Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.299
Filter
1.
ACS Infect Dis ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990322

ABSTRACT

Infectious diabetic wounds present a substantial challenge, characterized by inflammation, infection, and delayed wound healing, leading to elevated morbidity and mortality rates. In this work, we developed a multifunctional lipid nanoemulsion containing quercetin, chlorine e6, and rosemary oil (QCRLNEs) for dual anti-inflammatory and antibacterial photodynamic therapy (APDT) for treating infectious diabetic wounds. The QCRLNEs exhibited spherical morphology with a size of 51 nm with enhanced encapsulation efficiency, skin permeation, and localized delivery at the infected wound site. QCRLNEs with NIR irradiation have shown excellent wound closure and antimicrobial properties in vitro, mitigating the nonselective cytotoxic behavior of PDT. Also, excellent biocompatibility and anti-inflammatory and wound healing responses were observed in zebrafish models. The infected wound healing properties in S. aureus-infected diabetic rat models indicated re-epithelization and collagen deposition with no signs of inflammation. This multifaceted approach using QCRLNEs with NIR irradiation holds great promise for effectively combating oxidative stress and bacterial infections commonly associated with infected diabetic wounds, facilitating enhanced wound healing and improved clinical outcomes.

2.
Article in English | MEDLINE | ID: mdl-38982697

ABSTRACT

OBJECTIVE: Enicostemma hyssopifolium (E. hyssopifolium) contains several bioactive compounds with anti-cancer activities. This study was performed to investigate the molecular effects of E. hyssopifolium on HPV18-containing HeLa cells. METHODS: The methanol extract of E. hyssopifolium whole plant was tested for cytotoxicity by MTT assay. A lower and higher dose (80 and 160 µg/mL) to IC50 were analyzed for colonization inhibition (Clonogenic assay), cell cycle arrest (FACS analysis), and induction of apoptosis (AO/EtBr staining fluorescent microscopy and FACS analysis) and DNA fragmentation (comet assay). The HPV 18 E6 gene expression in treated cells was analyzed using RT-PCR and qPCR. RESULTS: A significant dose-dependent anti-proliferative activity (IC50 - 108.25±2 µg/mL) and inhibition of colony formation cell line were observed using both treatments. Treatment with 80 µg/mL of extract was found to result in a higher percent of cell cycle arrest at G0/G1 and G2M phases with more early apoptosis, while 160 µg/mL resulted in more cell cycle arrest at SUBG0 and S phases with late apoptosis for control. The comet assay also demonstrated a highly significant increase in DNA fragmentation after treatment with 160 µg/mL of extract (tail moments-19.536 ± 17.8), while 80 µg/mL of extract treatment showed non-significant tail moment (8.152 ± 13.0) compared to control (8.038 ± 12.0). The RT-PCR and qPCR results showed a significant reduction in the expression of the HPV18 E6 gene in HeLa cells treated with 160 µg/mL of extract, while 80 µg/mL did not show a significant reduction. CONCLUSION: The 160 µg/mL methanol extract of E. hyssopifolium demonstrated highly significant anti-cancer molecular effects in HeLa cells.

3.
Expert Rev Vaccines ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38978164

ABSTRACT

INTRODUCTION: Persistent infections with the human papilloma viruses, HPV16 and HPV18, are associated with multiple cancers. Although prophylactic vaccines that induce HPV-neutralizing antibodies are effective against primary infections, they have no effect on HPV-mediated malignancies against which there is no approved immuno-therapy. Active research is ongoing on immunotherapy of these cancers. AREAS COVERED: In this review, we compared the preclinical efficacy of vaccine platforms used to treat HPV-induced tumors in the standard model of mice grafted with TC-1 cells, which express the HPV16 E6 and E7 oncoproteins. We searched for the key words, 'HPV,' 'vaccine,' 'therapy,' 'E7,' 'tumor,' 'T cells' and 'mice' for the period from 2005 to 2023 in PubMed and found 330 publications. Among them, we selected the most relevant to extract preclinical antitumor results to enable cross-sectional comparison of their efficacy. EXPERT OPINION SECTION: We compared these studies for HPV antigen design, immunization regimen, immunogenicity, and antitumor effect, considering their drawbacks and advantages. Among all strategies used in murine models, certain adjuvanted proteins and viral vectors showed the strongest antitumor effects, with the use of lentiviral vectors being the only approach to result in complete tumor eradication in 100% of experimental individuals while providing the longest-lasting memory.


