Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 128
Filter
1.
Vet Sci ; 11(5)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38787169

ABSTRACT

The usefulness of antibiotics in dogs with acute diarrhea (AD) is controversial. It is also unclear what effect metronidazole has on potential enteropathogens such as Clostridium perfringens and Escherichia coli. Thus, the aim of this study was to evaluate the effect of metronidazole vs. a synbiotic on the clinical course and core intestinal bacteria of dogs with AD. Twenty-seven dogs with AD were enrolled in this prospective, randomized, blinded clinical trial and treated with either metronidazole (METg) or a synbiotic (SYNg; E. faecium DSM 10663; NCIMB 10415/4b170). The Canine Acute Diarrhea Severity (CADS) index was recorded daily for eleven days. Bacteria were quantified using qPCR. Data were analyzed using mixed models with repeated measures. A higher concentration of E. coli was observed in the METg group vs. the SYNg group on Day 6 (p < 0.0001) and Day 30 (p = 0.01). Metronidazole had no effect on C. perfringens. C. hiranonis was significantly lower in the METg group than in the SYNg group on Days 6 and 30 (p < 0.0001; p = 0.0015). No significant differences were observed in CADS index, fecal consistency, or defecation frequency between treatment groups (except for the CADS index on one single day). In conclusion, metronidazole negatively impacts the microbiome without affecting clinical outcomes. Thus, synbiotics might be a preferred treatment option for dogs with AD.

2.
mBio ; 15(5): e0017024, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38564699

ABSTRACT

Penicillin-binding protein 5 (PBP5) of Enterococcus faecium (Efm) is vital for ampicillin resistance (AMP-R). We previously designated three forms of PBP5, namely, PBP5-S in Efm clade B strains [ampicillin susceptible (AMP-S)], PBP5-S/R (AMP-S or R), and PBP5-R (AMP-R) in clade A strains. Here, pbp5 deletion resulted in a marked reduction in AMP minimum inhibitory concentrations (MICs) to 0.01-0.09 µg/mL for clade B and 0.12-0.19 µg/mL for clade A strains; in situ complementation restored parental AMP MICs. Using D344SRF (lacking ftsW/psr/pbp5), constructs with ftsWA/psrA (from a clade A1 strain) cloned upstream of pbp5-S and pbp5-S/R alleles resulted in modest increases in MICs to 3-8 µg/mL, while high MICs (>64 µg/mL) were seen using pbp5 from A1 strains. Next, using ftsW ± psr from clade B and clade A/B and B/A hybrid constructs, the presence of psrB, even alone or in trans, resulted in much lower AMP MICs (3-8 µg/mL) than when psrA was present (MICs >64 µg/mL). qRT PCR showed relatively greater pbp5 expression (P = 0.007) with pbp5 cloned downstream of clade A1 ftsW/psr (MIC >128 µg/mL) vs when cloned downstream of clade B ftsW/psr (MIC 4-16 µg/mL), consistent with results in western blots. In conclusion, we report the effect of clade A vs B psr on AMP MICs as well as the impact of pbp5 alleles from different clades. While previously, Psr was not thought to contribute to AMP MICs in Efm, our results showed that the presence of psrB resulted in a major decrease in Efm AMP MICs. IMPORTANCE: The findings of this study shed light on ampicillin resistance in Enterococcus faecium clade A strains. They underscore the significance of alterations in the amino acid sequence of penicillin-binding protein 5 (PBP5) and the pivotal role of the psr region in PBP5 expression and ampicillin resistance. Notably, the presence of a full-length psrB leads to reduced PBP5 expression and lower minimum inhibitory concentrations (MICs) of ampicillin compared to the presence of a shorter psrA, regardless of the pbp5 allele involved. Additionally, clade B E. faecium strains exhibit lower AMP MICs when both psr alleles from clades A and B are present, although it is important to consider other distinctions between clade A and B strains that may contribute to this effect. It is intriguing to note that the divergence between clade A and clade B E. faecium and the subsequent evolution of heightened AMP MICs in hospital-associated strains appear to coincide with changes in Pbp5 and psr. These changes in psr may have resulted in an inactive Psr, facilitating increased PBP5 expression and greater ampicillin resistance. These results raise the possibility that a mimicker of PsrB, if one could be designed, might be able to lower MICs of ampicillin-resistant E. faecium, thus potentially resorting ampicillin to our therapeutic armamentarium for this species.


