Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46.210
Filter
1.
ACS Sens ; 9(7): 3581-3593, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-38958530

ABSTRACT

Near-infrared (NIR) heptamethine cyanine (HCy) dyes are promising photothermal transducers for image-guided cancer treatment owing to their prominent photophysical properties and high photothermal conversion ability. However, HCy photothermal transducers usually have poor photostability due to degradation induced by the self-generated reactive oxygen species. Herein, a novel mitochondria-targeting dimeric HCy dye, named dimeric oBHCy, is rationally designed, exhibiting strong near-infrared II (NIR-II) fluorescence emission, high photothermal conversion efficiency (PCE), and excellent photostability. The large π-conjugation and drastic intramolecular motion of the diphenol rotor in the dimeric oBHCy enhance the nonradiative energy dissipation and suppress the intersystem crossing process, thereby achieving a high PCE (49.2%) and improved photostability. Impressively, dimeric oBHCy can precisely target mitochondria and induce mitochondrial damage upon NIR light irradiation. Under the guidance of in vivo NIR-II fluorescence imaging, efficient NIR light-activated photothermal therapy of 4T1 breast tumors is accomplished with a tumor inhibitory rate of 96% following a single injection of the dimeric oBHCy. This work offers an innovative strategy for designing cyanine photothermal transducers with integrated NIR-II fluorescence and photothermal properties for efficient cancer theranostics.


Subject(s)
Carbocyanines , Infrared Rays , Mitochondria , Optical Imaging , Phototherapy , Mitochondria/metabolism , Mitochondria/drug effects , Carbocyanines/chemistry , Animals , Mice , Humans , Phototherapy/methods , Fluorescent Dyes/chemistry , Female , Mice, Inbred BALB C , Photothermal Therapy/methods , Cell Line, Tumor , Dimerization
2.
Expert Opin Drug Deliv ; 21(6): 945-963, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38961522

ABSTRACT

INTRODUCTION: Dry powder inhaler (DPI) formulations are gaining attention as universal formulations with applications in a diverse range of drug formulations. The practical application of DPIs to pulmonary drugs requires enhancing their delivery efficiency to the target sites for various treatment modalities. Previous reviews have not explored the relation between particle morphology and delivery to different pulmonary regions. This review introduces new approaches to improve targeted DPI delivery using novel particle design such as supraparticles and metal-organic frameworks based on cyclodextrin. AREAS COVERED: This review focuses on the design of DPI formulations using polysaccharides, promising excipients not yet approved by regulatory agencies. These excipients can be used to design various particle morphologies by controlling their physicochemical properties and manufacturing methods. EXPERT OPINION: Challenges associated with DPI formulations include poor access to the lungs and low delivery efficiency to target sites in the lung. The restricted applicability of typical excipients contributes to their limited use. However, new formulations based on polysaccharides are expected to establish a technological foundation for the development of DPIs capable of delivering modalities specific to different lung target sites, thereby enhancing drug delivery.


Subject(s)
Drug Delivery Systems , Dry Powder Inhalers , Excipients , Lung , Polysaccharides , Powders , Humans , Polysaccharides/chemistry , Administration, Inhalation , Lung/metabolism , Excipients/chemistry , Particle Size , Pharmaceutical Preparations/administration & dosage , Pharmaceutical Preparations/chemistry , Drug Compounding/methods , Animals , Chemistry, Pharmaceutical , Metal-Organic Frameworks/chemistry
3.
Biofabrication ; 16(4)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38968935