Persistent infections with the human papilloma virus HPV16 and HPV18 gentoypes can cause multiple cancers.Prophylactic anti-HPV vaccines show no efficacy against persistent HPV infections or already malignant tissues.No immunotherapy against HPV-induced cancers has been thus far approved for use in humans.Active research is ongoing on immunotherapy of HPV-induced malignancies.We compared the efficacy of the immunotherapy strategies developed against HPV-induced cancers in the standard murine TC-1 tumor model since 2005.Certain adjuvanted proteins and viral vectors induce the strongest effects against HPV-induced tumors.Lentiviral vectors, able to induce the longest-lasting T-cell immune memory, give rise to full eradication of large solid tumors in 100% of mice.

4.
Virol J ; 21(1): 152, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38970084

ABSTRACT

BACKGROUND: High-risk human papillomavirus (HR-HPV) infection is an important factor for the development of cervical cancer. HPV18 is the second most common HR-HPV after HPV16. METHODS: In this study, MEGA11 software was used to analyze the variation and phylogenetic tree of HPV18 E6-E7 and L1 genes. The selective pressure to E6, E7 and L1 genes was estimated using pamlX. In addition, the B cell epitopes of L1 amino acid sequences and T cell epitopes of E6-E7 amino acid sequences in HPV18 were predicted by ABCpred server and IEDB website, respectively. RESULTS: A total of 9 single nucleotide variants were found in E6-E7 sequences, of which 2 were nonsynonymous variants and 7 were synonymous variants. Twenty single nucleotide variants were identified in L1 sequence, including 11 nonsynonymous variants and 9 synonymous variants. Phylogenetic analysis showed that E6-E7 and L1 sequences were all distributed in A lineage. In HPV18 E6, E7 and L1 sequences, no positively selected site was found. The nonconservative substitution R545C in L1 affected hypothetical B cell epitope. Two nonconservative substitutions, S82A in E6, and R53Q in E7, impacted multiple hypothetical T cell epitopes. CONCLUSION: The sequence variation data of HPV18 may lay a foundation for the virus diagnosis, further study of cervical cancer and vaccine design in central China.


Subject(s)
Genetic Variation , Human papillomavirus 18 , Oncogene Proteins, Viral , Papillomavirus E7 Proteins , Phylogeny , Oncogene Proteins, Viral/genetics , China , Humans , Human papillomavirus 18/genetics , Human papillomavirus 18/classification , Papillomavirus E7 Proteins/genetics , Capsid Proteins/genetics , Female , Epitopes, T-Lymphocyte/genetics , Papillomavirus Infections/virology , Repressor Proteins/genetics , Epitopes, B-Lymphocyte/genetics , DNA-Binding Proteins
5.
Nanomaterials (Basel) ; 14(11)2024 May 25.
Article in English | MEDLINE | ID: mdl-38869558

ABSTRACT

Photodynamic therapy (PDT) has developed as an efficient strategy for cancer treatment. PDT involves the production of reactive oxygen species (ROS) by light irradiation after activating a photosensitizer (PS) in the presence of O2. PS-coupled nanomaterials offer additional advantages, as they can merge the effects of PDT with conventional enabling-combined photo-chemotherapeutics effects. In this work, mesoporous titania nanorods were surface-immobilized with Chlorin e6 (Ce6) conjugated through 3-(aminopropyl)-trimethoxysilane as a coupling agent. The mesoporous nanorods act as nano vehicles for doxorubicin delivery, and the Ce6 provides a visible light-responsive production of ROS to induce PDT. The nanomaterials were characterized by XRD, DRS, FTIR, TGA, N2 adsorption-desorption isotherms at 77 K, and TEM. The obtained materials were tested for their singlet oxygen and hydroxyl radical generation capacity using fluorescence assays. In vitro cell viability experiments with HeLa cells showed that the prepared materials are not cytotoxic in the dark, and that they exhibit photodynamic activity when irradiated with LED light (150 W m-2). Drug-loading experiments with doxorubicin (DOX) as a model chemotherapeutic drug showed that the nanostructures efficiently encapsulated DOX. The DOX-nanomaterial formulations show chemo-cytotoxic effects on Hela cells. Combined photo-chemotoxicity experiments show enhanced effects on HeLa cell viability, indicating that the conjugated nanorods are promising for use in combined therapy driven by LED light irradiation.