Subject(s)
Anti-Bacterial Agents , Enterococcus faecium , Penicillin-Binding Proteins , beta-Lactam Resistance , Ampicillin/pharmacology , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , beta-Lactam Resistance/genetics , Enterococcus faecium/genetics , Enterococcus faecium/drug effects , Enterococcus faecium/metabolism , Genome, Bacterial , Microbial Sensitivity Tests , Penicillin-Binding Proteins/genetics , Penicillin-Binding Proteins/metabolism
3.
Infection ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38684586

ABSTRACT

PURPOSE: To analyse recent epidemiological trends of bloodstream infections (BSI) caused by Enterococcus spp. In adult patients admitted to tertiary care centres in Germany. METHODS: Epidemiological data from the multicentre R-NET study was analysed. Patients presenting with E. faecium or E. faecalis in blood cultures in six German tertiary care university hospitals between October 2016 and June 2020 were prospectively evaluated. In vancomycin-resistant enterococci (VRE), the presence of vanA/vanB was confirmed via molecular methods. RESULTS: In the 4-year study period, 3001 patients with BSI due to Enterococcus spp. were identified. E. faecium was detected in 1830 patients (61%) and E. faecalis in 1229 patients (41%). Most BSI occurred in (sub-) specialties of internal medicine. The pooled incidence density of enterococcal BSI increased significantly (4.0-4.5 cases per 10,000 patient days), which was primarily driven by VRE BSI (0.5 to 1.0 cases per 10,000 patient days). In 2020, the proportion of VRE BSI was > 12% in all study sites (range, 12.8-32.2%). Molecular detection of resistance in 363 VRE isolates showed a predominance of the vanB gene (77.1%). CONCLUSION: This large multicentre study highlights an increase of BSI due to E. faecium, which was primarily driven by VRE. The high rates of hospital- and ICU-acquired VRE BSI point towards an important role of prior antibiotic exposure and invasive procedures as risk factors. Due to limited treatment options and high mortality rates of VRE BSI, the increasing incidence of VRE BSI is of major concern.

4.
J Food Prot ; 87(5): 100264, 2024 May.
Article in English | MEDLINE | ID: mdl-38493872

ABSTRACT

A surrogate is commonly used for process validations. The industry often uses the target log cycle reduction for the test (LCRTest) microorganism (surrogate) to be equal to the desired log cycle reduction for the target (LCRTarget) microorganism (pathogen). When the surrogate is too conservative with far greater resistance than the pathogen, the food may be overprocessed with quality and cost consequences. In aseptic processing, the Institute for Thermal Processing Specialists recommends using relative resistance (DTarget)/(DTest) to calculate LCRTest (product of LCRTarget and relative resistance). This method uses the mean values of DTarget and DTest and does not consider the estimating variability. We defined kill ratio (KR) as the inverse of relative resistance.The industry uses an extremely conservative KR of 1 in the validation of food processes for low-moisture foods, which ensures an adequate reduction of LCRTest, but can result in quality degradation. This study suggests an approach based on bootstrap sampling to determine conservative KR, leading to practical recommendations considering experimental and biological variability in food matrices. Previously collected thermal inactivation kinetics data of Salmonella spp. (target organism) and Enterococcus faecium (test organism) in Non-Fat Dried Milk (NFDM) and Whole Milk Powder (WMP) at 85, 90, and 95°C were used to calculate the mean KR. Bootstrapping was performed on mean inactivation rates to get a distribution of 1000 bootstrap KR values for each of the treatments. Based on minimum temperatures used in the industrial process and acceptable level of risk (e.g., 1, 5, or 10% of samples that would not achieve LCRTest), a conservative KR value can be estimated. Consistently, KR increased with temperature and KR for WMP was higher than NFDM. Food industries may use this framework based on the minimum processing temperature and acceptable level of risk for process validations to minimize quality degradation.


Subject(s)
Colony Count, Microbial , Food Contamination , Food Microbiology , Hot Temperature , Humans , Food Contamination/analysis , Food Handling/methods , Consumer Product Safety , Kinetics
5.
Eur J Clin Microbiol Infect Dis ; 43(4): 767-775, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38372832

ABSTRACT

OBJECTIVE: The aim of the study was to determine the resistance profile of linezolid-resistant Enterococcus faecium (LREfm) and to investigate risk factors and outcomes associated with LREfm infections. MATERIAL AND METHODS: A prospective case-control study was undertaken (2019 to 2022) and included 202 patients with LREfm infections (cases) and 200 controls with LSEfm infections. Clinical data was prospectively collected and analysed for risk factors and outcomes. Antimicrobial susceptibility was performed, and resistance profile was studied using WHOnet. RESULTS: Risk factors associated with LREfm infection were site of infection UTI (OR 5.87, 95% CI 2.59-13.29, p ≤ 0.001), prior use of carbapenem (OR 2.85 95% CI 1.62-5.02, p ≤ 0.001) and linezolid (OR 10.13, 95% CI 4.13-24.82, p ≤ 0.001), use of central line (OR 5.54, 95% CI 2.35-13.09, p ≤ 0.001), urinary catheter (OR 0.29, 95% CI 0.12-0.70, p ≤ 0.001) and ventilation (OR 14.87, 95% CI 7.86-28.11, p ≤ 0.007). The hospital stay 8-14 days (< 0.001) prior to infection and the mortality rate (p = 0.003) were also significantly high among patients with LREfm infections. Linezolid and vancomycin resistance coexisted; further, MDR, XDR and PDR phenotypes were significantly higher among LREfm. CONCLUSION: This study provided insight into epidemiology of MDR LREfm in a setting where linezolid use is high. The main drivers of infections with LREfm are multiple, including use of carbapenems and linezolid. Invasive procedures and increased hospital stay facilitate spread through breach in infection control practises. As therapeutic options are limited, ongoing surveillance of LREfm and VRE is critical to guide appropriate use of linezolid and infection control policies.


