Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.077
Filter
1.
J Food Sci Technol ; 61(8): 1516-1524, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38966784

ABSTRACT

Escherichia coli and Staphylococcus aureus are the most important food borne pathogen transmitting from animal meat and meat products. Therefore, it is vital to design an accurate and specific diagnostic tool for identifying those food-borne pathogens in animal meat and meat products. In the current study, E. coli, methicillin-resistant and sensitive S. aureus (MRSA and MSSA) were simultaneously detected using a developed triplex PCR-based technique. To obtain an optimal reaction parameter, the multiplex assay was optimised by changing just one parameter while holding the others constant. Specificity of the assay was assessed using several porcine bacterial template DNA. The plasmid DNA was used to test the multiplex PCR assay's sensitivity and interference in spiked pork samples. E. coli, MRSA, and MSSA each have PCR amplified products with sizes of 335, 533, and 209 bp, respectively. The assay detects a minimum microbial load of 102 CFU/µl for all the three pathogens and can identify bacterial DNA as low as 10-2 ng/µl. The assay was validated employing 210 pork samples obtained from retail meat shops and slaughter houses, with MRSA, E. coli, and MSSA with the occurrence rate of 1.9%, 42.38%, and 18.1%, respectively. The rate of mixed bacterial contamination in pork meat samples examined with the developed method was 6.19%, 1.43%, 1.90%, and 1.43% for MSSA & E. coli, MRSA & E. coli, MSSA & MRSA, and E. coli, MSSA & MRSA, respectively. The developed multiplex PCR assay is quick and efficient, and it can distinguish between different bacterial pathogens in a single reaction tube.

2.
Microb Pathog ; : 106780, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969189

ABSTRACT

This study was designed to assess the possibility of using bacteriophage-encoded endolysins for controlling planktonic and biofilm cells. The endolysins, LysEP114 and LysEP135, were obtained from plasmid vectors containing the endolysin genes derived from Escherichia coli phages. The high identity (>96%) was observed between LysEP114 and LysEP135. LysEP114 and LysEP135 were characterized by pH, thermal, and lactic acid stability, lytic spectrum, antibacterial activity, and biofilm eradication. The molecular masses of LysEP114 and LysEP135 were 18.2 kDa, identified as muramidases. LysEP114 and LysEP135 showed high lytic activity against the outer membrane-permeabilized E. coli KCCM 40405 at below 37°C, between pH 5 to 11, and below 70 mM of lactic acid. LysEP114 and LysEP135 showed the broad rang of lytic activity against E. coli KACC 10115, S. Typhimurium KCCM 40253, S. Typhimurium CCARM 8009, tetracycline-resistant S. Typhimurium, polymyxin B-resistant S. Typhimurium, chloramphenicol-resistant S. Typhimurium, K. pneumoniae ATCC 23357, K. pneumoniae CCARM 10237, and Shigella boydii KACC 10792. LysEP114 and LysEP135 effectively reduced the numbers of planktonic E. coli KCCM by 1.7 and 2.1 log, respectively, when treated with 50 mM lactic acid. The numbers of biofilm cells were reduced from 7.3 to 4.1 log CFU/ml and 2.2 log CFU/ml, respectively, when treated with LysEP114- and LysEP135 in the presence of 50 mM lactic acid. The results suggest that the endolysins in combination with lactic acid could be potential alternative therapeutic agents for controlling planktonic and biofilm cells.