6.
Front Neuroanat ; 18: 1410791, 2024.
Article in English | MEDLINE | ID: mdl-38873093

ABSTRACT

Angelman syndrome (AS) is a neurogenetic disorder caused by mutations or deletions in the maternally-inherited UBE3A allele, leading to a loss of UBE3A protein expression in neurons. The paternally-inherited UBE3A allele is epigenetically silenced in neurons during development by a noncoding transcript (UBE3A-ATS). The absence of neuronal UBE3A results in severe neurological symptoms, including speech and language impairments, intellectual disability, and seizures. While no cure exists, therapies aiming to restore UBE3A function-either by gene addition or by targeting UBE3A-ATS-are under development. Progress in developing these treatments relies heavily on inferences drawn from mouse studies about the function of UBE3A in the human brain. To aid translational efforts and to gain an understanding of UBE3A and UBE3A-ATS biology with greater relevance to human neurodevelopmental contexts, we investigated UBE3A and UBE3A-ATS expression in the developing brain of the rhesus macaque, a species that exhibits complex social behaviors, resembling aspects of human behavior to a greater degree than mice. Combining immunohistochemistry and in situ hybridization, we mapped UBE3A and UBE3A-ATS regional and cellular expression in normal prenatal, neonatal, and adolescent rhesus macaque brains. We show that key hallmarks of UBE3A biology, well-known in rodents, are also present in macaques, and suggest paternal UBE3A silencing in neurons-but not glial cells-in the macaque brain, with onset between gestational day 48 and 100. These findings support proposals that early-life, perhaps even prenatal, intervention is optimal for overcoming the maternal allele loss of UBE3A linked to AS.

7.
Trends Mol Med ; 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38853085

ABSTRACT

Countless efforts have been made to eradicate cervical cancer worldwide, including improving disease screening and human papillomavirus (HPV) vaccination programs. Nevertheless, cervical cancer still claims the lives of more than 300 000 women every year. Persistent infections with high-risk HPV genotypes 16 and 18 are the main cause of cancer and may result in HPV integration into the host genome. The central dogma is that HPV integration is an important step in oncogenesis, but in fact, it impedes the virus from replicating and spreading. HPV causing cervical cancer can therefore be perceived as a failed evolutionary viral trait. Here we outline the occurrence and mechanisms of HPV integration and how this process results in oncogenic transformation.

8.
Life Sci ; 351: 122785, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38851420

ABSTRACT

Lung cancer stands as one of the most lethal diseases and is the foremost cause of cancer-related mortalities worldwide. The pathophysiology of lung cancer is multifaceted, and it includes multiple cell signaling pathways and other complex factors such as oxidative stress and genetics. The association of HPV with lung carcinogenesis was first proposed in 1979, and since then, scientists worldwide have been putting forward several hypotheses to establish a relationship between this virus and lung cancer. Although studies have reported the presence of HPV in lung cancer, the exact mechanism of entry and the route of transmission have not been elucidated clearly till date. Numerous studies across the globe have detected differentially expressed HPV oncoproteins in lung cancer patients and found their association with the critical cell signaling pathways that leads to the development and progression of lung cancer. Many reports have also provided evidence stating the involvement of HPV in determining the survival status of lung cancer patients. The present review recapitulates the studies evincing the association of HPV and lung cancer, its route of transmission and mechanism of action; the detection of the virus and treatment opportunities for HPV-positive lung cancer; and the severity associated with this disease. Therefore, this will provide an explicit idea and would help to develop preventive measures and specific as well as effective treatment for HPV-associated lung carcinogenesis.


Subject(s)
Lung Neoplasms , Papillomaviridae , Papillomavirus Infections , Humans , Lung Neoplasms/virology , Papillomavirus Infections/virology , Papillomavirus Infections/complications , Papillomaviridae/pathogenicity , Carcinogenesis , Human Papillomavirus Viruses
9.
Cells ; 13(12)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38920638

