Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 266
Filter
1.
Trop Med Infect Dis ; 9(6)2024 May 23.
Article in English | MEDLINE | ID: mdl-38922035

ABSTRACT

Extraintestinal pathogenic Escherichia coli (ExPEC) strains are capable of causing various systemic infections in both humans and animals. In this study, we isolated and characterized 30 E. coli strains from the parenchymatic organs and brains of young (<3 months of age) camel calves which died in septicemia. Six of the strains showed hypermucoviscous phenotype. Based on minimum inhibitory concentration (MIC) values, seven of the strains were potentially multidrug resistant, with two additional showing colistin resistance. Four strains showed mixed pathotypes, as they carried characteristic virulence genes for intestinal pathotypes of E. coli: three strains carried cnf1, encoding cytotoxic necrotizing factor type 1, the key virulence gene of necrotoxigenic E. coli (NTEC), and one carried eae encoding intimin, the key virulence gene of enteropathogenic E. coli (EPEC). An investigation of the integration sites of pathogenicity islands (PAIs) and the presence of prophage-related sequences showed that the strains carry diverse arrays of mobile genetic elements, which may contribute to their antimicrobial resistance and virulence patterns. Our work is the first to describe ExPEC strains from camels, and points to their veterinary pathogenic as well as zoonotic potential in this important domestic animal.

2.
Int J Mol Sci ; 25(7)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38612932

ABSTRACT

In the case of a food poisoning outbreak, it is essential to understand the relationship between cooking workers and food poisoning. Many biological diagnostic methods have recently been developed to detect food poisoning pathogens. Among these diagnostic tools, this study presents PCR-based pulsed-field gel electrophoresis and nucleotide sequencing diagnostic analysis results for diagnosing food poisoning outbreaks associated with cooking employees in Chungcheongnam-do, Republic of Korea. Pulsed-field gel electrophoresis was useful in identifying the food poisoning outbreaks caused by Staphylococcus aureus and Enteropathogenic Escherichia coli. In the case of Norovirus, nucleotide sequencing was used to identify the relationship between cooking workers and the food poisoning outbreak. However, it is difficult to determine whether cooking employees directly caused the food poisoning outbreaks based on these molecular biological diagnostic results alone. A system is needed to integrate epidemiological and diagnostic information to identify a direct correlation between the food poisoning outbreak and cooking employees.


Subject(s)
Foodborne Diseases , Nucleotides , Humans , Electrophoresis, Gel, Pulsed-Field , Base Sequence , Cooking , Foodborne Diseases/diagnosis , Foodborne Diseases/epidemiology
3.
Diagn Microbiol Infect Dis ; 109(2): 116229, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38507962

ABSTRACT

Some strains of Escherichia coli are known to be involved in the pathogenesis of colorectal cancer (CRC). The aim of current study was to compare the general characteristics of the E. coli from CRC patients and healthy participants. A total of 96 biopsy samples from 48 CRC patients and 48 healthy participants, were studied. The clonality of the E. coli isolates was analyzed by Enterobacterial repetitive intergenic consensus-based PCR (ERIC-PCR) method. The strains were tested by PCR to determine the prevalence of different virulence factors. According to the results of ERIC-PCR analysis, (from the 860 E. coli isolates) 60 strains from CRC patients and 41 strains from healthy controls were identified. Interestingly, the majority of the strains of both groups were in the same cluster. Enteropathogenic E. coli (EPEC) was detected significantly more often in CRC patients (21.6 %) than in healthy participants (2.4 %) (p < 0.05). The Enteroaggregative E. coli (EAEC) was found in 18.33 % of the strains of CRC patients. However, other pathotypes were not found in the E. coli strains of both groups. Furthermore, all the studied genes encoding for virulence factors seemed to be more prevalent in the strains belonging to CRC patients. Among the virulence genes, the statistical difference regarding the frequency of fuyA, chuA, vat, papC, hlyA and cnf1 genes was found significant (p < 0.05). In conclusion, E. coli strains that carry extraintestinal pathogenic E. coli (ExPEC) and diarrheagenic E. coli (DEC) multiple virulence factors colonize the gut mucosa of CRC patients.


Subject(s)
Colorectal Neoplasms , Escherichia coli Infections , Escherichia coli , Intestinal Mucosa , Virulence Factors , Humans , Colorectal Neoplasms/microbiology , Male , Female , Middle Aged , Virulence Factors/genetics , Aged , Escherichia coli/genetics , Escherichia coli/pathogenicity , Escherichia coli/isolation & purification , Escherichia coli/classification , Escherichia coli Infections/microbiology , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Adult , Aged, 80 and over , Polymerase Chain Reaction , Enteropathogenic Escherichia coli/genetics , Enteropathogenic Escherichia coli/pathogenicity , Enteropathogenic Escherichia coli/isolation & purification , Enteropathogenic Escherichia coli/classification
4.
Int J Mol Sci ; 25(5)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38474124

ABSTRACT

Enteropathogenic Escherichia coli (EPEC) produce a capsule of polysaccharides identical to those composing the O-antigen polysaccharide of its LPS (lipopolysaccharide) molecules. In light of this, the impact of O26 polysaccharides on the immune evasion mechanisms of capsulated O26 EPEC compared to non-capsulated enterohemorrhagic Escherichia coli (EHEC) was investigated. Our findings reveal that there was no significant difference between the levels in EPEC and EHEC of rhamnose (2.8:2.5), a molecule considered to be a PAMP (Pathogen Associated Molecular Patterns). However, the levels of glucose (10:1.69), heptose (3.6:0.89) and N-acetylglucosamine (4.5:2.10), were significantly higher in EPEC than EHEC, respectively. It was also observed that the presence of a capsule in EPEC inhibited the deposition of C3b on the bacterial surface and protected the pathogen against lysis by the complement system. In addition, the presence of a capsule also protected EPEC against phagocytosis by macrophages. However, the immune evasion provided by the capsule was overcome in the presence of anti-O26 polysaccharide antibodies, and additionally, these antibodies were able to inhibit O26 EPEC adhesion to human epithelial cells. Finally, the results indicate that O26 polysaccharides can generate an effective humoral immune response, making them promising antigens for the development of a vaccine against capsulated O26 E. coli.