3.
RNA Biol ; 21(1): 31-41, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38952121

ABSTRACT

Large ribosomal RNAs (rRNAs) are modified heavily post-transcriptionally in functionally important regions but, paradoxically, individual knockouts (KOs) of the modification enzymes have minimal impact on Escherichia coli growth. Furthermore, we recently constructed a strain with combined KOs of five modification enzymes (RluC, RlmKL, RlmN, RlmM and RluE) of the 'critical region' of the peptidyl transferase centre (PTC) in 23S rRNA that exhibited only a minor growth defect at 37°C (although major at 20°C). However, our combined KO of modification enzymes RluC and RlmE (not RluE) resulted in conditional lethality (at 20°C). Although the growth rates for both multiple-KO strains were characterized, the molecular explanations for such deficits remain unclear. Here, we pinpoint biochemical defects in these strains. In vitro fast kinetics at 20°C and 37°C with ribosomes purified from both strains revealed, counterintuitively, the slowing of translocation, not peptide bond formation or peptidyl release. Elongation rates of protein synthesis in vivo, as judged by the kinetics of ß-galactosidase induction, were also slowed. For the five-KO strain, the biggest deficit at 37°C was in 70S ribosome assembly, as judged by a dominant 50S peak in ribosome sucrose gradient profiles at 5 mM Mg2+. Reconstitution of this 50S subunit from purified five-KO rRNA and ribosomal proteins supported a direct role in ribosome biogenesis of the PTC region modifications per se, rather than of the modification enzymes. These results clarify the importance and roles of the enigmatic rRNA modifications.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Peptidyl Transferases , Protein Biosynthesis , RNA, Ribosomal , Ribosomes , Peptidyl Transferases/metabolism , Peptidyl Transferases/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Ribosomes/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism , RNA, Ribosomal, 23S/metabolism , RNA, Ribosomal, 23S/genetics , Kinetics
4.
Mikrochim Acta ; 191(8): 441, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38954045

ABSTRACT

A ratiometric SERS aptasensor based on catalytic hairpin self-assembly (CHA) mediated cyclic signal amplification strategy was developed for the rapid and reliable determination of Escherichia coli O157:H7. The recognition probe was synthesized by modifying magnetic beads with blocked aptamers, and the SERS probe was constructed by functionalizing gold nanoparticles (Au NPs) with hairpin structured DNA and 4-mercaptobenzonitrile (4-MBN). The recognition probe captured E. coli O157:H7 specifically and released the blocker DNA, which activated the CHA reaction on the SERS probe and turned on the SERS signal of 6-carboxyl-x-rhodamine (ROX). Meanwhile, 4-MBN was used as an internal reference to calibrate the matrix interference. Thus, sensitive and reliable determination and quantification of E. coli O157:H7 was established using the ratio of the SERS signal intensities of ROX to 4-MBN. This aptasensor enabled detection of 2.44 × 102 CFU/mL of E. coli O157:H7 in approximately 3 h without pre-culture and DNA extraction. In addition, good reliability and excellent reproducibility were observed for the determination of E. coli O157:H7 in spiked water and milk samples. This study offered a new solution for the design of rapid, sensitive, and reliable SERS aptasensors.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Escherichia coli O157 , Gold , Limit of Detection , Metal Nanoparticles , Milk , Spectrum Analysis, Raman , Escherichia coli O157/isolation & purification , Aptamers, Nucleotide/chemistry , Metal Nanoparticles/chemistry , Gold/chemistry , Milk/microbiology , Milk/chemistry , Spectrum Analysis, Raman/methods , Biosensing Techniques/methods , Animals , Catalysis , Inverted Repeat Sequences , Food Contamination/analysis , Water Microbiology , Reproducibility of Results
5.
Elife ; 132024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949655

ABSTRACT

Secreted chemokines form concentration gradients in target tissues to control migratory directions and patterns of immune cells in response to inflammatory stimulation; however, how the gradients are formed is much debated. Heparan sulfate (HS) binds to chemokines and modulates their activities. In this study, we investigated the roles of HS in the gradient formation and chemoattractant activity of CCL5 that is known to bind to HS. CCL5 and heparin underwent liquid-liquid phase separation and formed gradient, which was confirmed using CCL5 immobilized on heparin-beads. The biological implication of HS in CCL5 gradient formation was established in CHO-K1 (wild-type) and CHO-677 (lacking HS) cells by Transwell assay. The effect of HS on CCL5 chemoattractant activity was further proved by Transwell assay of human peripheral blood cells. Finally, peritoneal injection of the chemokines into mice showed reduced recruitment of inflammatory cells either by mutant CCL5 (lacking heparin-binding sequence) or by addition of heparin to wild-type CCL5. Our experimental data propose that co-phase separation of CCL5 with HS establishes a specific chemokine concentration gradient to trigger directional cell migration. The results warrant further investigation on other heparin-binding chemokines and allows for a more elaborate insight into disease process and new treatment strategies.