ABSTRACT

Head and neck cancers rank as the sixth most prevalent cancers globally. In addition to traditional risk factors such as smoking and alcohol use, human papillomavirus (HPV) infections are becoming a significant causative agent of head and neck cancers, particularly among Western populations. Although HPV offers a significant survival benefit, the search for better biomarkers is still ongoing. In the current study, our objective was to investigate whether the expression levels of three PDZ-domain-containing proteins (SCRIB, NHERF2, and DLG1), known HPV E6 cellular substrates, influence the survival of HNSCC patients treated by primary surgery (n = 48). Samples were derived from oropharyngeal and oral cancers, and HPV presence was confirmed by PCR and p16 staining. Clinical and follow-up information was obtained from the hospital database and the Croatian Cancer registry up to November 2023. Survival was evaluated using the Kaplan-Meier method and Cox proportional hazard regression. The results were corroborated through the reanalysis of a comparable subset of TCGA cancer patients (n = 391). In conclusion, of the three targets studied, only SCRIB levels were found to be an independent predictor of survival in the Cox regression analysis, along with tumor stage. Further studies in a more typical Western population setting are needed since smoking and alcohol consumption are still prominent in the Croatian population, while the strongest association between survival and SCRIB levels was seen in HPV-negative cases.


Subject(s)
Membrane Proteins , Tumor Suppressor Proteins , Humans , Male , Female , Prognosis , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Middle Aged , Membrane Proteins/metabolism , Membrane Proteins/genetics , Papillomavirus Infections/virology , Papillomavirus Infections/complications , Papillomaviridae/genetics , Aged , Squamous Cell Carcinoma of Head and Neck/virology , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/metabolism , Head and Neck Neoplasms/virology , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/metabolism , Biomarkers, Tumor/metabolism , Kaplan-Meier Estimate , Adult
10.
Biomed Mater ; 19(4)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38870927

ABSTRACT

Recently, cytokine-induced killer (CIK) cells have a broad application prospect in the comprehensive diagnosis and treatment of tumors owing to their unique characteristics of killing and targeting malignant tumors. Herein, we report a facile strategy for synthesis of monodisperse gold nanostars (GNSs) based on PEGylation and co-loaded with the photosensitizer chlorin e6 (Ce6) to form GNSs-PEG@Ce6 NPs. Then employing CIK cells loading the as-prepared GNSs-PEG@Ce6 NPs to fabricate a CIK cells-based drug delivery system (GNSs-PEG@Ce6-CIK) for lung cancer. Among them, GNSs was functioned as transport media, Ce6 acted as the near-infrared (NIR) fluorescence imaging agent and photodynamic therapy (PDT), and CIK cells served as targeting vectors for immunotherapy, which can increase the efficiency of tumor enrichment and treatment effect. The results of cellular experiments demonstrated that GNSs-PEG@Ce6 NPs had good dispersibility, water solubility and low toxicity under physiological conditions, and the cultured CIK cells had strong anti-tumor properties. Subsequently, GNSs-PEG@Ce6-CIK could effectively inhibit the growth of A549 cells under the exposure of 633 nm laser, which showed stronger killing effect than that of GNSs-PEG@Ce6 NPs or CIK cells. In addition, they showed good tumor targeting and tumor synergistic killing activityin vivo. Therefore, GNSs-PEG@Ce6-CIK was constructed for targeted NIR fluorescence imaging, enhanced PDT and immunotherapy of lung cancer.


Subject(s)
Chlorophyllides , Cytokine-Induced Killer Cells , Gold , Lung Neoplasms , Metal Nanoparticles , Photochemotherapy , Photosensitizing Agents , Porphyrins , Gold/chemistry , Photochemotherapy/methods , Lung Neoplasms/therapy , Lung Neoplasms/drug therapy , Humans , Animals , Porphyrins/chemistry , Porphyrins/pharmacology , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Metal Nanoparticles/chemistry , Mice , Immunotherapy/methods , Cell Line, Tumor , Drug Delivery Systems , Polyethylene Glycols/chemistry , A549 Cells , Optical Imaging/methods , Mice, Nude
11.
Anticancer Res ; 44(7): 2921-2931, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38925841

