suboptimal and could be improved by a better understanding of its histomolecular and clinical heterogeneity. We have analyzed the relationship between presence, type or position of CDH1 mutations, E-cadherin expression and clinicopathological features (including outcome) in a retrospective series of 251 primary ILC with long follow-up (median: 9.5 years). The mutational status of E-cadherin gene (CDH1) was determined by RNA sequencing from frozen tumor samples. E-cadherin immunohistochemistry (IHC) was performed with antibodies directed against the intracellular domain (clone 4A2C7) and the extracellular domain (clone NCH38). IHC expression of p120 and ß-catenin was also assessed in E-cadherin diffusely positive cases. Three major patterns of E-cadherin membrane expression were identified by IHC, with good agreement between the two clones (overall concordance: 83.8%, Kappa 0.67): null/focal expression (≤10%) (72.8% of cases for 4A2C7, 83.8% for NCH38), heterogeneous expression (11-89%) (19.2% of cases for 4A2C7, 6.9% for NCH38) and diffuse expression (≥90%) (8% of cases for 4A2C7, 9.3% for NCH38). E-cadherin membranous expression, when present, was abnormal (incomplete labeling and/or reduced intensity). ILC with diffuse E-cadherin expression showed abnormal ß-catenin or p120-catenin staining in 21% of cases. Interestingly, these cases with diffusely expressed E-cadherin had a CDH1 mutation rate as high as the E-cadherin null/focal cases (∼70%), but were enriched in non-truncating mutations. Regarding CDH1 mutation location, intracytoplasmic domain mutations correlated with a divergent E-cadherin IHC phenotype between the two antibodies (4A2C7 ≤10% / NCH38 ≥10%). Clinico-pathological correlation analyses found that stromal amount (inversely correlated with tumor cellularity) and TILs were less abundant in ILC with E-cadherin null/focal cases. In addition, CDH1 truncating mutations were associated with radio-histological size discordance, and were identified in multivariate survival analysis as an independent poor prognosis factor in terms of metastasis risk and breast cancer related mortality. Overall, our study highlights the importance of the precise mutational status of CDH1 in the clinical, radiological, histological and phenotypic expression of lobular carcinomas. These findings should be taken into account in future attempts to improve diagnostic criteria or methods for ILC, as well as for clinico-biological studies dedicated to this tumor type.

9.
Int J Mol Sci ; 25(11)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38892348

ABSTRACT

Serratia are opportunistic bacteria, causing infections in plants, insects, animals and humans under certain conditions. The development of bacterial infection in the human body involves several stages of host-pathogen interaction, including entry into non-phagocytic cells to evade host immune cells. The facultative pathogen Serratia proteamaculans is capable of penetrating eukaryotic cells. These bacteria synthesize an actin-specific metalloprotease named protealysin. After transformation with a plasmid carrying the protealysin gene, noninvasive E. coli penetrate eukaryotic cells. This suggests that protealysin may play a key role in S. proteamaculans invasion. This review addresses the mechanisms underlying protealysin's involvement in bacterial invasion, highlighting the main findings as follows. Protealysin can be delivered into the eukaryotic cell by the type VI secretion system and/or by bacterial outer membrane vesicles. By cleaving actin in the host cell, protealysin can mediate the reversible actin rearrangements required for bacterial invasion. However, inactivation of the protealysin gene leads to an increase, rather than decrease, in the intensity of S. proteamaculans invasion. This indicates the presence of virulence factors among bacterial protealysin substrates. Indeed, protealysin cleaves the virulence factors, including the bacterial surface protein OmpX. OmpX increases the expression of the EGFR and ß1 integrin, which are involved in S. proteamaculans invasion. It has been shown that an increase in the invasion of genetically modified S. proteamaculans may be the result of the accumulation of full-length OmpX on the bacterial surface, which is not cleaved by protealysin. Thus, the intensity of the S. proteamaculans invasion is determined by the balance between the active protealysin and its substrate OmpX.