Subject(s)
Enterococcus faecium , Gram-Positive Bacterial Infections , Humans , Linezolid/pharmacology , Linezolid/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Enterococcus faecium/genetics , Case-Control Studies , Tertiary Care Centers , Enterococcus , Carbapenems/therapeutic use , Risk Factors , Gram-Positive Bacterial Infections/drug therapy , Gram-Positive Bacterial Infections/epidemiology , Gram-Positive Bacterial Infections/microbiology
6.
Antibiotics (Basel) ; 13(2)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38391500

ABSTRACT

Antimicrobial resistance (AMR) is an emerging public health threat and is one of the One Health priorities for humans, animals, and environmental health. Red foxes (Vulpes vulpes) are a widespread predator species with great ecological significance, and they may serve as a sentinel of antimicrobial resistance in the general environment. The present study was carried out to detect antimicrobial resistance, antimicrobial resistance genes, and genetic diversity in faecal isolates of red foxes (Vulpes vulpes). In total, 34 Enterococcus isolates, including E. faecium (n = 17), E. faecalis (n = 12), E. durans (n = 3), and E. hirae (n = 2), were isolated. Antimicrobial resistance to 12 antimicrobial agents was detected with EUVENC panels using the minimum inhibitory concentration (MIC). The presence of antimicrobial resistance genes (ARGs) was determined using whole-genome sequencing (WGS). Resistance to tetracycline (6/34), erythromycin (3/34), ciprofloxacin (2/34), tigecycline (2/34), and daptomycin (2/34) was identified in 44% (15/34) of Enterococcus isolates, while all the isolates were found to be susceptible to ampicillin, chloramphenicol, gentamicin, linezolid, teicoplanin, and vancomycin. No multi-resistant Enterococcus spp. were detected. A total of 12 ARGs were identified in Enterococcus spp., with the presence of at least 1 ARG in every isolate. The identified ARGs encoded resistance to aminoglycosides (aac(6')-I, ant(6)-Ia, aac(6')-Iih and spw), tetracyclines (tet(M), tet(L) and tet(S)), and macrolide-lincosamide-streptogramin AB (lnu(B,G), lsa(A,E), and msr(C)), and their presence was associated with phenotypical resistance. Core genome multilocus sequence typing (cgMLST) revealed the high diversity of E. faecalis and E. faecium isolates, even within the same geographical area. The distribution of resistant Enterococcus spp. in wild foxes in Latvia highlights the importance of a One Health approach in tackling AMR.

7.
Eur J Clin Microbiol Infect Dis ; 43(1): 17-31, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37975976

ABSTRACT

PURPOSE: Vancomycin-resistant enterococci (VRE) are a leading cause of hospital-acquired infections with limited therapeutic options. Combination of at least two antimicrobials is a possible strategy to obtain rapid and sustained bactericidal effects and overcome the emergence of resistance. We revised the literature on linezolid synergistic properties from in vitro studies to assess its activity in combination with molecules belonging to other antibiotic classes against Enterococcus spp. METHODS: We performed a systematic review of the literature from three peer-reviewed databases including papers evaluating linezolid synergistic properties in vitro against Enterococcus spp. isolates. RESULTS: We included 206 Enterococcus spp. isolates (92 E. faecalis, 90 E. faecium, 2 E. gallinarum, 3 E. casseliflavus, 19 Enterococcus spp.) from 24 studies. When an isolate was tested with different combinations, each combination was considered independently for further analysis. The most frequent interaction was indifferent effect (247/343, 72% of total interactions). The highest synergism rates were observed when linezolid was tested in combination with rifampin (10/49, 20.4% of interactions) and fosfomycin (16/84, 19.0%, of interactions). Antagonistic effect accounted for 7/343 (2.0%) of total interactions. CONCLUSION: Our study reported overall limited synergistic in vitro properties of linezolid with other antibiotics when tested against Enterococcus spp. The clinical choice of linezolid in combination with other antibiotics should be guided by reasoned empiric therapy in the suspicion of a polymicrobial infection or targeted therapy on microbiological results, rather than on an intended synergistic effect of the linezolid-based combination.