ABSTRACT

BACKGROUND/AIM: Human papillomavirus (HPV)-positive head and neck squamous cell carcinoma (HNSCC) is clinically and immunologically distinct from HPV-negative HNSCC. Herein, we investigated the presence of tumor antigens HPV E6/E7 and wild-type p53-specific T-cell responses, and the impact of immune checkpoint blockade in patients with HPV-positive HNSCC. MATERIALS AND METHODS: Peripheral blood mononuclear cells (PBMCs) from patients with HPV-positive HNSCC were stimulated with HPV E6/E7 or wild-type p53-derived peptide mixture and evaluated using the interferon-γ enzyme-linked immunosorbent spot assay. Flow cytometry was performed to analyze the proportion of T-cell subsets and T cells expressing immune checkpoint molecules. RESULTS: HPV E6/E7-specific T cells were detected in 22 (95.7%) of 23 patients, whereas wild-type p53-specific T cells were detected in 3 (15.0%) of 20 patients. Seven (43.8%) of 16 patients exhibited wild-type p53-specific T-cell responses, as determined using whole proteins instead of peptides. Immune checkpoint blockade enhanced wild-type p53-specific T-cell responses in 9 (45.0%) of 20 patients. Flow cytometric analysis of PBMCs revealed that responders exhibiting enhanced wild-type p53-specific T-cell responses following immune checkpoint blockade had a significantly higher proportion of Ki-67+CD4+ T cells, Ki-67+CD8+ T cells, regulatory T cells, PD-1+CD4+ T cells, and TIM-3+CD4+ T cells than non-responders. CONCLUSION: Our findings indicate that tumor antigen-specific T cells are present in the peripheral blood of patients with HPV-positive HNSCC. Blockade of checkpoint pathways can enhance T-cell responses in certain patients, probably via activated T cells, Tregs, and/or exhausted CD4+ T cells.


Subject(s)
Head and Neck Neoplasms , Immune Checkpoint Inhibitors , Papillomavirus Infections , Squamous Cell Carcinoma of Head and Neck , Humans , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Squamous Cell Carcinoma of Head and Neck/immunology , Squamous Cell Carcinoma of Head and Neck/virology , Squamous Cell Carcinoma of Head and Neck/drug therapy , Male , Female , Middle Aged , Aged , Head and Neck Neoplasms/immunology , Head and Neck Neoplasms/virology , Papillomavirus Infections/immunology , Papillomavirus Infections/virology , Antigens, Neoplasm/immunology , Oncogene Proteins, Viral/immunology , Tumor Suppressor Protein p53/immunology , Adult , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Papillomaviridae/immunology , T-Lymphocytes/immunology , Human Papillomavirus Viruses
12.
Curr Issues Mol Biol ; 46(6): 6199-6222, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38921041

ABSTRACT

Human papillomavirus 16 (HPV 16) infection is associated with several types of cancer, such as head and neck, cervical, anal, and penile cancer. Its oncogenic potential is due to the ability of the E6 and E7 oncoproteins to promote alterations associated with cell transformation. HPV 16 E6 and E7 oncoproteins increase metabolic reprogramming, one of the hallmarks of cancer, by increasing the stability of hypoxia-induced factor 1 α (HIF-1α) and consequently increasing the expression levels of their target genes. In this report, by bioinformatic analysis, we show the possible effect of HPV 16 oncoproteins E6 and E7 on metabolic reprogramming in cancer through the E6-E7-PHD2-VHL-CUL2-ELOC-HIF-1α axis. We proposed that E6 and E7 interact with VHL, CUL2, and ELOC in forming the E3 ubiquitin ligase complex that ubiquitinates HIF-1α for degradation via the proteasome. Based on the information found in the databases, it is proposed that E6 interacts with VHL by blocking its interaction with HIF-1α. On the other hand, E7 interacts with CUL2 and ELOC, preventing their binding to VHL and RBX1, respectively. Consequently, HIF-1α is stabilized and binds with HIF-1ß to form the active HIF1 complex that binds to hypoxia response elements (HREs), allowing the expression of genes related to energy metabolism. In addition, we suggest an effect of E6 and E7 at the level of PHD2, VHL, CUL2, and ELOC gene expression. Here, we propose some miRNAs targeting PHD2, VHL, CUL2, and ELOC mRNAs. The effect of E6 and E7 may be the non-hydroxylation and non-ubiquitination of HIF-1α, which may regulate metabolic processes involved in metabolic reprogramming in cancer upon stabilization, non-degradation, and translocation to the nucleus.