ABSTRACT

Three-dimensional (3D) printing is an emerging tool for creating patient-specific tissue constructs analogous to the native tissue microarchitecture. In this study, anatomically equivalent 3D nerve conduits were developed using thermoplastic polyurethane (TPU) by combining reverse engineering and material extrusion (i.e. fused deposition modeling) technique. Printing parameters were optimized to fabricate nerve-equivalent TPU constructs. The TPU constructs printed with different infill densities supported the adhesion, proliferation, and gene expression of neuronal cells. Subcutaneous implantation of the TPU constructs for three months in rats showed neovascularization with negligible local tissue inflammatory reactions and was classified as a non-irritant biomaterial as per ISO 10993-6. To performin vivoefficacy studies, nerve conduits equivalent to rat's sciatic nerve were fabricated and bridged in a 10 mm sciatic nerve transection model. After four months of implantation, the sensorimotor function and histological assessments revealed that the 3D printed TPU conduits promoted the regeneration in critical-sized peripheral nerve defects equivalent to autografts. This study proved that TPU-based 3D printed nerve guidance conduits can be created to replicate the complicated features of natural nerves that can promote the regeneration of peripheral nerve defects and also show the potential to be extended to several other tissues for regenerative medicine applications.


Subject(s)
Nerve Regeneration , Polyurethanes , Printing, Three-Dimensional , Sciatic Nerve , Tissue Scaffolds , Animals , Polyurethanes/chemistry , Polyurethanes/pharmacology , Nerve Regeneration/drug effects , Rats , Sciatic Nerve/physiology , Sciatic Nerve/injuries , Sciatic Nerve/drug effects , Tissue Scaffolds/chemistry , Rats, Sprague-Dawley , Peripheral Nerve Injuries/therapy , Peripheral Nerve Injuries/pathology , Male , Guided Tissue Regeneration/instrumentation , Guided Tissue Regeneration/methods , Tissue Engineering/methods , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology
4.
ACS Appl Mater Interfaces ; 16(29): 38531-38539, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38982796

ABSTRACT

Lithium metal batteries (LMBs) using Li metals as anodes are conspicuous for high-energy-density energy-storage devices. However, the nonuniform deposition of Li+ ions leading to uncontrolled Li dendrite growth, which adversely affects electrochemical performance and safety, has impeded the practical application of lithium metal batteries (LMBs). Herein, PIM-1, a type of polymer of intrinsic microporosity (PIM), was utilized for surface engineering of conventional polyolefin separators. This process resulted in the formation of a continuous and homogeneous coating across the separator, facilitating uniform Li+ ion flux and deposition, and consequently reducing dendrite formation. Notably, the loading mass was quite low (0.6 g/m2) through the convenient dipping method. The intrinsic micropores and polar groups (cyano and ether groups) of PIM-1 greatly improved the electrolyte wettability and ionic conductivity of commercial polypropylene (PP) separators. And the PIM-1 coating guided Li+ flux to achieve uniform Li deposition. Moreover, the polar groups (cyano and ether groups) of PIM-1 are beneficial to the desolvation of Li+-solvates. As a result, the synergetic effect of uniform Li+ flux, desolvation, and enhanced mechanical strength of separators brings about considerable improvement in cycle life, suppression of Li dendrite, and Coulombic efficiency for LMBs. As this surface engineering is simple, relatively low-cost, and effective, this work provides fresh insights into separators for LMBs.

5.
ACS Appl Mater Interfaces ; 16(29): 37581-37595, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38985579

ABSTRACT

The effective repair of bone defects has long been a major challenge in clinical practice. Currently, research efforts mostly focus on achieving sufficiently good bone repair, with little attention paid to achieving both good and fast repair. However, achieving highly efficient (H-efficient) bone repair, which is both good and fast, can shorten the treatment cycle and facilitate rapid patient recovery. Therefore, the development of a H-efficient bone repair material is of significant importance. This study incorporated the previously developed osteoinductive photothermal agent (PTA) BPICT into printing paste to prepare a near-infrared (NIR)-responsive BPICT scaffold. Subsequently, the effects of photothermal therapy (PTT) on bone repair and drug release were assessed in vitro. To further validate the H-efficient bone repair properties of the BPICT scaffold, the scaffold was implanted into bone defects and its ability to promote bone repair in vivo was evaluated through radiology and histopathological analysis. The results indicated that compared to scaffolds containing only Icaritin (ICT), the BPICT scaffold can achieve PTT to promote bone repair through NIR irradiation, while also enabling the controlled release of ICT from the scaffold to enhance bone repair. Within the same observation period, the BPICT scaffold achieves more efficient bone repair than the ICT scaffold, significantly shortening the bone repair cycle while ensuring the effectiveness of bone repair. Therefore, the NIR-responsive scaffold based on PTT-mediated controlled release of bone growth factors represents a feasible solution for promoting H-efficient bone repair in the area of bone defects.