Subject(s)
Bacterial Outer Membrane Proteins , Serratia , Serratia/metabolism , Serratia/pathogenicity , Serratia/genetics , Humans , Bacterial Outer Membrane Proteins/metabolism , Bacterial Outer Membrane Proteins/genetics , Virulence Factors/metabolism , Host-Pathogen Interactions , Animals , Actins/metabolism , Metalloproteases/metabolism
10.
Aging (Albany NY) ; 16(12): 10271-10298, 2024 06 12.
Article in English | MEDLINE | ID: mdl-38870263

ABSTRACT

BACKGROUNDS: Gastric carcinoma (GC) is one of the most fatal human malignancies globally, with a median survival time less than 1 year. E-cadherin exerts a crucial role in the development and progression of GC as an adhesive, invasive suppressor gene. Whether reduced E-cadherin has an impact on prognosis, clinicopathological features for GC has been well studied, but no conclusive results has been obtained. METHODS: Eligible studies and relevant data were obtained from PubMed, Elsevier, Embase, Cochrane Library and Web of Science databases until June 30, 2023. A fixed- or random-effects model was used to calculate pooled odds ratios (OR) and 95% confidence intervals (CI). Correlation of E-cadherin expression with overall survival (OS), clinicopathological features and risk factors were evaluated. RESULTS: 36 studies fulfilled the selected criteria. 9048 cases were included. This meta-analysis showed that patients with GC with reduced E-cadherin had unfavourable clinicopathological features and poor OS. The pooled ORs of one-, three- and five-year OS were 0.38 (n = 25 studies, 95%CI: 0.25-0.57, Z = 4.61, P < 0.00001), 0.33 (n = 25 studies, 95% CI: 0.23-0.47, Z = 6.22, P < 0.00001), 0.27 (n = 22 studies, 95% CI: 0.18-0.41, Z = 6.23, P < 0.00001), respectively. Moreover, reduced E-cadherin expression significantly correlated with differentiation grade (OR = 0.29, 95% CI: 0.22-0.39, Z = 8.58, P < 0.00001), depth of invasion (OR = 0.49, 95% CI: 0.36-0.66, Z = 4.58, P < 0.00001), lymphatic node metastasis (OR = 0.49, 95% CI: 0.38-0.64, Z = 5.38, P < 0.00001), distant metastasis (OR = 2.24, 95% CI: 1.62-3.09, Z = 4.88, P < 0.00001), peritoneal metastasis (OR = 2.17, 95% CI: 1.39-3.39, Z = 3.40, P = 0.0007), TNM stage (OR = 0.41, 95% CI: 0.28-0.61, Z = 4.44, P < 0.00001), lymphatic vessel invasion (OR = 1.77, 95% CI: 1.11-2.82, Z = 2.39, P = 0.02), vascular invasion (OR = 1.55, 95% CI: 1.22-1.96, Z = 3.58, P = 0.0003), Lauren type (OR = 0.35, 95% CI: 0.21-0.57, Z = 4.14, P < 0.0001), Borrmann classification (OR = 0.50, 95% CI: 0.25-0.99, Z = 1.97, P = 0.048) and tumor size (≥5 cm vs. <5 cm: OR = 1.73, 95% CI: 1.34-2.23, Z = 4.19, P < 0.0001; ≥6 cm vs. <6 cm: OR = 2.29, 95% CI: 1.51-3.49, Z = 3.87, P = 0.0001). No significant association was observed between reduced E-cadherin expression and liver metastasis, perineural invasion, alcohol consumption, smoking status, familial history, Helicobacter pylori (HP) infection. CONCLUSIONS: The reduced expression of E-cadherin is significantly correlated with poor OS and unfavourable clinicopathological features in GC. The expression level of E-cadherin not only serves as a predictor for disease progression and prognosis in GC but also emerges as a novel therapeutic target.