Subject(s)
Chemokine CCL5 , Chemotaxis , Cricetulus , Heparitin Sulfate , Chemokine CCL5/metabolism , Chemokine CCL5/genetics , Animals , Heparitin Sulfate/metabolism , Humans , CHO Cells , Mice , Heparin/metabolism , Heparin/pharmacology , Phase Separation
6.
Water Environ Res ; 96(7): e11072, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38961619

ABSTRACT

This work assessed the performance of a pilot-scale cascade anaerobic digestion (AD) system when treating mixed municipal wastewater treatment sludges. The cascade system was compared with a conventional continuous stirred tank reactor (CSTR) digester (control) in terms of process performance, stability, and digestate quality. The results showed that the cascade system achieved higher volatile solids removal (VSR) efficiencies (28-48%) than that of the reference (25-41%) when operated at the same solids residence time (SRT) in the range of 11-15 days. When the SRT of the cascade system was reduced to 8 days the VSR (32-36%) was only slightly less than that of the reference digester that was operated at a 15-day SRT (39-43%). Specific hydrolysis rates in the first stage of the cascade system were 66-152% higher than those of the reference. Additionally, the cascade system exhibited relatively stable effluent concentrations of volatile fatty acids (VFAs: 100-120 mg/l), while the corresponding concentrations in the control effluent demonstrated greater fluctuations (100-160 mg/l). The cascade system's effluent pH and VFA/alkalinity ratios were consistently maintained within the optimal range. During a dynamic test when the feed total solids concentration was doubled, total VFA concentrations (85-120 mg/l) in the cascade system were noticeably less than those (100-170 mg/l) of the control, while the pH and VFA/alkalinity levels remained in a stable range. The cascade system achieved higher total solids (TS) content in the dewatered digestate (19.4-26.8%) than the control (17.4-22.1%), and E. coli log reductions (2.0-4.1 log MPN/g TS) were considerably higher (p < 0.05) than those in the control (1.3-2.9 log MPN/g TS). Overall, operating multiple CSTRs in cascade mode at typical SRTs and mixed sludge ratios enhanced the performance, stability digesters, and digestate quality of AD. PRACTITIONER POINTS: Enhanced digestion of mixed sludge digestion with cascade system. Increased hydrolysis rates in the cascade system compared to a reference CSTR. More stable conditions for methanogen growth at both steady and dynamic states. Improved dewaterability and E. coli reduction of digestate from the cascade system.


Subject(s)
Bioreactors , Sewage , Waste Disposal, Fluid , Wastewater , Anaerobiosis , Waste Disposal, Fluid/methods , Pilot Projects , Wastewater/chemistry , Sewage/chemistry , Fatty Acids, Volatile/metabolism , Water Purification/methods
7.
bioRxiv ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38948722

ABSTRACT

Flagella are highly complex rotary molecular machines that enable bacteria to not only migrate to optimal environments but to also promote range expansion, competitiveness, virulence, and antibiotic survival. Flagellar motility is an energy-demanding process, where the sum of its production (biosynthesis) and operation (rotation) costs has been estimated to total ~10% of the entire energy budget of an E. coli cell. The acquisition of such a costly adaptation process is expected to secure short-term benefits by increasing competitiveness and survival, as well as long-term evolutionary fitness gains. While the role of flagellar motility in bacterial survival has been widely reported, its direct influence on the rate of evolution remains unclear. We show here that both production and operation costs contribute to elevated mutation frequencies. Our findings suggest that flagellar movement may be an important player in tuning the rate of bacterial evolution.