Subject(s)
Enterococcus faecium , Fosfomycin , Gram-Positive Bacterial Infections , Vancomycin-Resistant Enterococci , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Enterococcus faecalis , Fosfomycin/pharmacology , Fosfomycin/therapeutic use , Gram-Positive Bacterial Infections/drug therapy , Gram-Positive Bacterial Infections/microbiology , Linezolid/pharmacology , Linezolid/therapeutic use , Microbial Sensitivity Tests , Rifampin/pharmacology , Rifampin/therapeutic use
8.
Curr Res Microb Sci ; 6: 100209, 2024.
Article in English | MEDLINE | ID: mdl-38116185

ABSTRACT

Raw milk from native small ruminant breeds in Epirus, Greece, is a valuable natural source of autochthonous lactic acid bacteria (LAB) strains with superior biotechnological properties. In this study, two bulk milks (RM1, RM2) from two local sheep yards, intended for traditional Kefalotyri cheese production, were preselected for bacteriocin-like antilisterial activity by in vitro tests. Their antagonistic LAB biota was quantified followed by polyphasic (16S rRNA gene sequencing; IGS for Enterococcus; a multiplex-PCR for Leuconostoc) identification of 42 LAB (RM1/18; RM2/24) isolates further evaluated for bacteriocin encoding genes and primary safety traits. Representative isolates of the numerically dominant mesophilic LAB were Leuconostoc mesenteroides (10) in both RMs, Streptococcus parauberis (7) in RM2, and Lactococcus lactis (1) in RM1; the subdominant thermophilic LAB isolates were Enterococcus durans (8), E. faecium (6), E. faecalis (3), E. hirae (1), E. hermanniensis (1), Streptococcus lutetiensis (2), S. equinus (1) and S. gallolyticus (1). Based on their rpoB, araA, dsr and sorA profiles, six Ln. mesenteroides strains (8 isolates) were atypical lying between the subspecies mesenteroides and dextranicum, whereas two strains profiled with Ln. mesenteroides subsp. jonggajibkimchi that is first-time reported in Greek dairy food. Two RM1 E. faecium strain biotypes (3 isolates) showed strong, enterocin-mediated antilisterial activity due to entA/entB/entP possession. One E. durans from RM1 possessed entA and entP, while additional nine RM2 isolates of the E. faecium/durans group processed entA or entP singly. All showed direct (cell-associated) antilisterial activity only, as also both S. lutetiensis strains from RM2 did strongly. Desirably, no LAB isolate was ß-hemolyrtic, or cytolysin-positive, or possessed vanA, vanB for vancomycin resistance, or agg, espA, hyl, and IS16 virulence genes. However, all three E. faecalis from RM2 possessed gelE and/or ace virulence genes. In conclusion, all Ln. mesenteroides strains, the two safe, enterocin A-B-P-producing E. faecium strains, and the two antilisterial S. lutetiensis strains should be validated further as potential costarter or adjunct cultures in Kefalotyri cheese. The prevalence of α-hemolytic pyogenic streptococci in raw milk, mainly S. parauberis in RM2, requires consideration in respect to subclinical mastitis in sheep and the farm hygiene overall.

9.
Microorganisms ; 11(12)2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38138136

ABSTRACT

Enterococcus spp. are typically found in the gastrointestinal tracts of humans and animals. However, they have the potential to produce opportunistic infections that can be transmitted to humans or other animals, along with acquired antibiotic resistance. In this study, we aimed to investigate the antimicrobial resistance profiles of Enterococcus faecium and Enterococcus faecalis isolates obtained from companion animal dogs and cats in Korea during 2020-2022. The resistance rates in E. faecalis towards most of the tested antimicrobials were relatively higher than those in E. faecium isolated from dogs and cats. We found relatively higher resistance rates to tetracycline (65.2% vs. 75.2%) and erythromycin (39.5% vs. 49.6%) in E. faecalis isolated from cats compared to those from dogs. However, in E. faecium, the resistance rates towards tetracycline (35.6% vs. 31.5%) and erythromycin (40.3% vs. 35.2%) were comparatively higher for dog isolates than cats. No or very few E. faecium and E. faecalis isolates were found to be resistant to daptomycin, florfenicol, tigecycline, and quinupristin/dalfopristin. Multidrug resistance (MDR) was higher in E. faecalis recovered from cats (44%) and dogs (33.9%) than in E. faecium isolated from cats (24.1%) and dogs (20.5%). Moreover, MDR patterns in E. faecalis isolates from dogs (27.2%) and cats (35.2%) were shown to encompass five or more antimicrobials. However, E. faecium isolates from dogs (at 13.4%) and cats (at 14.8%) were resistant to five or more antimicrobials. Taken together, the prevalence of antimicrobial-resistant enterococci in companion animals presents a potential public health concern.