Subject(s)
Cadherins , Stomach Neoplasms , Stomach Neoplasms/pathology , Stomach Neoplasms/genetics , Stomach Neoplasms/mortality , Stomach Neoplasms/metabolism , Humans , Cadherins/metabolism , Cadherins/genetics , Prognosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Antigens, CD/metabolism , Antigens, CD/genetics , Gene Expression Regulation, Neoplastic
11.
Adv Sci (Weinh) ; : e2402457, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940427

ABSTRACT

Transmembrane protein 52B (TMEM52B), a newly identified tumor-related gene, has been reported to regulate various tumors, yet its role in nasopharyngeal carcinoma (NPC) remains unclear. Transcriptomic analysis of NPC cell lines reveals frequent overexpression of TMEM52B, and immunohistochemical results show that TMEM52B is associated with advanced tumor stage, recurrence, and decreased survival time. Depleting TMEM52B inhibits the proliferation, migration, invasion, and oncogenesis of NPC cells in vivo. TMEM52B encodes two isoforms, TMEM52B-P18 and TMEM52B-P20, differing in their N-terminals. While both isoforms exhibit similar pro-oncogenic roles and contribute to drug resistance in NPC, TMEM52B-P20 differentially promotes metastasis. This functional discrepancy may be attributed to their distinct subcellular localization; TMEM52B-P18 is confined to the cytoplasm, while TMEM52B-P20 is found both at the cell membrane and in the cytoplasm. Mechanistically, cytoplasmic TMEM52B enhances AKT phosphorylation by interacting with phosphoglycerate kinase 1 (PGK1), fostering NPC growth and metastasis. Meanwhile, membrane-localized TMEM52B-P20 promotes E-cadherin ubiquitination and degradation by facilitating its interaction with the E3 ubiquitin ligase NEDD4, further driving NPC metastasis. In conclusion, the TMEM52B-P18 and TMEM52B-P20 isoforms promote the metastasis of NPC cells through different mechanisms. Drugs targeting these TMEM52B isoforms may offer therapeutic benefits to cancer patients with varying degrees of metastasis.

12.
J Pharm Bioallied Sci ; 16(Suppl 2): S1838-S1842, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38882719

ABSTRACT

Background: Cancers arising in the oral cavity are more commonly of squamous cell carcinomas. E-cadherin is a calcium-dependant transmembrane glycoprotein of the type-1 cadherin superfamily is an invasion/tumor suppressor gene, which plays a vital role in epithelial cell-cell adhesion. Epithelial E-cadherin expression loss increases tumor invasiveness and metastasis. Aim: To determine the expression of E-cadherin in oral epithelial dysplasia (OED) and oral squamous cell carcinoma (OSCC). Materials and Methods: Analysis of E-cadherin expression in 10 cases of normal mucosa, 15 cases of various grades of OED, 15 cases of OSCC. Statistical Analysis: The data were calculated using Chi-square test and analysis of variance test (ANOVA). Results: An intragroup comparison of staining intensity and staining location for OED showed a highly significant difference between mild and moderate grade (P < 0.001). A significant difference of staining intensity was noted among well and moderately differentiated grades, and well and poorly differentiated grades of OSCC. A comparison of staining location among well and poorly differentiated grades of OSCC was found to be significant. Conclusion: Expression loss is observed as the severity of the lesion progresses in both OSCC and OED. The increased loss of expression in oral squamous cell carcinoma poorer the prognosis.