13.
Microorganisms ; 12(6)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38930587

ABSTRACT

We present the validity of using an ultrasensitive enzyme-linked immunosorbent assay (ELISA) for quantifying high-risk human papillomavirus (HPV) 16 E7 oncoproteins in urine specimens as a noninvasive method of analyzing the oncogenic activity of HPV. Some reports claim that the oncogenic activity of HPV is a more relevant clinical indicator than the presence of HPV DNA for estimating malignant potential. In the present study, urine containing HPV16 and related types were selected by uniplex E6/E7 polymerase chain reaction and classified according to the pathologic diagnosis of cervical intraepithelial neoplasia (CIN) in cervical biopsy specimens. Our ultrasensitive ELISA was able to detect attomole levels of HPV16 E7 oncoproteins, and it detected HPV16-positive SiHa cells at >500 cells/mL without detecting HPV18-positive cells. Our ELISA results showed E7 oncoproteins in 80% (4/5) of urine specimens from women with HPV16-positive CIN1, 71% (5/7) of urine specimens from CIN2 patients, and 38% (3/8) of urine specimens from CIN3 patients. Some urine specimens with undetectable E7 oncoproteins were thought to be negative for live HPV 16-positive cells or in an inactivated state of infection. These results provide the basis for assessing oncogenic activity by quantifying E7 oncoproteins in patient urine.

14.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38931396

ABSTRACT

Obesity and its associated hepatic steatosis have become a global concern, posing numerous health hazards. Photodynamic therapy (PDT) is a unique approach that promotes anti-obesity by releasing intracellular fat. Chlorin e6 (Ce6)-PDT was tested for its anti-obesity properties in male ovariectomized (OVX) beagle dogs, as well as male C57BL/6 and Balb/c mice. The 12 OVX beagles were randomly assigned to one of four groups: high-fat diet (HFD) only, Ce6 only, Ce6 + 10 min of light-emitting diode light (LED) treatment, and Ce6 + 15 min of light treatment. We assessed several parameters, such as body weight, adipose tissue morphology, serum biochemistry, and body fat content analysis by computed tomography (CT) scan in HFD-fed beagle dogs. At the end of the study period, dogs that were treated for 35 days with Ce6 and exposed to LED irradiation (660 nm) either for 10 min (Ce6 + 10 min of light) or for 15 min (Ce6 + 15 min of light) had decreased body weight, including visceral and subcutaneous fats, lower aspartate transaminase (AST)/alanine transaminase (ALT) ratios, and a reduction in the area of individual adipocytes with a concomitant increase in the number of adipocytes. Furthermore, C57BL/6 male mice following an HFD diet were effectively treated by Ce6-PDT treatment through a reduction in weight gain and fat accumulation. Meanwhile, Ce6-PDT attenuated hepatocyte steatosis by decreasing the epididymal adipose tissue and balloon degeneration in hepatocytes in HFD-fed Balb/c mice. Taken together, our results support the idea that Ce6-PDT is a promising therapeutic strategy for the recovery of obesity and obesity-related hepatic steatosis.

15.
J Appl Genet ; 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38907809

ABSTRACT

High-risk human papillomaviruses are well-established drivers of several cancer types including cervical, head and neck, penile as well as anal cancers. While the E6 and E7 viral oncoproteins have proven to be critical for malignant transformation, evidence is also beginning to emerge suggesting that both host pathways and additional viral genes may also be pivotal for malignant transformation. Here, we focus on the role of host APOBEC genes, which have an important role in molecular editing including in the response to the viral DNA and their role in HPV-driven carcinogenesis. Further, we also discuss data developed suggesting the existence of HPV-derived miRNAs in HPV + tumors and their potential role in regulating the host transcriptome. Collectively, while recent advances in these two areas have added complexity to the working model of papillomavirus-induced oncogenesis, these discoveries have also shed a light onto new areas of research that will be required to fully understand the process.

16.
J Virol ; : e0073524, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874360

ABSTRACT

Oncogenic HPV E6 proteins have a PDZ-binding motif (PBM) which plays important roles in both the viral life cycle and tumor development. The PBM confers interaction with a large number of different PDZ domain-containing substrates, one of which is Sorting Nexin 27. This protein is part of the retromer complex and plays an important role in endocytic sorting pathways. It has been shown that at least two SNX27 interacting partners, GLUT1 and TANC2, are aberrantly trafficked due to the E6 PBM-dependent interaction with SNX27. To investigate further which other components of the endocytic trafficking pathway might be affected by the SNX27-HPV E6 interaction, we analyzed the SNX27 proteome interaction profile in a previously described HeLa cell line expressing GFP-SNX27, both in the presence and absence of the HPV-18 E6 oncoprotein. In this study, we identify a novel interacting partner of SNX27, secreted glycoprotein EMILIN2, whose release is blocked by HPV18 E6 in a PBM-dependent manner. Mechanistically, E6 can block EMILIN2 interaction with the WNT1 ligand, thereby enhancing WNT1 signaling and promoting cell proliferation. IMPORTANCE: This study demonstrates that HPV E6 blocks EMILIN2 inhibition of WNT1 signaling, thereby enhancing cell proliferation in HPV-positive tumor cells. This involves a novel mechanism whereby the E6 PBM actually contributes toward enhancing the interaction between SNX27 and EMILIN2, suggesting that the mode of recognition of SNX27 by E6 and EMILIN2 is different. This is the first example of the E6 PBM altering a PDZ domain-containing protein to enhance potential substrate recognition.