10.
Microb Genom ; 9(12)2023 Dec.
Article in English | MEDLINE | ID: mdl-38112685

ABSTRACT

Between 2010 and 2015 the incidence of vancomycin-resistant Enterococcus faecium (VREfm) in Norway increased dramatically. Hence, we selected (1) a random subset of vancomycin-resistant enterococci (VRE) from the Norwegian Surveillance System for Communicable Diseases (2010-15; n=239) and (2) Norwegian vancomycin-susceptible E. faecium (VSEfm) bacteraemia isolates from the national surveillance system for antimicrobial resistance in microbes (2008 and 2014; n=261) for further analysis. Whole-genome sequences were collected for population structure, van gene cluster, mobile genetic element and virulome analysis, as well as antimicrobial susceptibility testing. Comparative genomic and phylogeographical analyses were performed with complete genomes of global E. faecium strains from the National Center for Biotechnology Information (NCBI) (1946-2022; n=272). All Norwegian VREfm and most of the VSEfm clustered with global hospital-associated sequence types (STs) in the phylogenetic subclade A1. The vanB2 subtype carried by chromosomal Tn1549 integrative conjugative elements was the dominant van type. The major Norwegian VREfm cluster types (CTs) were in accordance with concurrent European CTs. The dominant vanB-type VREfm CTs, ST192-CT3/26 and ST117-CT24, were mostly linked to a single hospital in Norway where the clones spread after independent chromosomal acquisition of Tn1549. The less prevalent vanA VRE were associated with more diverse CTs and vanA carrying Inc18 or RepA_N plasmids with toxin-antitoxin systems. Only 5 % of the Norwegian VRE were Enterococcus faecalis, all of which contained vanB. The Norwegian VREfm and VSEfm isolates harboured CT-specific virulence factor (VF) profiles supporting biofilm formation and colonization. The dominant VREfm CTs in general hosted more virulence determinants than VSEfm. The phylogenetic clade B VSEfm isolates (n=21), recently classified as Enterococcus lactis, harboured fewer VFs than E. faecium in general, and particularly subclade A1 isolates. In conclusion, the population structure of Norwegian E. faecium isolates mirrors the globally prevalent clones and particularly concurrent European VREfm/VSEfm CTs. Novel chromosomal acquisition of vanB2 on Tn1549 from the gut microbiota, however, formed a single major hospital VREfm outbreak. Dominant VREfm CTs contained more VFs than VSEfm.


Subject(s)
Cross Infection , Enterococcus faecium , Vancomycin-Resistant Enterococci , Humans , Vancomycin/pharmacology , Anti-Bacterial Agents/pharmacology , Phylogeny , Prevalence , Bacterial Proteins/genetics , Cross Infection/epidemiology , Drug Resistance, Bacterial/genetics , Vancomycin-Resistant Enterococci/genetics , Hospitals , Virulence Factors/genetics
11.
Vaccines (Basel) ; 11(11)2023 Nov 14.
Article in English | MEDLINE | ID: mdl-38006046

ABSTRACT

The declaration of the conclusion of the COVID-19 pandemic notwithstanding, coronavirus remains prevalent in circulation, and the potential emergence of novel variants of concern introduces the possibility of new outbreaks. Moreover, it is not clear how quickly and to what extent the effectiveness of vaccination will decline as the virus continues to mutate. One possible solution to combat the rapidly mutating coronavirus is the creation of safe vaccine platforms that can be rapidly adapted to deliver new, specific antigens in response to viral mutations. Recombinant probiotic microorganisms that can produce viral antigens by inserting specific viral DNA fragments into their genome show promise as a platform and vector for mucosal vaccine antigen delivery. The authors of this study have developed a convenient and universal technique for inserting the DNA sequences of pathogenic bacteria and viruses into the gene that encodes the pili protein of the probiotic strain E. faecium L3. The paper presents data on the immunogenic properties of two E. faecium L3 vaccine strains, which produce two different fragments of the coronavirus S1 protein, and provides an assessment of the protective efficacy of these oral vaccines against coronavirus infection in Syrian hamsters.

12.
Front Microbiol ; 14: 1273949, 2023.
Article in English | MEDLINE | ID: mdl-38029192

ABSTRACT

Introduction: Enterococcus faecium is a common pathogen responsible for urinary tract infections (UTIs) and often establishes extensive colonization within the intestinal tract. Our aim was to assess the genomic and transcriptomic differences between colonized E. faecium without UTI (only-colonization) and colonized E. faecium causing UTI (endogenous infections). Method: We investigated the correlation between fecal isolates from the same patient and UTI-causing isolates using PFGE and WGS, and classified fecal isolates into two groups: those that solely colonized and those associated with endogenous urinary tract infections. We characterized the genomes of colonization-only and endogenously infected isolates by Scoary GWAS, and the transcriptomes of the isolates at 3 h urine exposure to assess pathogen-related changes. Result: Based on PFGE and WGS, eight isolates of endogenously infected E. faecium and nine isolates of only-colonized E. faecium were characterized and carbon and nitrogen regulated metabolisms such as genes encoding the phosphotransferase (PTS) system were enriched in endogenously infected E. faecium. Transcriptome analysis revealed significant differences in gene expression in the PTS system, lysine synthesis, galactose metabolism and citrate import between endogenously infected and only-colonized E. faecium isolates, highlighting the important role of certain carbon regulatory genes in the colonization and survival of endogenously infected E. faecium. Conclusion: In only-colonized and endogenously infected isolates, we observed differential expression patterns of genes related to carbon metabolism and amino acids, suggesting that metabolic diversity is a strategy for isolates leading to endogenous infection.