8.
Mikrochim Acta ; 191(8): 453, 2024 07 06.
Article in English | MEDLINE | ID: mdl-38970675

ABSTRACT

An electrochemical biosensor has been developed for detection of Escherichia coli O157 by integrating lateral flow with screen-printed electrodes. The screen-printed electrodes were attached under the lateral flow detection line, and organic-inorganic nanoflowers prepared from E. coli O157-specific antibodies as an organic component were attached to the lateral flow detection line. In the presence of E. coli O157, an organic-inorganic nanoflower-E. coli O157-antimicrobial peptide-labelled ferrocene sandwich structure is formed on the lateral flow detection line. Differential pulse voltammetry is applied using a smartphone-based device to monitor ferrocene on the detection line. The resulting electrochemical biosensor could specifically detect E. coli O157 with a limit of detection of 25 colony-forming units mL-1. Through substitution of antibodies of organic components in organic-inorganic nanoflowers, biosensors have great potential for the detection of other pathogens in biomedical research and clinical diagnosis.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Escherichia coli O157 , Escherichia coli O157/isolation & purification , Escherichia coli O157/immunology , Biosensing Techniques/methods , Immunoassay/methods , Immunoassay/instrumentation , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Limit of Detection , Nanostructures/chemistry , Electrodes , Ferrous Compounds/chemistry , Antibodies, Immobilized/immunology , Metallocenes/chemistry , Antibodies, Bacterial/chemistry , Antibodies, Bacterial/immunology , Antimicrobial Peptides/chemistry
9.
Vet Res Commun ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38972932

ABSTRACT

The overuse of antimicrobials in livestock has contributed to the emergence and selection of clinically relevant multidrug-resistant bacteria. In Brazil, there is no conclusive information on the occurrence of Escherichia coli producing extended-spectrum ß-lactamase (ESßL) in cattle breeding, which is an important sector of agribusiness in this country. Herein, we investigated the presence of ESßL-positive E. coli strains in dairy cattle from a commercial farm with routine practice of therapeutic cephalosporins. Ninety-five rectal swab samples were collected from healthy dairy calves and cows under treatment with ceftiofur. Samples were screened for the presence of ESßL producers, and positive isolates were identified by MALDI-TOF, with subsequent screening for genes encoding ESßL variants by PCR and sequencing. The presence of ESßL (CTX-M-15)-producing E. coli was confirmed in calves, and lactating and dry cows. Most ESßL strains with genetic homologies ≥ 90% were grouped into two major PFGE clusters, confirming the suscessful expansion of clonally related lineages in animals from different lactating cycles, on the same property. Four representatives CTX-M-15-positive E. coli strains had their genomes sequenced, belonging to the clonal complex (CC) 23 and sequence type (ST) 90. A phylogeographical landscape of ST90 was performed revealing a global One Health linkage. Our results highlight the intestinal microbiota of dairy cattle as a hotspot for the spread of critical priority ESßL-producing E. coli and demonstrate that ST90 is an international clone genomically adapted to human and animal hosts, which deserve additional investigation to determine its zoonotic potential and impact in food chain.

10.
Heliyon ; 10(12): e32210, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38975212

ABSTRACT

Control of a bioprocess is a challenging task mainly due to the nonlinearity of the process, the complex nature of microorganisms, and variations in critical parameters such as temperature, pH, and agitator speed. Generally, the optimum values chosen for critical parameters during Escherichia coli (E.coli) K-12fed-batch fermentation are37 ᵒC for temperature, 7 for pH, and 35 % for Dissolved Oxygen (DO). The objective of this research is to enhance biomass concentration while minimizing energy consumption. To achieve this, an Event-Triggered Control (ETC) scheme based on feedback-feed forward control is proposed. The ETC system dynamically adjusts the substrate feed rate in response to variations in critical parameters. We compare the performance of classical Proportional Integral (PI) controllers and advanced Model Predictive Control (MPC) controllers in terms of bioprocess yield. Initially, the data are collected from a laboratory-scaled 3L bioreactor setup under fed-batch operating conditions, and data-driven models are developed using system identification techniques. Then, classical Proportional Integral (PI) and advanced Model Predictive Control (MPC) based feedback controllers are developed for controlling the yield of bioprocess by manipulating substrate flow rate, and their performances are compared. PI and MPC-based Event Triggered Feed Forward Controllers are designed to increase the yield and to suppress the effect of known disturbances due to critical parameters. Whenever there is a variation in the value of a critical parameter, it is considered an event, and ETC initiates a control action by manipulating the substrate feed rate. PI and MPC-based ETC controllers are developed in simulation, and their closed-loop performances are compared. It is observed that the Integral Square Error (ISE) is notably minimized to 4.668 for MPC with disturbance and 4.742 for MPC with Feed Forward Control. Similarly, the Integral Absolute Error (IAE) reduces to 2.453 for MPC with disturbance and 0.8124 for MPC with Feed Forward Control. The simulation results reveal that the MPC-based ETC control scheme enhances the biomass yield by 7 %, and this result is verified experimentally. This system dynamically adjusts the substrate feed rate in response to variations in critical parameters, which is a novel approach in the field of bioprocess control. Also, the proposed control schemes help reduce the frequency of communication between controller and actuator, which reduces power consumption.

11.
Polymers (Basel) ; 16(13)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-39000769

ABSTRACT

Microbial contamination can occur on the surfaces of blow-molded bottles, necessitating the development and application of effective anti-microbial treatments to mitigate the hazards associated with microbial growth. In this study, new methods of incorporating anti-microbial particles into linear low-density polyethylene (LLDPE) extrusion blow-molded bottles were developed. The anti-microbial particles were thermally embossed on the external surface of the bottle through two particle deposition approaches (spray and powder) over the mold cavity. The produced bottles were studied for their thermal, mechanical, gas barrier, and anti-microbial properties. Both deposition approaches indicated a significant enhancement in anti-microbial activity, as well as barrier properties, while maintaining thermal and mechanical performance. Considering both the effect of anti-microbial agents and variations in tensile bar weight and thickness, the statistical analysis of the mechanical properties showed that applying the anti-microbial agents had no significant influence on the tensile properties of the blow-molded bottles. The external fixation of the particles over the surface of the bottles would result in optimum anti-microbial activity, making it a cost-effective solution compared to conventional compounding processing.

12.
Acta Physiol (Oxf) ; : e14204, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39007512

ABSTRACT

AIM: Urinary tract infections (UTIs) rank among the most prevalent infections in humans, carrying substantial implications for public health. Women experiencing recurrent UTIs are often advised to boost their fluid intake to help eliminate bacteria. In this study, we explored the impact of elevated fluid consumption during UTIs using a mouse model of pyelonephritis. METHODS: UTI was induced in 8-10 w female BALB/cJ-mice by surgically injecting Escherichia coli (O6:K13:H1) into the bladder whereafter mice were randomized to gel food (GF) or regular chow. Immune response and infection severity were determined 24-h post-infection. In vitro bacterial growth (OD600) was determined in urine from mice or from human volunteers. RESULTS: Gel feeding increased urine output (1.40 ± 0.77 µL min-1, p < 0.01) and diluted the urine (668.7 ± 177 mOsmol kg-1, p < 0.0001) compared to controls on regular chow (urine output: 0.34 ± 0.27 µL min-1, osmolality: 1439 ± 473.5 mOsmol kg-1). Mice on GF had a higher risk of pyelonephritis (87.5%) and more severe infections (26.22 ± 9.88 CFU mg-1 tissue) compared to controls (43.75%; 3.87 ± 3.56 CFU mg-1, p < 0.01). Correspondingly, the growth of E. coli was markedly reduced at osmolalities above 1200 mOsmol kg-1 compared to 600 mOsmol kg-1 and GF mice had lower urine levels of uromodulin (13.70 ± 1.89 µg mL-1, p < 0.01) compared to controls (24.65 ± 2.70 µg mL-1). CONCLUSION: Increased water intake and urine flow in mice will markedly increase the risk of pyelonephritis. The increased risk may reflect reduced urine uromodulin combined with optimized growth conditions for E. coli. The study does not immediately support the notion that established UTIs can be eliminated by increased water intake.