17.
Transl Cancer Res ; 13(5): 2175-2186, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38881936

ABSTRACT

Background: Cervical cancer, one of the prevalent malignancies among females, is closely associated with human papillomavirus (HPV) infection. Homologous to the E6-AP carboxyl terminus (HECT) domain and ankyrin repeat containing E3 ubiquitin-protein ligase 1 (HACE1) plays pivotal roles in various cancers. This study aimed to elucidate the expression of HACE1 in cervical cancer and its correlation with clinical features. Methods: From The Cancer Genome Atlas Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma (TCGA-CESC) and Gene Expression Omnibus (GEO, GSE6791) datasets, we obtained RNA-Seq profiles and associated clinical information. Differential gene analysis was conducted using the R "limma" package. Implications for HPV infection and the overall survival (OS) of cervical cancer were determined by performing differential expression analysis and the Cox proportional hazards regression model. Immunohistochemical analyses were used to validate the expression in cervical cancer and normal cervical tissue. Further, nomogram was constructed to predict OS in cervical cancer. Whether the model was credible was evaluated according to receiver operating characteristic (ROC) curves and concordance curves. To further evaluate the potential functions of HACE1, we conducted functional enrichment analysis. Finally, we assessed methylation levels in HPV+ and HPV- patients in the TCGA-CESC dataset. Results: Utilizing TCGA and GSE6791 datasets, we observed significant upregulation of HACE1 in cervical cancer patients, particularly linked to HPV infection. Immunohistochemical staining revealed enhanced HACE1 expression in tumor tissues. Further analysis demonstrated a significant positive correlation between elevated HACE1 and HPV-associated proteins (E1, E6, and E7). Moreover, high HACE1 expression was associated with adverse prognosis in cervical cancer patients. Multivariate Cox analysis indicated that HACE1 could serve as an independent prognostic factor. We developed a prognostic model integrating HPV subtypes, the International Federation of Gynecology and Obstetrics (FIGO) staging, and HACE1, exhibiting strong predictive efficacy for cervical cancer prognosis. Gene enrichment analysis indicated HACE1's potential involvement in multiple signaling pathways during cervical cancer progression, while the demethylation of cg03002526 in HPV-positive patients might contribute to HACE1 upregulation. Conclusions: Our study reveals that HACE1 upregulation is associated with cervical cancer, particularly in HPV-positive patients. HACE1 emerges as an independent prognostic factor, linked to unfavorable outcomes.

18.
Genes (Basel) ; 15(5)2024 04 27.
Article in English | MEDLINE | ID: mdl-38790189

ABSTRACT

BACKGROUND: Cervical cancer is among the highest-ranking types of cancer worldwide, with human papillomavirus (HPV) as the agent driving the malignant process. One aspect of the infection's evolution is given by epigenetic modifications, mainly DNA methylation and chromatin alteration. These processes are guided by several chromatin remodeling complexes, including NuRD. The purpose of this study was to evaluate the genome-wide binding patterns of the NuRD complex components (MBD2 and MBD3) in the presence of active HPV16 E6 and E7 oncogenes and to determine the potential of identified genes through an experimental model to differentiate between cervical precursor lesions, with the aim of establishing their utility as biomarkers. METHODS: The experimental model was built using the CaSki cell line and shRNA for E6 and E7 HPV16 silencing, ChIP-seq, qRT-PCR, and Western blot analyses. Selected genes' expression was also assessed in patients. RESULTS: Several genes have been identified to exhibit altered transcriptional activity due to the influence of HPV16 E6/E7 viral oncogenes acting through the MBD2/MBD3 NuRD complex, linking them to viral infection and cervical oncogenesis. CONCLUSIONS: The impacted genes primarily play roles in governing gene transcription, mRNA processing, and regulation of translation. Understanding these mechanisms offers valuable insights into the process of HPV-induced oncogenesis.