13.
Pract Lab Med ; 40: e00406, 2024 May.
Article in English | MEDLINE | ID: mdl-38883562

ABSTRACT

Aim: The current study aimed to assess the frequency of CDH1 promoter gene hypermethylation in gastric cancer and chronic gastritis and its correlation with clinicopathological aspects. Methods: Methylation-specific PCR was used to detect CDH1 promoter gene hypermethylation in 53 chronic gastritis patients and 40 gastric cancer patients along with normal adjacent tissues. Results: The chronic gastritis group comprised 29 males and 24 females with a mean age of 51.8 ± 12.96 years, and 49.1 % of them were positive for H. pylori infection. The frequency of CDH1 hypermethylation in gastritis lesions was 18.8 %. CDH1 hypermethylation showed a significant correlation with H. pylori infection (p = 0.039), but no significant association was observed with other clinical features. The gastric cancer group consisted of individuals with a mean age of 65.4 ± 10.6, among them, 77.5 % were male and 22.5 % were female, 62.5 % had PT3 tumors, 40 % had PN1 lymph node involvement, and the majority (47.5 %) of samples were obtained from body segment. CDH1 hypermethylation was significantly associated with depth of invasion (p = 0.017) and nodal invasion (p = 0.041) in this group. In both groups, normal adjacent specimens lacked CDH1 hypermethylation, and there was no statistically significant correlation between CDH1 hypermethylation and age at which the tumor was diagnosed, gender, activity level, or tumor location. Conclusion: This study demonstrates that E-cadherin methylation is associated with some characteristics of chronic gastritis and gastric cancer. These findings support previous research indicating that CDH1 hypermethylation may play a significant role in the development of gastric cancer.

14.
Adv Exp Med Biol ; 1441: 125-143, 2024.
Article in English | MEDLINE | ID: mdl-38884708

ABSTRACT

This chapter discusses the role of cardiac neural crest cells in the formation of the septum that divides the cardiac arterial pole into separate systemic and pulmonary arteries. Further, cardiac neural crest cells directly support the normal development and patterning of derivatives of the caudal pharyngeal arches, including the great arteries, thymus, thyroid, and parathyroids. Recently, cardiac neural crest cells have also been shown to indirectly influence the development of the secondary heart field, another derivative of the caudal pharynx, by modulating signaling in the pharynx. The contribution and function of the cardiac neural crest cells has been learned in avian models; most of the genes associated with cardiac neural crest function have been identified using mouse models. Together these studies show that the neural crest cells may not only critical for normal cardiovascular development but also may be involved secondarily because they represent a major component in the complex tissue interactions in the caudal pharynx and outflow tract. Cardiac neural crest cells span from the caudal pharynx into the outflow tract, and therefore may be susceptible to any perturbation in or by other cells in these regions. Thus, understanding congenital cardiac outflow malformations in human sequences of malformations resulting from genetic and/or environmental insults necessarily requires better understanding the role of cardiac neural crest cells in cardiac development.


Subject(s)
Neural Crest , Neural Crest/embryology , Neural Crest/cytology , Neural Crest/metabolism , Animals , Humans , Heart/embryology , Mice
15.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38931419

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is the most lethal form of pancreatic cancer characterized by therapy resistance and early metastasis, resulting in a low survival rate. Histone deacetylase (HDAC) inhibitors showed potential for the treatment of hematological malignancies. In PDAC, the overexpression of HDAC 2 is associated with the epithelial-mesenchymal transition (EMT), principally accompanied by the downregulation of the epithelial marker E-cadherin and increased metastatic capacity. The effector cytokine transforming growth factor-ß (TGF ß) is known to be a major inducer of the EMT in PDAC, leading to high metastatic and invasive potential. In addition, the overexpression of HDAC 6 in PDAC is associated with reduced apoptosis. Here, we have demonstrated that a novel HDAC 2/6 inhibitor not only significantly increased E-cadherin expression in PANC-1 cells (5.5-fold) and in 3D PDAC co-culture spheroids (2.5-fold) but was also able to reverse the TGF-ß-induced downregulation of E-cadherin expression. Moreover, our study indicates that the HDAC inhibitor mediated re-differentiation resulting in a significant inhibition of tumor cell invasion by approximately 60% compared to control. In particular, we have shown that the HDAC inhibitor induces both apoptosis (2-fold) and cell cycle arrest. In conclusion, the HDAC 2/6 inhibitor acts by suppressing invasion via upregulating E-cadherin mediated by HDAC 2 blockade and by inducing cell cycle arrest leading to apoptosis via HDAC 6 inhibition. These results suggest that the HDAC 2/6 inhibitor might represent a novel therapeutic strategy for the treatment of PDAC tumorigenesis and metastasis.