13.
Anim Biotechnol ; 34(8): 4032-4040, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37656717

ABSTRACT

Production of new types of probiotics for animal nutrition mainly depends on the appropriate bacterial strain and efficient substrate. Therefore, this study aimed to evaluate the impact of two probiotic strains containing 1.2 × 108 (CFU/g), produced on permeate media on performance responses of Rahmani ewes. Thirty early lactating ewes (about 2-3 years old and weighting on average 43.2 ± 0.3 kg) were randomly divided into three groups of 10 animals each using a completely randomized design. The 1st group was fed the basal diet (60% concentrate feed mixture (CFM) + 30% Egyptian clover + 10% bean straw). While the ewes in 2nd and 3rd groups were fed the basal diet + 2 g of Enterococcus faecium NRC-3(EF) and Lactobacillus rhamnosus (LR), respectively for 9 weeks. Ewes' diet supplementation with EF or LR increased (p < 0.05) dry matter, organic matter, crude protein, neutral detergent fiber, acid detergent fiber, and non-structural carbohydrates digestibility compared to ewes of the control group. Glucose, total protein, and albumin concentrations significantly increased in the blood of EF ewes than those of LR and control. Probiotics increased ewes' milk yield as well as milk protein, fat, and lactose yields, but no differences were observed between treatments when milk components were expressed as percentage. Milk fatty acids profile not changed due to EF or LR supplementation. Probiotics (E. faecium and L. rhamnosus) produced on cheese industry waste (permeate) have proven their ability to improve the productive performance of the lactating Rahmani ewes.


Subject(s)
Enterococcus faecium , Lacticaseibacillus rhamnosus , Animals , Female , Sheep , Lactation/physiology , Detergents , Dietary Supplements , Diet/veterinary , Animal Feed/analysis
14.
J Chemother ; 35(8): 689-699, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37746914

ABSTRACT

To assess oritavancin in vitro activity against clinically relevant Gram-positive pathogens in European (EU) hospitals, a total of 51,531 consecutive and unique clinical isolates collected in 2010-2019 were evaluated. All isolates were tested by CLSI broth microdilution methods. The key resistance phenotypes differed considerably between Eastern Europe (E-EU) and Western Europe (W-EU), respectively: methicillin-resistant (MR) Staphylococcus aureus 27.7%/22.9%; multidrug resistant (MDR) S. aureus, 19.7%/15.2%; MR coagulase-negative staphylococci, 77.3%/61.9%; vancomycin-resistant enterococci (E. faecium), 44.2%/20.9%; and MDR E. faecium, 63.8%/55.4%. There were no substantive differences in oritavancin minimum inhibitory concentration (MIC) values for the different species/organism groups over time or by EU region. Oritavancin inhibited 99.9% and 99.1% of all S. aureus and coagulase-negative staphylococci at 0.12 mg/L, respectively, and all isolates of E. faecalis and E. faecium at ≤0.5 mg/L. Oritavancin susceptibility rates against ß-hemolytic and Viridans group streptococci isolates were 98.1% and 99.4%, respectively. Oritavancin had potent activity in vitro against this contemporary collection of European Gram-positive isolates from 2010 to 2019.


Subject(s)
Anti-Infective Agents , Gram-Positive Bacterial Infections , Humans , Anti-Bacterial Agents/pharmacology , Staphylococcus aureus , Coagulase , Staphylococcus , Europe/epidemiology , Microbial Sensitivity Tests , Gram-Positive Bacterial Infections/drug therapy , Gram-Positive Bacterial Infections/epidemiology , Gram-Positive Bacteria
15.
Sci Total Environ ; 901: 166217, 2023 Nov 25.
Article in English | MEDLINE | ID: mdl-37604372

ABSTRACT

The presence of Enterococcus faecium (E. faecium), Klebsiella pneumoniae (K. pneumoniae), Pseudomonas aeruginosa (P. aeruginosa), and the aminoglycoside resistance genes, aac(6')-Ib and aac(6')-aph(2″), was investigated in environmental water sources obtained from informal settlements in the Western Cape (South Africa). Using ethidium monoazide bromide quantitative polymerase chain reaction (EMA-qPCR) analysis, E. faecium, K. pneumoniae, and P. aeruginosa were detected in 88.9 %, 100 %, and 93.3 % of the samples (n = 45), respectively, with a significantly higher mean concentration recorded for K. pneumoniae (7.83 × 104 cells/100 mL) over the sampling period. The aac(6')-Ib gene was detected in 95.6 % (43/45) of the environmental water samples [mean concentration of 7.07 × 106 gene copies (GC)/100 mL], while the aac(6')-aph(2″) gene was detected in 100 % (n = 45) of the samples [mean concentration of 6.68 × 105 GC/100 mL]. Quantitative microbial risk assessment (QMRA) subsequently indicated that the risks posed by K. pneumoniae and P. aeruginosa were linked to intentional drinking, washing/bathing, cleaning of the home, and swimming, in the samples collected from the various sampling sites. Surrogate risk assessment models were then designed and applied for Gram-positive [aac(6')-aph(2″) gene] and Gram-negative [aac(6')-Ib gene] pathogens that may exhibit aminoglycoside resistance. The results indicated that only the Gram-negative pathogens posed a risk (>10-4) in all the samples for cleaning of the home and intentional drinking, as well as for washing laundry by hand, garden hosing, garden work, washing/bathing, accidental consumption, and swimming at the stream and marsh sites. Thus, while environmental waters may pose a health risk of exposure to pathogenic bacteria, the results obtained indicate that screening for antibiotic resistant genes, associated with multiple genera/species, could serve as a surrogate model for estimating risks with the target group under investigation.

16.
Antibiotics (Basel) ; 12(8)2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37627663

ABSTRACT

Enterococcus spp., including E. faecalis and E. faecium, pose risks to dairy farms as opportunistic pathogens. The study evaluates antimicrobial resistance (AMR) and virulence characteristics of Enterococcus spp. isolated from bovine milk. Bile esculin agar was used to assess 1471 milk samples, followed by colony identification, gram staining, catalase tests, and 45 °C incubation. PCR analysis targeted E. faecalis and E. faecium in characteristic Enterococcus spp. colonies, with MALDI-TOF used for negative samples. Multiple tests, including disk diffusion, chromogenic VRE agar for vancomycin resistance, Vancomycin Etest® for MIC determination, and PCR for virulence factors (cylA, esp, efaA, ace, asa1, gelE, and hyl genes), were performed. Out of 100 identified strains, E. durans (30.66%), E. faecium (26.28%), and E. faecalis (18.25%) were predominant. AMR in Enterococcus spp. varied, with the highest rates against rifampicin (27%), tetracycline (20%), and erythromycin (18%). Linezolid (5%), vancomycin, ciprofloxacin, and teicoplanin (3% each) had lower prevalence. E. faecium and E. faecalis showed high AMR to rifampicin, erythromycin, and tetracycline. Thirty-two strains (18.98%) grew on VRE Chromoselect agar, while 4 (2 E. faecalis and 2 E. faecium) showed vancomycin resistance by MIC values. E. faecalis carried gelE (45.5%) and asa1 (36%), and E. gallinarum had 9.1% with the asa1 gene. Detecting resistant Enterococcus in bovine milk supports control strategies for enterococci on dairy farms, highlighting AMR concerns in the food chain.

17.
Front Microbiol ; 14: 1150070, 2023.
Article in English | MEDLINE | ID: mdl-37389336

ABSTRACT

Background: Linezolid is a critically important oxazolidinone antibiotic used in human medicine. Although linezolid is not licensed for use in food-producing animals, the use of florfenicol in veterinary medicine co-selects for oxazolidinone resistance genes. Objective: This study aimed to assess the occurrence of cfr, optrA, and poxtA in florfenicol-resistant isolates from beef cattle and veal calves from different herds in Switzerland. Methods: A total of 618 cecal samples taken from beef cattle and veal calves at slaughter originating from 199 herds were cultured after an enrichment step on a selective medium containing 10 mg/L florfenicol. Isolates were screened by PCR for cfr, optrA, and poxtA which are genes known to confer resistance to oxazolidinones and phenicols. One isolate per PCR-positive species and herd was selected for antimicrobial susceptibility testing (AST) and whole-genome sequencing (WGS). Results: Overall, 105 florfenicol-resistant isolates were obtained from 99 (16%) of the samples, corresponding to 4% of the beef cattle herds and 24% of the veal calf herds. Screening by PCR revealed the presence of optrA in 95 (90%) and poxtA in 22 (21%) of the isolates. None of the isolates contained cfr. Isolates included for AST and WGS analysis were Enterococcus (E.) faecalis (n = 14), E. faecium (n = 12), E. dispar (n = 1), E. durans (n = 2), E. gallinarum (n = 1), Vagococcus (V.) lutrae (n = 2), Aerococcus (A.) urinaeequi (n = 1), and Companilactobacillus (C.) farciminis (n = 1). Thirteen isolates exhibited phenotypic linezolid resistance. Three novel OptrA variants were identified. Multilocus sequence typing identified four E. faecium ST18 belonging to hospital-associated clade A1. There was a difference in the replicon profile among optrA- and poxtA-harboring plasmids, with rep9 (RepA_N) plasmids dominating in optrA-harboring E. faecalis and rep2 (Inc18) and rep29 (Rep_3) plasmids in poxtA-carrying E. faecium. Conclusion: Beef cattle and veal calves are reservoirs for enterococci with acquired linezolid resistance genes optrA and poxtA. The presence of E. faecium ST18 highlights the zoonotic potential of some bovine isolates. The dispersal of clinically relevant oxazolidinone resistance genes throughout a wide variety of species including Enterococcus spp., V. lutrae, A. urinaeequi, and the probiotic C. farciminis in food-producing animals is a public health concern.

