Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Mol Sci ; 24(8)2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37108544

ABSTRACT

EphB4 angiogenic kinase over-expression in Mesothelioma cells relies upon a degradation rescue signal provided by autocrine IGF-II activation of Insulin Receptor A. However, the identity of the molecular machinery involved in EphB4 rapid degradation upon IGF-II signal deprivation are unknown. Using targeted proteomics, protein-protein interaction methods, PCR cloning, and 3D modeling approaches, we identified a novel ubiquitin E3 ligase complex recruited by the EphB4 C tail upon autocrine IGF-II signal deprivation. We show this complex to contain a previously unknown N-Terminal isoform of Deltex3 E3-Ub ligase (referred as "DTX3c"), along with UBA1(E1) and UBE2N(E2) ubiquitin ligases and the ATPase/unfoldase Cdc48/p97. Upon autocrine IGF-II neutralization in cultured MSTO211H (a Malignant Mesothelioma cell line that is highly responsive to the EphB4 degradation rescue IGF-II signal), the inter-molecular interactions between these factors were enhanced and their association with the EphB4 C-tail increased consistently with the previously described EphB4 degradation pattern. The ATPase/unfoldase activity of Cdc48/p97 was required for EphB4 recruitment. As compared to the previously known isoforms DTX3a and DTX3b, a 3D modeling analysis of the DTX3c Nt domain showed a unique 3D folding supporting isoform-specific biological function(s). We shed light on the molecular machinery associated with autocrine IGF-II regulation of oncogenic EphB4 kinase expression in a previously characterized IGF-II+/EphB4+ Mesothelioma cell line. The study provides early evidence for DTX3 Ub-E3 ligase involvement beyond the Notch signaling pathway.


Subject(s)
Mesothelioma, Malignant , Mesothelioma , Humans , Adenosine Triphosphatases/metabolism , Insulin-Like Growth Factor II , Mesothelioma/genetics , Protein Isoforms , Receptor, Insulin/metabolism , Ubiquitin/metabolism , Ubiquitin-Conjugating Enzymes , Ubiquitin-Protein Ligases/metabolism
2.
Expert Rev Clin Immunol ; 19(2): 203-215, 2023 02.
Article in English | MEDLINE | ID: mdl-36537591

ABSTRACT

INTRODUCTION: VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome is a recently described, late-onset, acquired autoinflammatory disorder caused by mutations in the UBA1 gene. The various clinical manifestations of VEXAS broadly divided into inflammatory or haematological. VEXAS defines a new disease category - the hematoinflammatory disorders triggered by somatic mutations restricted to blood but causing systemic inflammation with multi-organ involvement and associated with aberrant bone marrow status. VEXAS causes significant morbidity and reduced life expectancy, but the optimum standard of care remains undefined. AREAS COVERED: This review describes the discovery of VEXAS, relevant genetic causes and immunopathology of the disease. A detailed account of its various clinical manifestations and disease mimics is provided. Current treatment and management options are discussed. EXPERT OPINION: New rare variants in UBA1 and VEXAS-like UBA1 negative cases are reported. Consensus diagnostic criteria might be required to define VEXAS and its related disorders. Investigation of sporadic, VEXAS-like cases will require the application of deep sequencing using DNA obtained from various cellular or tissue locations. Prospective studies are needed to define the optimal supportive and treatment options for patients with varying disease severity and prognosis. VEXAS-specific hematopoietic stem cell transplant selection criteria also require development.


Subject(s)
Inflammation , Myelodysplastic Syndromes , Humans , Consensus , Mutation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL