Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Publication year range
1.
BMC Complement Med Ther ; 22(1): 169, 2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35733130

ABSTRACT

BACKGROUND: Pithecellobium dulce (Roxb.), an evergreen medium-sized, spiny tree which have vast nutritional values and widely used in ayurvedic medicines and home remedies. The plant has also been a rich source of biologically active compounds. The present study was designed to isolate pure compound from ethyl acetate fraction of methanol extract of leaves and to know the efficacy as antioxidant as well as its anti-tumor activity on Ehrlich ascites carcinoma cell (EAC).  METHODS: The leaves were extracted with methanol and fractionated with different solvents. The isolation of the compound was carried out by column chromatography from ethyl acetate fraction (EAF) and structure was revealed by 1H-NMR and 13C NMR. The antioxidant activity was investigated by the scavenging of 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals as well as the inhibition of oxidative damage of pUC19 plasmid DNA, hemolysis and lipid peroxidation induced by a water-soluble free radical initiator 2,2'-azo (2-asmidinopropane) dihydrochloride (AAPH) in human erythrocytes. In vivo anti-tumor activity of the compound was also evaluated by determining the viable tumor cell count, hematological profiles of experimental mice along with observing morphological changes of EAC cells by fluorescence microscope. RESULTS: The isolated compound kaempferol-3-O-alpha-L-rhamnoside effectively inhibited AAPH induced oxidation in DNA and human erythrocyte model and lipid per oxidation as well as a stronger DPPH radical scavenging activity. In anti-tumor assay, at a dose of 50 mg/kg body weight exhibit about 70.89 ± 6.62% EAC cell growth inhibition, whereas standard anticancer drug vincristine showed 77.84 ± 6.69% growth inhibition. CONCLUSION: The compound may have a great importance as a therapeutic agent in preventing oxidative damage of biomolecules and therapeutic use in chemotherapy.


Subject(s)
Antioxidants , Fabaceae , Animals , Antioxidants/chemistry , Mannosides , Methanol/analysis , Methanol/chemistry , Mice , Plant Extracts/chemistry , Plant Leaves/chemistry , Proanthocyanidins
2.
Saudi J Biol Sci ; 28(3): 2014-2022, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33732088

ABSTRACT

Medicinal plant-derived bioactive compounds have recently gained more interest in biological research as an important source of novel drug candidates. Phyllanthus acidus (L.) is a widely distributed herbal medicinal plant naturally used in Ayurvedic medicine in Bangladesh. The present study focused on exploring the biological potential as well as the inhibitory effect of EAC cell growth with a comparative analysis between Phyllanthus acidus fruit pulp and seed. Crude methanol extract of P. acidus (MEPA) fruit pulp and seed was assessed as DPPH and NO free radical scavengers. While Brine Shrimp lethality bioassay, the standard protocol of phytochemical screening and hemagglutination assay were performed successively to determine the toxic effect on normal cells, the identification of some crucial phytochemicals, and the existence of lectin protein. EAC (Ehrlich's Ascites Carcinoma) cell growth inhibition was determined by hemocytometer and morphological changes of EAC cells were observed by a fluorescence microscope using Swiss albino mice. The IC50 value of MEPA fruit pulp and seed was obtained as 57.159 µg/ml and 288.743 µg/ml respectively where minimal toxic effects on Brine Shrimp nauplii demonstrates that it is a good source of natural antioxidant compounds. Again, MEPA fruit pulp and seed-mediated effective agglutination of mouse blood erythrocyte strongly support the presence of lectin protein. Furthermore, MEPA fruit pulp and seed extract-treated EAC cells showed 65.71% and 28.57% growth inhibition respectively. The fluorescent microscopic examination of EAC cells treated with MEPA fruit pulp has shown more remarkable structural changes in the nucleus than that of seed. Based on the above findings, the present study reveals that MEPA fruit pulp can be considered as a novel biological candidate for the treatment of fatal diseases shortly.

3.
Int J Biol Macromol ; 158: 922-936, 2020 Apr 23.
Article in English | MEDLINE | ID: mdl-32335117

ABSTRACT

The aim was to develop oral site-specific rate-controlled anticancer drug delivery to pacify systemic side-effects and offer effective and safe therapy for colon cancer with compressed dose and duration of treatment. The double emulsion solvent evaporation method was employed. To check functionality, DAPI-staining and in-vivo anticancer study of Ehrlich Ascites Carcinoma bearing mice was tested. Histopathology of liver and kidney and Cell morphology of EAC cell was also performed. Formulated and optimized polymeric microsphere of 5-FU showed excellent physicochemical features. In-vitro, DAPI results pointed drug-treated groups displayed the prominent feature of apoptosis. The percentage of apoptotic of entrapped drug played in a dose-dependent manner. Significant decreases in EAC liquid tumors and increased life span of treated mice were observed. Rate of variation of cell morphology was more in 5-FU loaded microsphere than 5-FU injection. Hematological and biochemical parameter's and Histopathology of liver and kidney resulted that due to control released formulation have slow release rate, that gives less trace on liver and kidney function. Finally, we foresee that polymeric microsphere of 5-FU applying natural gum katira could be an assuring micro-carrier for active colon targeting delivery tool with augmented chemotherapeutic efficacy and lowering side effect against colon cancer.

4.
Asian Pac J Trop Biomed ; 3(2): 105-10, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23593588

ABSTRACT

OBJECTIVE: To determine the hepatoprotective effect of acetone semicarbazone (ASC) in vivo in normal and Ehrlich ascites carcinoma (EAC) bearing male Swiss albino mice. METHODS: Drug-induced changes in biochemical and behavioral parameters at dose of 2.0 mg/kg body weight for 14 d and nullifying the toxicity induced by EAC cells were studied. The histopathology studies of the protective effects of ASC on vital organs were also assessed. RESULTS: The administration of ASC made insignificant changes in body weight and behavioral (salivation, diarrhea, muscular numbness) changes during treatment period due to minor toxicity were minimized after the treatment in normal mice. The biochemical parameters, including serum glutamate pyruvate transaminase, glutamate oxaloactate transaminase, alkaline phosphatase, serum glucose, cholesterol, urea, triglyceride and billirubin changed modestly in normal mice receiving ASC. Though the treatment continued, these values gradually decreased to normal level after the treatment. In EAC bearing mice, the toxic effects due to EAC cells in all cases were nullified by treatment with the ASC. Significant abnormalities were not detected in histology of the various organs of the normal mice treated with ASC. CONCLUSIONS: ASC can, therefore, be considered safe in formulating novel anticancer drug, as it exhibits strong protective effect against EAC cell bearing mice.


Subject(s)
Carcinogenesis/drug effects , Carcinoma, Ehrlich Tumor/drug therapy , Liver/drug effects , Semicarbazones/pharmacology , Semicarbazones/therapeutic use , Acetone/analogs & derivatives , Acetone/pharmacology , Acetone/therapeutic use , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Male , Mice
5.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-672589

ABSTRACT

Objective:To determine the hepatoprotective effect of acetone semicarbazone (ASC) in vivo in normal and Ehrlich ascites carcinoma (EAC) bearing male Swiss albino mice. Methods:Drug-induced changes in biochemical and behavioral parameters at dose of 2.0 mg/kg body weight for 14 d and nullifying the toxicity induced by EAC cells were studied. The histopathology studies of the protective effects of ASC on vital organs were also assessed. Results:The administration of ASC made insignificant changes in body weight and behavioral (salivation, diarrhea, muscular numbness) changes during treatment period due to minor toxicity were minimized after the treatment in normal mice. The biochemical parameters, including serum glutamate pyruvate transaminase, glutamate oxaloactate transaminase, alkaline phosphatase, serum glucose, cholesterol, urea, triglyceride and billirubin changed modestly in normal mice receiving ASC. Though the treatment continued, these values gradually decreased to normal level after the treatment. In EAC bearing mice, the toxic effects due to EAC cells in all cases were nullified by treatment with the ASC. Significant abnormalities were not detected in histology of the various organs of the normal mice treated with ASC. Conclusions: ASC can, therefore, be considered safe in formulating novel anticancer drug, as it exhibits strong protective effect against EAC cell bearing mice.

6.
Article in English | WPRIM (Western Pacific) | ID: wpr-312445

ABSTRACT

<p><b>OBJECTIVE</b>To determine the hepatoprotective effect of acetone semicarbazone (ASC) in vivo in normal and Ehrlich ascites carcinoma (EAC) bearing male Swiss albino mice.</p><p><b>METHODS</b>Drug-induced changes in biochemical and behavioral parameters at dose of 2.0 mg/kg body weight for 14 d and nullifying the toxicity induced by EAC cells were studied. The histopathology studies of the protective effects of ASC on vital organs were also assessed.</p><p><b>RESULTS</b>The administration of ASC made insignificant changes in body weight and behavioral (salivation, diarrhea, muscular numbness) changes during treatment period due to minor toxicity were minimized after the treatment in normal mice. The biochemical parameters, including serum glutamate pyruvate transaminase, glutamate oxaloactate transaminase, alkaline phosphatase, serum glucose, cholesterol, urea, triglyceride and billirubin changed modestly in normal mice receiving ASC. Though the treatment continued, these values gradually decreased to normal level after the treatment. In EAC bearing mice, the toxic effects due to EAC cells in all cases were nullified by treatment with the ASC. Significant abnormalities were not detected in histology of the various organs of the normal mice treated with ASC.</p><p><b>CONCLUSIONS</b>ASC can, therefore, be considered safe in formulating novel anticancer drug, as it exhibits strong protective effect against EAC cell bearing mice.</p>


Subject(s)
Animals , Male , Mice , Acetone , Pharmacology , Therapeutic Uses , Antineoplastic Agents , Pharmacology , Therapeutic Uses , Carcinogenesis , Carcinoma, Ehrlich Tumor , Drug Therapy , Liver , Semicarbazones , Pharmacology , Therapeutic Uses
7.
Cancer Biol Med ; 9(4): 242-7, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23691484

ABSTRACT

OBJECTIVE: Benzophenone semicarbazone (BSC) was synthesized and characterized to identify compounds with anticancer activities. METHODS: Anticancer activities were studied against Ehrlich Ascites Carcinoma (EAC) cells in Swiss albino mice by monitoring parameters such as tumor weight measurement, survival time of tumor bearing mice, tumor cell growth inhibition, and so on. Some hematological parameters, such as red blood cells, white blood cells, and hemoglobin content, were also measured. RESULTS: The results showed that BSC has a positive effect against EAC cells. An assessment was conducted by comparing these results with those obtained using the standard drug bleomycin. CONCLUSIONS: The BSC compound can be considered as a potent anticancer agent.

SELECTION OF CITATIONS
SEARCH DETAIL
...