Subject(s)
Bone Regeneration , Infrared Rays , Tissue Scaffolds , Tissue Scaffolds/chemistry , Animals , Bone Regeneration/drug effects , Photothermal Therapy , Mice , Osteogenesis/drug effects , Humans
6.
Biofabrication ; 16(4)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39008994

ABSTRACT

3D (Bio)printing is a highly effective method for fabricating tissue engineering scaffolds, renowned for their exceptional precision and control. Artificial intelligence (AI) has become a crucial technology in this field, capable of learning and replicating complex patterns that surpass human capabilities. However, the integration of AI in tissue engineering is often hampered by the lack of comprehensive and reliable data. This study addresses these challenges by providing one of the most extensive datasets on 3D-printed scaffolds. It provides the most comprehensive open-source dataset and employs various AI techniques, from unsupervised to supervised learning. This dataset includes detailed information on 1171 scaffolds, featuring a variety of biomaterials and concentrations-including 60 biomaterials such as natural and synthesized biomaterials, crosslinkers, enzymes, etc.-along with 49 cell lines, cell densities, and different printing conditions. We used over 40 machine learning and deep learning algorithms, tuning their hyperparameters to reveal hidden patterns and predict cell response, printability, and scaffold quality. The clustering analysis using KMeans identified five distinct ones. In classification tasks, algorithms such as XGBoost, Gradient Boosting, Extra Trees Classifier, Random Forest Classifier, and LightGBM demonstrated superior performance, achieving higher accuracy and F1 scores. A fully connected neural network with six hidden layers from scratch was developed, precisely tuning its hyperparameters for accurate predictions. The developed dataset and the associated code are publicly available onhttps://github.com/saeedrafieyan/MLATEto promote future research.


Subject(s)
Machine Learning , Printing, Three-Dimensional , Tissue Scaffolds , Tissue Scaffolds/chemistry , Humans , Tissue Engineering , Bioprinting/methods , Biocompatible Materials/chemistry , Algorithms , Neural Networks, Computer , Cell Line
7.
Biofabrication ; 16(4)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39019062

ABSTRACT

Three-dimensional (3D) cell culture models capable of emulating the biological functions of natural tissues are pivotal in tissue engineering and regenerative medicine. Despite progress, the fabrication ofin vitroheterocellular models that mimic the intricate structures of natural tissues remains a significant challenge. In this study, we introduce a novel, scaffold-free approach leveraging the inertial focusing effect in rotating hanging droplets for the reliable production of heterocellular spheroids with controllable core-shell structures. Our method offers precise control over the core-shell spheroid's size and geometry by adjusting the cell suspension density and droplet morphology. We successfully applied this technique to create hair follicle organoids, integrating dermal papilla cells within the core and epidermal cells in the shell, thereby achieving markedly enhanced hair inducibility compared to mixed-structure models. Furthermore, we have developed melanoma tumor spheroids that accurately mimic the dynamic interactions between tumor and stromal cells, showing increased invasion capabilities and altered expressions of cellular adhesion molecules and proteolytic enzymes. These findings underscore the critical role of cellular spatial organization in replicating tissue functionalityin vitro. Our method represents a significant advancement towards generating heterocellular spheroids with well-defined architectures, offering broad implications for biological research and applications in tissue engineering.


Subject(s)
Cell Culture Techniques, Three Dimensional , Spheroids, Cellular , Spheroids, Cellular/cytology , Cell Culture Techniques, Three Dimensional/methods , Humans , Tissue Engineering/methods , Organoids/cytology , Hair Follicle/cytology , Animals , Cell Line, Tumor , Tissue Scaffolds/chemistry , Cell Culture Techniques/methods , Cell Culture Techniques/instrumentation
8.
Biomed Mater ; 19(5)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39025109

ABSTRACT

Tissue engineering aims to improve or restore damaged tissues by using scaffolds, cells and bioactive agents. In tissue engineering, one of the most important concepts is the scaffold because it has a key role in keeping up and promoting the growth of the cells. It is also desirable to be able to load these scaffolds with drugs that induce tissue regeneration/formation. Based on this, in our study, gelatin cryogel scaffolds were developed for potential bone tissue engineering applications and simvastatin loading and release studies were performed. Simvastatin is lipoliphic in nature and this form is called inactive simvastatin (SV). It is modified to be in hydrophilic form and converted to the active form (SVA). For our study's drug loading and release process, simvastatin was used in both inactive and active forms. The blank cryogels and drug-loaded cryogels were prepared at different glutaraldehyde concentrations (1, 2, and 3%). The effect of the crosslinking agent and the amount of drug loaded were discussed with morphological and physicochemical analysis. As the glutaraldehyde concentration increased gradually, the pores size of the cryogels decreased and the swelling ratio decreased. For the release profile of simvastatin in both forms, we can say that it depended on the form (lipophilic and hydrophilic) of the loaded simvastatin.


Subject(s)
Bone and Bones , Cryogels , Gelatin , Simvastatin , Tissue Engineering , Tissue Scaffolds , Simvastatin/chemistry , Simvastatin/pharmacology , Tissue Engineering/methods , Gelatin/chemistry , Cryogels/chemistry , Tissue Scaffolds/chemistry , Porosity , Materials Testing , Bone Regeneration/drug effects , Biocompatible Materials/chemistry , Humans , Cross-Linking Reagents/chemistry
9.
Acta Biomater ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39025395

ABSTRACT

Hierarchical collagen fibers are the primary source of strength in tendons and ligaments; however, these fibers largely do not regenerate after injury or with repair, resulting in limited treatment options. We previously developed a static culture system that guides ACL fibroblasts to produce native-sized fibers and early fascicles by 6 weeks. These constructs are promising ligament replacements, but further maturation is needed. Mechanical cues are critical for development in vivo and in engineered tissues; however, the effect on larger fiber and fascicle formation is largely unknown. Our objective was to investigate whether intermittent cyclic stretch, mimicking rapid muscle activity, drives further maturation in our system to create stronger engineered replacements and to explore whether cyclic loading has differential effects on cells at different degrees of collagen organization to better inform engineered tissue maturation protocols. Constructs were loaded with an established intermittent cyclic loading regime at 5 or 10 % strain for up to 6 weeks and compared to static controls. Cyclic loading drove cells to increase hierarchical collagen organization, collagen crimp, and tissue tensile properties, ultimately producing constructs that matched or exceeded immature ACL properties. Further, the effect of loading on cells varied depending on degree of organization. Specifically, 10 % load drove early improvements in tensile properties and composition, while 5 % load was more beneficial later in culture, suggesting a shift in mechanotransduction. This study provides new insight into how cyclic loading affects cell-driven hierarchical fiber formation and maturation, which will help to develop better rehabilitation protocols and engineer stronger replacements. STATEMENT OF SIGNIFICANCE: Collagen fibers are the primary source of strength and function in tendons and ligaments throughout the body. These fibers have limited regenerate after injury, with repair, and in engineered replacements, reducing treatment options. Cyclic load has been shown to improve fibril level alignment, but its effect at the larger fiber and fascicle length-scale is largely unknown. Here, we demonstrate intermittent cyclic loading increases cell-driven hierarchical fiber formation and tissue mechanics, producing engineered replacements with similar organization and mechanics as immature ACLs. This study provides new insight into how cyclic loading affects cell-driven fiber maturation. A better understanding of how mechanical cues regulate fiber formation will help to develop better engineered replacements and rehabilitation protocols to drive repair after injury.

10.
bioRxiv ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39026757

ABSTRACT

The spatial organization of biophysical and biochemical cues in the extracellular matrix (ECM) in concert with reciprocal cell-cell signaling is vital to tissue patterning during development. However, elucidating the role an individual microenvironmental factor plays using existing in vivo models is difficult due to their inherent complexity. In this work, we have developed a microphysiological system to spatially pattern the biochemical, biophysical, and stromal cell composition of the ECM along an epithelialized 3D microchannel. This technique is adaptable to multiple hydrogel compositions and scalable to the number of zones patterned. We confirmed that the methodology to create distinct zones resulted in a continuous, annealed hydrogel with regional interfaces that did not hinder the transport of soluble molecules. Further, the interface between hydrogel regions did not disrupt microchannel structure, epithelial lumen formation, or media perfusion through an acellular or cellularized microchannel. Finally, we demonstrated spatially patterned tubulogenic sprouting of a continuous epithelial tube into the surrounding hydrogel confined to local regions with stromal cell populations, illustrating spatial control of cell-cell interactions and signaling gradients. This easy-to-use system has wide utility for modeling three-dimensional epithelial and endothelial tissue interactions with heterogeneous hydrogel compositions and/or stromal cell populations to investigate their mechanistic roles during development, homeostasis, or disease.

11.
Bioresour Technol ; 407: 131123, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39029766

ABSTRACT

ε-Poly-L-lysine (ε-PL) is an amino acid homopolymer with diverse potential applications in the food, pharmaceutical and cosmetic industries. To improve its biomanufacturing efficiency, strain engineering and bioprocess optimization were combined in this study. Firstly, a cocktail strain breeding strategy was employed to generate a ε-PL high-production mutant, Streptomyces albulus GS114, with enhanced L-lysine uptake capability. Subsequently, the L-lysine feeding conditions during fed-batch fermentation were systematically optimized to improve the L-lysine supply, resulting in ε-PL production reaching 73.1 ± 1.4 g/L in 5 L bioreactor. Finally, an engineered strain, S. albulus L2, with enhanced uptake capability and polymerization ability of L-lysine was constructed, achieving ε-PL production of 81.4 ± 5.2 g/L by fed-batch fermentation. This represents the highest reported production of ε-PL to date. This study provided an efficient production strategy for ε-PL and valuable insights into the high-value utilization of L-lysine.

12.
J Biomed Mater Res B Appl Biomater ; 112(8): e35456, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39031923

ABSTRACT

Tissue engineered scaffolds aimed at the repair of critical-sized bone defects lack adequate consideration for our aging society. Establishing an effective aged in vitro model that translates to animals is a significant unmet challenge. The in vivo aged environment is complex and highly nuanced, making it difficult to model in the context of bone repair. In this work, 3D nanofibrous scaffolds generated by the thermally-induced self-agglomeration (TISA) technique were functionalized with polydopamine nanoparticles (PD NPs) as a tool to improve drug binding capacity and scavenge reactive oxygen species (ROS), an excessive build-up that dampens the healing process in aged tissues. PD NPs were reduced by ascorbic acid (rPD) to further improve hydrogen peroxide (H2O2) scavenging capabilities, where we hypothesized that these functionalized scaffolds could rescue ROS-affected osteoblastic differentiation in vitro and improve new bone formation in an aged mouse model. rPDs demonstrated improved H2O2 scavenging activity compared to neat PD NPs, although both NP groups rescued the alkaline phosphatase activity (ALP) of MC3T3-E1 cells in presence of H2O2. Additionally, BMP2-induced osteogenic differentiation, both ALP and mineralization, was significantly improved in the presence of PD or rPD NPs on TISA scaffolds. While in vitro data showed favorable results aimed at improving osteogenic differentiation by PD or rPD NPs, in vivo studies did not note similar improvements in ectopic bone formation an aged model, suggesting that further nuance in material design is required to effectively translate to improved in vivo results in aged animal models.