13.
Biotechnol Prog ; : e3494, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39016609

ABSTRACT

Mechanistic models mostly focus on the target protein and some selected process- or product-related impurities. For a better process understanding, however, it is advantageous to describe also reoccurring host cell protein impurities. Within the purification of biopharmaceuticals, the binding of host cell proteins to a chromatographic resin is far from being described comprehensively. For a broader coverage of the binding characteristics, large-scale proteomic data and systems level knowledge on protein interactions are key. However, a method for determining binding parameters of the entire host cell proteome to selected chromatography resins is still lacking. In this work, we have developed a method to determine binding parameters of all detected individual host cell proteins in an Escherichia coli harvest sample from large-scale proteomics experiments. The developed method was demonstrated to model abundant and problematic proteins, which are crucial impurities to be removed. For these 15 proteins covering varying concentration ranges, the model predicts the independently measured retention time during the validation gradient well. Finally, we optimized the anion exchange chromatography capture step in silico using the determined isotherm parameters of the persistent host cell protein contaminants. From these results, strategies can be developed to separate abundant and problematic impurities from the target antigen.

14.
Iran J Microbiol ; 16(3): 329-336, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39005602

ABSTRACT

Background and Objectives: Escherichia coli O157: H7 is one of the most important causes of hemorrhagic colitis, and hemolytic uremic syndrome. The present study aimed to isolate E. coli O157: H7 from foods and patients with hemorrhagic colitis, and identify Shiga toxin genes, phylogenetic comparison, and antibiotic resistance of the isolates. Materials and Methods: In total 400 samples, including patients stool and food were taken in Isfahan-Iran province. Phenotypic tests and PCR were performed to identify Shiga toxin-producing E. coli. The isolated strains were compared phylogenetically by PFGE. Agar disk diffusion was performed to identify the antibiotic resistance of the isolates. Results: Totally, 5 isolates of fecal samples were E. coli O157, but only 2 isolates carried H7 gene. Also, 9 isolates of E. coli O157 were isolated from food samples that 3 isolates were E. coli O157: H7. The isolates carried stx1, stx2, hlyA and eaeA genes. Also, E. coli non-O157: H7 identified from samples that contained stx1, stx2, hlyA genes. The highest susceptibility to imipenem and the highest resistance to ampicillin and ciprofloxacin were observed. There was a similarity of 100% between the E. coli O157: H7 strains isolated from patients and raw milk and minced beef samples. Conclusion: Serotypes other than the O157 of E. coli are more prevalent in patients and food. The E. coli O157: H7 isolates from patients had 100% genetic similarity with minced meat and cow milk isolates, which indicates cattle are the most important reservoir of this bacterium in Iran.