18.
Microbiol Spectr ; : e0285222, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-36976027

ABSTRACT

We isolated one Enterococcus faecium isolate SZ21B15 from a bile sample of a patient with choledocholith in Shenzhen, China in 2021. It was positive for oxazolidinone resistance gene optrA and was intermediate to linezolid. The whole genome of E. faecium SZ21B15 was sequenced by Illumina Hiseq. It belonged to ST533 within the clonal complex 17. The optrA gene and additional two resistance genes fexA and erm(A) were located within a 25,777-bp multiresistance region, which was inserted into the chromosomal radC gene, being chromosomal intrinsic resistance genes. The chromosomal optrA gene cluster found in E. faecium SZ21B15 was closely related to the corresponding regions of multiple optrA-carrying plasmids or chromosomes from Enterococcus, Listeria, Staphylococcus, and Lactococcus strains. It further highlights the ability of the optrA cluster that transfers between plasmids and chromosomes and evolves by a series of molecular recombination events. IMPORTANCE Oxazolidinone are effective antimicrobial agents for the treatment of infections caused by multidrug-resistant Gram-positive bacteria, including vancomycin-resistant enterococci. The emergence and global spread of transferable oxazolidinone resistance genes such as optrA is worrisome. Enterococcus spp. can become causes of hospital-associated infections and are also widely distributed in the gastrointestinal tracts of animals and the natural environment. In this study, one E. faecium isolate from bile sample carried chromosomal optrA, being intrinsic resistance gene. optrA-positive E. faecium in bile not only makes the treatment of gallstones difficult, but also may become a reservoir of resistance genes in the body.

19.
ChemMedChem ; 18(2): e202200521, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36461692

ABSTRACT

Forty-four analogs of honokiol, a compound with known antibacterial activity, especially with respect to oral bacteria, were synthesized to explore the structure-activity relationships against the ESKAPE pathogens. Compounds with high therapeutic indices (hemolysis20 /MIC) were identified. In particular, ester-linked compounds that would be less than environmentally durable than biaryl ether antibacterials such as the broadly used triclosan were found to be active. MRSA mutants could be generated against some, but not all, of the highly active compounds. Based on gene sequencing results, membrane permeability, intracellular sodium, and intracellular pH assays revealed overlapping mechanisms of action.


Subject(s)
Anti-Bacterial Agents , Methicillin-Resistant Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Structure-Activity Relationship , Microbial Sensitivity Tests
20.
Int J Mol Cell Med ; 12(3): 242-256, 2023.
Article in English | MEDLINE | ID: mdl-38751656

ABSTRACT

E. faecium is the third most common cause of nosocomial infections. Linezolid (LNZ) is a reserve antibiotic recommended for infections caused by vancomycin resistant E. faecium (VREfm).  The aim of the present study was to investigate the prevalence of optrA gene among linezolid resistant E. faecium (LREfm) and to study the molecular epidemiology using pulse field gel electrophoresis (PFGE). Clinically significant LREfm were identified and antimicrobial susceptibility was performed by disc diffusion. Minimum inhibitory concentration (MIC) of linezolid, vancomycin, daptomycin and quinupristin/dalfopristin was determined by E-test. PCR and PCR-RFPL were performed for the detection of optrA/cfr gene and G2576T mutation respectively. Molecular epidemiology was studied by PFGE. A total of 1081 clinically significant Enterococci species were isolated which included E. faecium 63.5% (n=687) and E. faecalis 36.5% (n=394). LREfm (30/687) were further studied. Multidrug resistance and vancomycin resistance was 100% and 80%, respectively. Linezolid MIC range was 8-256µg/ml and the most common mechanism of resistance was optrA gene (83.3%) followed by G2576T mutation (33.3%). PFGE analysis demonstrated 4 major clones. The optrA gene mediated linezolid resistance was high and PFGE suggests resistance was emerging in the different background strains irrespective of resistance mechanism. Studies are required to investigate factors driving the emergence of linezolid resistance. The review suggests that this is the first report of optrA-mediated resistance in E. faecium from India.

SELECTION OF CITATIONS
SEARCH DETAIL
...