Subject(s)
Bone Regeneration , Indoles , Nanoparticles , Osteogenesis , Polymers , Reactive Oxygen Species , Tissue Scaffolds , Animals , Mice , Indoles/chemistry , Indoles/pharmacology , Osteogenesis/drug effects , Polymers/chemistry , Polymers/pharmacology , Tissue Scaffolds/chemistry , Bone Regeneration/drug effects , Nanoparticles/chemistry , Reactive Oxygen Species/metabolism , Nanofibers/chemistry , Hydrogen Peroxide/chemistry , Aging/metabolism , Free Radical Scavengers/pharmacology , Free Radical Scavengers/chemistry , Cell Differentiation/drug effects , Cell Line , Osteoblasts/metabolism
13.
Int J Biol Macromol ; 276(Pt 2): 133978, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39038570

ABSTRACT

Owing to the environmental friendliness and vast advantages that enzymes offer in the biotechnology and industry fields, biocatalysts are a prolific investigation field. However, the low catalytic activity, stability, and specific selectivity of the enzyme limit the range of the reaction enzymes involved in. A comprehensive understanding of the protein structure and dynamics in terms of molecular details enables us to tackle these limitations effectively and enhance the catalytic activity by enzyme engineering or modifying the supports and solvents. Along with different strategies including computational, enzyme engineering based on DNA recombination, enzyme immobilization, additives, chemical modification, and physicochemical modification approaches can be promising for the wide spread of industrial enzyme usage. This is attributed to the successful application of biocatalysts in industrial and synthetic processes requires a system that exhibits stability, activity, and reusability in a continuous flow process, thereby reducing the production cost. The main goal of this review is to display relevant approaches for improving enzyme characteristics to overcome their industrial application.

14.
mBio ; : e0130224, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39041802

ABSTRACT

Membrane potential is a useful marker for antimicrobial susceptibility testing (AST) due to its fundamental roles in cell function. However, the difficulties associated with measuring the membrane potential in microbes restrict its broad application. In this study, we present bioelectrical AST (BeAST) using the model fungus Saccharomyces cerevisiae. Using fluorescent indicators [DiBAC4(3), ThT, and TMRM], we measured plasma and mitochondrial membrane-potential dynamics upon electric stimulation. We find that a 2.5 second electric stimulation induces hyperpolarization of plasma membrane lasting 20 minutes in vital S. cerevisiae, but depolarization in inhibited cells. The numerical simulation of FitzHugh-Nagumo model successfully recapitulates vitality-dependent dynamics. The model also suggests that the magnitude of plasma-membrane potential dynamics (PMD) correlates with the degree of inhibition. To test this prediction and to examine if BeAST can be used for assessing novel anti-fungal compounds, we treat cells with biogenic silver nanoparticles (bioAgNPs) synthesized using orange fruit flavonoids and Fusarium oxysporum. Comparing BeAST with optical density assay alongside various stressors, we show that PMD correlates with the magnitude of growth inhibitions. These results suggest that BeAST holds promise for screening anti-fungal compounds, offering a valuable approach to tackling antimicrobial resistance. IMPORTANCE: Rapid assessment of the efficacy of antimicrobials is important for optimizing treatments, avoiding misuse and facilitating the screening of new antimicrobials. The need for rapid antimicrobial susceptibility testing (AST) is growing with the rise of antimicrobial resistance. Here, we present bioelectrical AST (BeAST). Combining time-lapse microscopy and mathematical modeling, we show that electrically induced membrane potential dynamics of yeast cells correspond to the strength of growth inhibition. Furthermore, we demonstrate the utility of BeAST for assessing antimicrobial activities of novel compounds using biogenic silver nanoparticles.