15.
Iran J Pharm Res ; 23(1): e138677, 2024.
Article in English | MEDLINE | ID: mdl-39005735

ABSTRACT

Background: Batch cultures used for various purposes, such as expression screening and recombinant protein production in laboratories, usually have some drawbacks due to the bolus addition of carbon sources, such as glucose and buffers, that lead to overflow metabolism, decreased pH, high osmolality, low biomass yield, and low protein production. Objectives: This study aimed to overcome the problems of batch culture using the controlled release concept by a controlled porosity osmotic pump (CPOP) system. Methods: The CPOP was formulated with glucose as a carbon source feeding and sodium carbonate as a pH modifier in the core of the tablet that was coated with a semipermeable membrane containing cellulose acetate and polyethylene glycol (PEG) 400. The release rate was regulated with Eudragit L100 as a retardant agent in the core and PEG 400 as a pore-former agent in the coating membrane. Fourier-transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM) were used to elucidate compatibility between components and release mechanism, respectively. The in-vitro release of glucose and Na2CO3 studies were performed for 24 hours in a mineral culture medium (M9). Then, the effectiveness of CPOP in the growth of Escherichia coli (E. coli BL21) as a microorganism model was evaluated. Glucose consumption, changes in medium's pH, and acetate concentration as a by-product were also monitored during the bacterial growth. Results: Fourier-transform infrared spectroscopy confirmed the compatibility between the components in the osmotic pump, and SEM elucidated the release mechanism due to in-situ delivery pores created by dissolving soluble components (PEG 400) on the coated membrane upon contact with the dissolution medium. The in-vitro release studies indicated that the osmotic pump was able to deliver glucose and sodium carbonate in a zero-order manner. The use of CPOP in E. coli (BL21) cultivation resulted in a statistically significant improvement in biomass (over 80%), maintaining the pH of the medium (above 6.8) during the exponential phase, and reducing metabolic by-product formation (acetate), compared to bolus feeding (P < 0.05). Conclusions: The use of CPOP, which is capable of controlled release of glucose as a carbon source and sodium carbonate as a pH modifier, can overcome the drawbacks of bolus feeding, such as decreased pH, increased acetate concentration, and low productivity. It has a good potential for commercialization.

16.
J Fluoresc ; 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39002053

ABSTRACT

Carbon dots synthesized from a renewable and sustainable source of biomass have greater attention in the nanomaterial research field. In the present study, we adopted a facile and green synthesis of carbon dots from bio waste of pumpkin seeds using a one-pot microwave-assisted carbonization method. The synthesized carbon dots exhibit excellent photoluminescence properties with a bright blue emission peak at 399 nm and fluorescence quantum yield was about 9.5%. The optical properties and structure of carbon dots were examined using various spectroscopy techniques and the synthesized carbon practical size was about 4.37 nm and possessed good solubility in water. Carbon dots were used for the detection of Ferric ions in the water bodies and the interaction between Fe3+ ions and carbon dots was evaluated by fluorescence spectroscopy techniques. This method is a simple and selective detection of Fe3+ in the aqueous medium. Interestingly carbon dots also show good antibacterial activity at a very low concentration (1 mg/L) for effective control of E. coli 93% and Pseudomonas aeruginosa (81%), within 12 h.

17.
GMS Ophthalmol Cases ; 14: Doc07, 2024.
Article in English | MEDLINE | ID: mdl-38994472

ABSTRACT

Endogenous endophthalmitis is a severe sight-threatening condition that requires urgent intervention. It is a rare complication of Escherichia coli septicemia. We herein report a case of left eye endogenous endophthalmitis with uncontrolled type 2 diabetes mellitus with pyelonephritis associated with Escherichia coli septicemia. Vitrectomy was done along with intravitreal antibiotics and steroids. There was significant improvement in vision after vitrectomy.

18.
Front Cell Infect Microbiol ; 14: 1414188, 2024.
Article in English | MEDLINE | ID: mdl-38979511

ABSTRACT

In Escherichia coli, the disaccharide trehalose can be metabolized as a carbon source or be accumulated as an osmoprotectant under osmotic stress. In hypertonic environments, E. coli accumulates trehalose in the cell by synthesis from glucose mediated by the cytosolic enzymes OtsA and OtsB. Trehalose in the periplasm can be hydrolyzed into glucose by the periplasmic trehalase TreA. We have previously shown that a treA mutant of extraintestinal E. coli strain BEN2908 displayed increased resistance to osmotic stress by 0.6 M urea, and reduced production of type 1 fimbriae, reduced invasion of avian fibroblasts, and decreased bladder colonization in a murine model of urinary tract infection. Since loss of TreA likely results in higher periplasmic trehalose concentrations, we wondered if deletion of otsA and otsB genes, which would lead to decreased internal trehalose concentrations, would reduce resistance to stress by 0.6 M urea and promote type 1 fimbriae production. The BEN2908ΔotsBA mutant was sensitive to osmotic stress by urea, but displayed an even more pronounced reduction in production of type 1 fimbriae, with the consequent reduction in adhesion/invasion of avian fibroblasts and reduced bladder colonization in the murine urinary tract. The BEN2908ΔtreAotsBA mutant also showed a reduction in production of type 1 fimbriae, but in contrast to the ΔotsBA mutant, resisted better than the wild type in the presence of urea. We hypothesize that, in BEN2908, resistance to stress by urea would depend on the levels of periplasmic trehalose, but type 1 fimbriae production would be influenced by the levels of cytosolic trehalose.


Subject(s)
Fimbriae, Bacterial , Osmoregulation , Trehalose , Urinary Bladder , Urinary Tract Infections , Animals , Trehalose/metabolism , Mice , Urinary Bladder/microbiology , Fimbriae, Bacterial/metabolism , Fimbriae, Bacterial/genetics , Urinary Tract Infections/microbiology , Escherichia coli Infections/microbiology , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Escherichia coli/metabolism , Escherichia coli/genetics , Disease Models, Animal , Female , Osmotic Pressure , Extraintestinal Pathogenic Escherichia coli/metabolism , Extraintestinal Pathogenic Escherichia coli/genetics , Urea/metabolism , Trehalase/metabolism , Trehalase/genetics , Gene Deletion , Glucose/metabolism
19.
Elife ; 132024 Jul 10.
Article in English | MEDLINE | ID: mdl-38984715

ABSTRACT

The proteasome controls levels of most cellular proteins, and its activity is regulated under stress, quiescence, and inflammation. However, factors determining the proteasomal degradation rate remain poorly understood. Proteasome substrates are conjugated with small proteins (tags) like ubiquitin and Fat10 to target them to the proteasome. It is unclear if the structural plasticity of proteasome-targeting tags can influence substrate degradation. Fat10 is upregulated during inflammation, and its substrates undergo rapid proteasomal degradation. We report that the degradation rate of Fat10 substrates critically depends on the structural plasticity of Fat10. While the ubiquitin tag is recycled at the proteasome, Fat10 is degraded with the substrate. Our results suggest significantly lower thermodynamic stability and faster mechanical unfolding in Fat10 compared to ubiquitin. Long-range salt bridges are absent in the Fat10 structure, creating a plastic protein with partially unstructured regions suitable for proteasome engagement. Fat10 plasticity destabilizes substrates significantly and creates partially unstructured regions in the substrate to enhance degradation. NMR-relaxation-derived order parameters and temperature dependence of chemical shifts identify the Fat10-induced partially unstructured regions in the substrate, which correlated excellently to Fat10-substrate contacts, suggesting that the tag-substrate collision destabilizes the substrate. These results highlight a strong dependence of proteasomal degradation on the structural plasticity and thermodynamic properties of the proteasome-targeting tags.

20.
Int J Pharm ; 661: 124416, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964490

ABSTRACT

In this work, multicomponent trimethoprim-based pharmaceutical solid systems were developed by mechanochemistry, using coformers from the GRAS list and other active pharmaceutical ingredients. The choice of coformers took into account their potential to increase the aqueous solubility/dissolution rate of TMP or its antibacterial activity. All the binary systems were characterized by thermal analysis, powder X-ray diffraction and infrared spectroscopy, and 3 equimolar systems with FTIR pointing to salts, and 4 eutectic mixtures were identified. The intrinsic dissolution rate of TMP in combination with nicotinic acid (a salt) and with paracetamol (eutectic mixture) were 25% and 5% higher than for pure TMP, respectively. For both Gram-positive and -negative strains, the antibacterial activity of TMP with some of the coformers was improved, since the dosage used was lower than the TMP control. A significant increase in antibacterial activity against E. coli was found for the eutectic mixture with curcumin, with the best results being obtained for the eutectic and equimolar mixtures with ciprofloxacin. Combining trimethoprim with coformers offers an interesting alternative to using trimethoprim alone: multicomponent forms with enhanced TMP dissolution rates were identified, as well as combinations showing enhanced antibacterial activity relatively to the pure drug.

SELECTION OF CITATIONS
SEARCH DETAIL
...