16.
Placenta ; 154: 80-87, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38909565

ABSTRACT

INTRODUCTION: Glucose metabolism produces lactate and hydrogen ions in an anaerobic environment. Fetuses with intrauterine growth restriction are considered to become progressively lactacidemic as well as hypoxic. Roles of lactate in the placenta in the presence of fetal growth restriction (FGR) remain to be clarified. METHODS: Immunohistochemical localization of lactate-related substances, such as a receptor for lactate (hydroxy-carboxylic acid 1 receptor (HCA1 receptor/GPR81)), monocarboxylate transporters (MCTs) for lactate, lactate dehydrogenases (LDHs), and proteins expressed in syncytiotrophoblasts or cytotrophoblasts was examined in placentas of appropriate weight for gestational age (AGA) fetus and those showing FGR. RESULTS: Immunoreactivity for the HCA1 receptor was present in the cytoplasm of some trophoblasts, predominantly localized to their basal (fetus-facing) side, and was frequently colocalized with that for E-cadherin or serine peptidase inhibitor, Kunitz type 1 (SPINT1), a marker protein of cytotrophoblasts. Immunoreactivity for MCT1 and MCT4 was present on the basal and the microvillous (maternal-facing) membranes of trophoblasts in both groups, respectively. Clear immunoreactivity for LDHA and LDHB was also observed in the cytoplasm of trophoblasts, mainly localized to their basal side. However, there were no significant differences in immunohistochemically stained areas of lactate-related substances between AGA and late-onset FGR groups. On the other hand, there were correlations between coefficients of the presence of chorioamnionitis and the values of LDHB and E-cadherin. DISCUSSION: Immunohistochemical localization of the HCA1 receptor was predominantly observed in the cytoplasm located on the basal side of trophoblasts, suggesting a role of lactate in human placental development, including syncytialization.

17.
Fetal Pediatr Pathol ; : 1-10, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38913034

ABSTRACT

Introduction: We investigated the role of E-cadherin and Ber-EP4 in tubal pregnancy by comparing their expressions in epithelial and trophoblastic cells both in ectopic tubal and intrauterine pregnancies. Methods: The Formalin-fixed paraffin embedded blocks of 17 intrauterine and 17 tubal pregnancies were immunohistochemically stained with E-cadherin and Ber-EP4. Results: E-cadherin was expressed in the epithelium, villous and extravillous trophoblast in tubal and intrauterine pregnancies but not in the syncytiotrophoblast. The staining intensity was lower in the extra-villous trophoblast in tubal ectopic pregnancies compared with intrauterine pregnancies. Ber-EP4 was expressed in the epithelium of tubal and intrauterine pregnancies and only in villous cytotrophoblast. The intensity of staining in tubal pregnancy was higher than in intrauterine pregnancy. Discussion: The loss of E-cadherin expression in extra-villous trophoblast and increased expression of Ber-EP4 in the villous cytotrophoblast may play a role in the formation of tubal pregnancy by allowing the blastocyst to attach to the tubal epithelium.

18.
J Asthma ; : 1-10, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38865204

ABSTRACT

OBJECTIVE: Down-regulation of bronchial epithelial E-cadherin is an important of feature of severe asthma, including steroid-insensitive asthma. Yet, the mechanisms involved in E-cadherin disruption are not fully understood. This study was aimed to investigate the role of glucose transporter 1 (GLUT1) in dysregulation of E-cadherin in toluene diisocyanate (TDI)-induced steroid-insensitive asthma. METHODS: A murine model of steroid-insensitive asthma was established by TDI sensitization and aerosol inhalation. Selective GLUT1 antagonists WZB117 and BAY876 were given to BALB/c mice after airway challenge. In vitro, primary human bronchial epithelial cells (HBECs) cultured in an airway-liquid interface (ALI) were exposed to TDI. RESULTS: TDI exposure markedly up-regulated GLUT1 in murine lungs and HBECs. Pharmacological inhibition of GLUT1 with BAY876 decreased airway hyperresponsiveness, neutrophil and eosinophil accumulation, as well as type 2 inflammation in vivo. Besides, the TDI-induced down-regulated expression of full-length E-cadherin was also partly recovered, accompanied by inhibited secretion of soluble E-cadherin (sE-cadherin). WZB117 also exhibited mild therapeutic effects, though not significant. In vitro, treatment with GLUT1 inhibitor relieved the TDI-induced disruption of E-cadherin in HBECs. CONCLUSIONS: Taken together, our data demonstrated that GLUT1 modulates bronchial epithelial E-cadherin dysfunction production in TDI-induced steroid-insensitive asthma.

19.
Open Med (Wars) ; 19(1): 20240976, 2024.
Article in English | MEDLINE | ID: mdl-38859878

ABSTRACT

Borderline ovarian tumours (BOTs) show intriguing characteristics distinguishing them from other ovarian tumours. The aim of the systematic review was to analyse the spectrum of molecular changes found in BOTs and discuss their significance in the context of the overall therapeutic approach. The systematic review included articles published between 2000 and 2023 in the databases: PubMed, EMBASE, and Cochrane. After a detailed analysis of the available publications, we qualified for the systematic review: 28 publications on proto-oncogenes: BRAF, KRAS, NRAS, ERBB2, and PIK3CA, 20 publications on tumour suppressor genes: BRCA1/2, ARID1A, CHEK2, PTEN, 4 on adhesion molecules: CADM1, 8 on proteins: B-catenin, claudin-1, and 5 on glycoproteins: E-Cadherin. In addition, in the further part of the systematic review, we included eight publications on microsatellite instability and three describing loss of heterozygosity in BOT. Molecular changes found in BOTs can vary on a case-by-case basis, identifying carcinogenic mutations through molecular analysis and developing targeted therapies represent significant advancements in the diagnosis and treatment of ovarian malignancies. Molecular studies have contributed significantly to our understanding of BOT pathogenesis, but substantial research is still required to elucidate the relationship between ovarian neoplasms and extraneous disease, identify accurate prognostic indicators, and develop targeted therapeutic approaches.

20.
Iran J Basic Med Sci ; 27(8): 985-995, 2024.
Article in English | MEDLINE | ID: mdl-38911244

ABSTRACT

Objectives: Esophageal cancer stem cells (ECSCs) have been identified as the subset of cells within esophageal squamous cell carcinoma that possess tumorigenic, invasive, and metastatic properties. One important aspect of cancer metastasis is the binding of sialyl-Lewis X (CD15s) with E- or P-selectin, which facilitates the adhesion and migration of cancer cells to distant sites. This study was conducted to investigate the impact of fucosylation processes on the metastatic behavior of ECSCs. Materials and Methods: The esophageal cancer cell line (KYSE-30) was cultured and divided into control and 2F-peracetyl fucose (2F-PerAcFuc) treated groups. Spheres were harvested from these cultures. Cell invasion assay and qPCR were conducted to examine migration and marker expression in both groups. Cancer cell line-derived xenografts were established in nude mice to validate findings in vivo. Results: Our results initially indicated that the addition of 2F-PerAcFuc, an inhibitor of fucosylation, resulted in the down-regulation of the Fut3/CD15s pathway in both cancer stem-like cells and the xenograft model. Measurements of subcutaneous xenograft tumor volume revealed a significant decrease in tumor size among nude mice after treatment with 2F-PerAcFuc. Additionally, a reduction in Fut8/E-cadherin levels was observed in the xenograft model of nude mice. Furthermore, the administration of 2F-PerAcFuc lowered the levels of fucosylated glycoconjugates in nude mice. Conclusion: Our data suggest that inhibition of fucosyltransferase 3 and 8 can reduce the metastatic capacity of cancer stem-like cells by down-regulating CD15s and E-cadherin in a mouse model of esophageal cancer.

SELECTION OF CITATIONS
SEARCH DETAIL
...