15.
Biotechnol Bioeng ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39044472

ABSTRACT

In the burgeoning field of proteins, the effective analysis of intricate protein data remains a formidable challenge, necessitating advanced computational tools for data processing, feature extraction, and interpretation. This study introduces ProteinFlow, an innovative framework designed to revolutionize feature engineering in protein data analysis. ProteinFlow stands out by offering enhanced efficiency in data collection and preprocessing, along with advanced capabilities in feature extraction, directly addressing the complexities inherent in multidimensional protein data sets. Through a comparative analysis, ProteinFlow demonstrated a significant improvement over traditional methods, notably reducing data preprocessing time and expanding the scope of biologically significant features identified. The framework's parallel data processing strategy and advanced algorithms ensure not only rapid data handling but also the extraction of comprehensive, meaningful insights from protein sequences, structures, and interactions. Furthermore, ProteinFlow exhibits remarkable scalability, adeptly managing large-scale data sets without compromising performance, a crucial attribute in the era of big data.

16.
Appl Environ Microbiol ; : e0060324, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39058034

ABSTRACT

Biodegradable plastics are urgently needed to replace petroleum-derived polymeric materials and prevent their accumulation in the environment. To this end, we isolated and characterized a halophilic and alkaliphilic bacterium from the Great Salt Lake in Utah. The isolate was identified as a Halomonas species and designated "CUBES01." Full-genome sequencing and genomic reconstruction revealed the unique genetic traits and metabolic capabilities of the strain, including the common polyhydroxyalkanoate (PHA) biosynthesis pathway. Fluorescence staining identified intracellular polyester granules that accumulated predominantly during the strain's exponential growth, a feature rarely found among natural PHA producers. CUBES01 was found to metabolize a range of renewable carbon feedstocks, including glucosamine and acetyl-glucosamine, as well as sucrose, glucose, fructose, and further glycerol, propionate, and acetate. Depending on the substrate, the strain accumulated up to ~60% of its biomass (dry wt/wt) in poly(3-hydroxybutyrate), while reaching a doubling time of 1.7 h at 30°C and an optimum osmolarity of 1 M sodium chloride and a pH of 8.8. The physiological preferences of the strain may not only enable long-term aseptic cultivation but also facilitate the release of intracellular products through osmolysis. The development of a minimal medium also allowed the estimation of maximum polyhydroxybutyrate production rates, which were projected to exceed 5 g/h. Finally, also, the genetic tractability of the strain was assessed in conjugation experiments: two orthogonal plasmid vectors were stable in the heterologous host, thereby opening the possibility of genetic engineering through the introduction of foreign genes. IMPORTANCE: The urgent need for renewable replacements for synthetic materials may be addressed through microbial biotechnology. To simplify the large-scale implementation of such bio-processes, robust cell factories that can utilize sustainable and widely available feedstocks are pivotal. To this end, non-axenic growth-associated production could reduce operational costs and enhance biomass productivity, thereby improving commercial competitiveness. Another major cost factor is downstream processing, especially in the case of intracellular products, such as bio-polyesters. Simplified cell-lysis strategies could also further improve economic viability.

17.
Angew Chem Int Ed Engl ; : e202403499, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39058298

ABSTRACT

Small GTPases comprise a superfamily of over 167 proteins in the human genome and are critical regulators of a variety of pathways including cell migration and proliferation. Despite the importance of these proteins in cell signaling, a standardized approach for controlling small GTPase activation within living cells is lacking. Herein, we report a split-protein-based approach to directly activate small GTPase signaling in living cells. Importantly, our fragmentation site can be applied across the small GTPase superfamily. We highlight the utility of these standardized parts by demonstrating the ability to directly modulate the activity of four different small GTPases with user-defined inputs, providing the first plug and play system for direct activation of small GTPases in living cells.