Subject(s)
Chromatin Assembly and Disassembly , DNA-Binding Proteins , Human papillomavirus 16 , Mi-2 Nucleosome Remodeling and Deacetylase Complex , Oncogene Proteins, Viral , Papillomavirus E7 Proteins , Papillomavirus Infections , Uterine Cervical Neoplasms , Female , Humans , Carcinogenesis/genetics , Cell Line, Tumor , Chromatin Assembly and Disassembly/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Neoplastic , Human papillomavirus 16/genetics , Human papillomavirus 16/metabolism , Human papillomavirus 16/pathogenicity , Mi-2 Nucleosome Remodeling and Deacetylase Complex/metabolism , Mi-2 Nucleosome Remodeling and Deacetylase Complex/genetics , Oncogene Proteins, Viral/genetics , Oncogene Proteins, Viral/metabolism , Papillomavirus E7 Proteins/genetics , Papillomavirus E7 Proteins/metabolism , Papillomavirus Infections/virology , Papillomavirus Infections/genetics , Papillomavirus Infections/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Uterine Cervical Neoplasms/virology , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/pathology
19.
Article in English | MEDLINE | ID: mdl-38755500

ABSTRACT

Photodynamic Therapy (PDT) is a promising paradigm for treating cancer, especially superficial cancers, including skin and oral cancers. However, the effectiveness of PDT is hindered by the hydrophobicity of photosensitizers. Here, chlorin e6 (Ce6), a hydrophobic photosensitizer, was loaded into pluronic F127 micelles to enhance solubility and improve tumor-specific targeting efficiency. The resulting Ce6@F127 Ms demonstrated a significant increase in solubility and singlet oxygen generation (SOG) efficiency in aqueous media compared to free Ce6. The confocal imaging and fluorescence-activated cell sorting (FACS) analysis confirmed the enhanced internalization rate of Ce6@F127 Ms in murine melanoma cell lines (B16F10) and human oral carcinoma cell lines (FaDu). Upon laser irradiation (666 nm), the cellular phototoxicity of Ce6@F127 Ms against B16F10 and FaDu was approximately three times higher than the free Ce6 treatment. The in vivo therapeutic investigations conducted on a murine model of skin cancer demonstrated the ability of Ce6@F127 Ms, when combined with laser treatment, to penetrate solid tumors effectively, which resulted in a significant reduction in tumor volume compared to free Ce6. Further, the Ce6@F127 Ms demonstrated upregulation of TUNEL-positive cells, downregulation of proliferation markers in tumor tissues, and prevention of lung metastasis with insignificant levels of proliferating cells and collagenase, as validated through immunohistochemistry. Subsequent analysis of serum and blood components affirmed the safety and efficacy of Ce6@F127 Ms in mice. Consequently, the developed Ce6@F127 Ms exhibits significant potential for concurrently treating solid tumors and preventing metastasis. The photodynamic formulation holds great clinical translation potential for treating superficial tumors.

20.
Heliyon ; 10(10): e29881, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38765051

ABSTRACT

Objective: To construct models of high-risk human papillomavirus (HPV) infection with precancerous lesions or cervical cancer and explore the immune function. Methods: Using CRISPR/Cas9, the expression vector HPV16-E6-E7-Rosa26 was microinjected into fertilized eggs of C57BL/6 N mice using homologous recombination, and the F0 generation was obtained for reproduction. Then, the formation of precancerous lesions was promoted via intramuscular injection of estradiol. Presence of precancerous cervical-vaginal intraepithelial lesions, Ki67 and p16 expression levels, and CD8+ T cell proportions in the spleen were evaluated. Results: Two F0 generation mice exhibited correct the homologous recombination. Seven positive mice were identified in the F1 generation. After breeding and mating, 25 homozygous and 11 heterozygous HPV16-E6-E7-engineered mice were obtained from the F2 generation. After estradiol benzoate treatment, the cervical-vaginal epithelium appeared as precancerous lesions with positive Ki67 and p16 expression. The percentage of CD8+ T cells decreased. Conclusion: HPV16-E6-E7-Rosa26 induced low immune function in mice, and provides a good model for the basic research of the mechanisms of action of HPV infection-associated precancerous lesions or cervical cancer.

SELECTION OF CITATIONS
SEARCH DETAIL
...