18.
Angew Chem Int Ed Engl ; : e202409838, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39058295

ABSTRACT

Rechargeable aqueous zinc-ion (Zn-ion) batteries are widely regarded as important candidates for next-generation energy storage systems for low-cost renewable energy storage. However, the development of Zn-ion batteries is currently facing significant challenges due to uncontrollable Zn dendrite growth and severe parasitic reactions on Zn metal anodes. Herein, we report an innovative strategy to improve the performance of aqueous Zn-ion batteries by leveraging the self-assembly of bovine serum albumin (BSA) into a bilayer configuration on Zn metal anodes. BSA's hydrophilic and hydrophobic fragments form unique and intelligent ion channels, which regulate the migration of Zn ions and facilitate their desolvation process, significantly diminishing parasitic reactions on Zn anodes and leading to a uniform Zn deposition along the Zn (002) plane. Notably, the Zn||Zn symmetric cell with BSA as the electrolyte additive demonstrated a stable cycling performance for up to 2400 hours at a high current density of 10 mA cm-2. This work demonstrates the pivotal role of self-assembled protein bilayer structures in improving the durability of Zn anodes in aqueous Zn-ion batteries.

19.
ACS Nano ; 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39056445

ABSTRACT

Ru-based catalysts have emerged as promising alternatives to HgCl2 in vinyl chloride monomer (VCM) production by acetylene hydrochlorination. However, poor C2H2 activation and the generation of key intermediates (*CH2═CH) have posed grand challenges for enhanced catalytic performances. Herein, we synthesized a Ni-intercalated Ru heterostructure using a lattice-strain engineering strategy, resulting in the desired electronic and chemical environments. The collaboration of Ni splits the adsorption centers of C2H2 and HCl by weakening the strong steric hindrance, and it also promotes the activation of the linear C≡C configurations. The well-controlled lattice strain enables strong d-d hybridization interactions between Ni and Ru, resulting in an upshift of the d-band center from -3.72 eV (for Ru/C) to -3.49 eV and electronic delocalization. This optimized local Ni-Ru/C structure thus enhances *H adsorption while weakening the energy barrier for generating *CH2═CH intermediates. Furthermore, the energy barrier for VCM formation was simultaneously reduced. Accordingly, the Ni-Ru/C heterostructures achieve improved performance in pilot-scale trials, with a conversion of >99.2% and stability for over 500 h. These performances significantly surpass most reported Ru-based moieties and the traditional Hg catalysts, offering a promising avenue for C2H2 activation in industrial applications.

20.
Biotechnol Prog ; : e3499, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39056525

ABSTRACT

Short-chain esters, particularly isobutyl acetate and isoamyl acetate, hold significant industrial value due to their wide-ranging applications in flavors, fragrances, solvents, and biofuels. In this study, we demonstrated the biosynthesis of acetate esters using Yarrowia lipolytica as a host by feeding alcohols to the yeast culture. Initially, we screened for optimal alcohol acyltransferases for ester biosynthesis in Y. lipolytica. Strains of Y. lipolytica expressing atf1 from Saccharomyces cerevisiae, produced 251 or 613 mg/L of isobutyl acetate or of isoamyl acetate, respectively. We found that introducing additional copies of ATF1 enhanced ester production. Furthermore, by increasing the supply of acetyl-CoA and refining the culture conditions, we achieved high production of isoamyl acetate, reaching titers of 3404 mg/L. We expanded our study to include the synthesis of a range of acetate esters, facilitated by enriching the culture medium with various alcohols. This study underscores the versatility and potential of Y. lipolytica in the industrial production of acetate esters.

SELECTION OF CITATIONS
SEARCH DETAIL
...