Subject(s)
Enterohemorrhagic Escherichia coli , Enteropathogenic Escherichia coli , Escherichia coli Infections , Escherichia coli Proteins , Humans , Immune Evasion , Escherichia coli Infections/microbiology , Escherichia coli Proteins/pharmacology , Lipopolysaccharides/pharmacology , Vaccine Development
5.
Rev. argent. microbiol ; 56(1): 3-3, Mar. 2024.
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1559278

ABSTRACT

Resumen Escherichia coli diarreogénica abarca un grupo heterogéneo de patotipos o variantes patogénicas que comparten características fenotípicas con marcadas diferencias en genes de virulencia, sitios de colonización, patogenia, presentación clínica y epidemiología de la infección. Los patotipos más estudiados son E.coli productora de toxina Shiga (STEC), E.coli enterotoxigénica (ETEC), E.coli enteropatogénica (EPEC), E.coli enteroagregativa (EAEC) y E.coli enteroinvasiva (EIEC). El objetivo del estudio fue caracterizar los aislamientos de E.coli diarreogénica provenientes de población pediátrica ambulatoria con diarrea, atendida en dos hospitales públicos de Buenos Aires, Argentina. Los patotipos de E.coli diarreogénica se investigaron mediante la amplificación de fragmentos de genes de virulencia característicos: intimina (eae), toxina termolábil (lt), toxinas termoestables (stp, sth), antígeno plasmídico de invasiónH (ipaH), activador transcripcional R (aggR) y toxinas Shiga (stx1, stx2). La subtipificación molecular de aislamientos se realizó mediante PFGE (XbaI). E.coli diarreogénica fue detectada en el 14% (84/601) de los casos. El patotipo EAEC fue prevalente, mientras que ETEC, STEC, EPEC y EIEC fueron hallados en menor proporción. Los aislamientos de EAEC presentaron un alto grado de diversidad genética. Todos los patotipos fueron hallados en niños menores de 5años, mientras que solamente EAEC, EIEC y ETEC fueron detectados en población de mayor edad. Futuros estudios que incluyan la caracterización de aislamientos a partir de un mayor número de genes y población de otras áreas geográficas serán necesarios para determinar la relevancia de E.coli diarreogénica en Argentina.


Abstract Diarrheagenic Escherichia coli comprises a heterogeneous group of pathotypes or pathogenic variants that share phenotypic characteristics with marked differences in virulence genes, colonization sites, pathogenesis, clinical presentation, and epidemiology of infection. The most studied pathotypes are Shiga toxin-producing E.coli (STEC), enterotoxigenic E.coli (ETEC), enteropathogenic E.coli (EPEC), enteroaggregative E.coli (EAEC), and enteroinvasive E.coli (EIEC). The objective of the study was to characterize the isolates of diarrheagenic E.coli from an outpatient pediatric population with diarrhea attended in two public hospitals from Buenos Aires, Argentina. Diarrheagenic E.coli pathotypes were investigated by amplifying characteristic virulence gene fragments: intimin (eae), heat-labile toxin (lt), heat-stable toxins (stp, sth), invasion plasmid antigen H (ipaH), transcriptional activator R (aggR) and Shiga toxins (stx1, stx2). Molecular subtyping of isolates was performed using PFGE (XbaI). Diarrheagenic E.coli was detected in 14% (84/601) of cases. The EAEC pathotype was prevalent, while ETEC, STEC, EPEC and EIEC were found in a lower proportion. EAEC isolates exhibited a high degree of genetic diversity. All pathotypes were found in children under 5years of age, while only EAEC, EIEC and ETEC were detected in the older population. Future studies that include the characterization of isolates from a greater number of genes and populations from other geographical areas will be necessary to determine the relevance of diarrheagenic E.coli in Argentina.

6.
Gut Microbes ; 16(1): 2305477, 2024.
Article in English | MEDLINE | ID: mdl-38298145

ABSTRACT

Non-LEE-encoded Effector A (NleA) is a type III secreted effector protein of enterohaemorrhagic and enteropathogenic Escherichia coli as well as the related mouse pathogen Citrobacter rodentium. NleA translocation into host cells is essential for virulence. We previously published several lines of evidence indicating that NleA is modified by host-mediated mucin-type O-linked glycosylation, the first example of a bacterial effector protein modified in this way. In this study, we use lectins to provide direct evidence for the modification of NleA by O-linked glycosylation and determine that the interaction of NleA with the COPII complex is necessary for this modification to occur.


Subject(s)
Enteropathogenic Escherichia coli , Escherichia coli Proteins , Gastrointestinal Microbiome , Animals , Mice , Escherichia coli Proteins/metabolism , Virulence Factors/metabolism , Glycosylation , Bacterial Proteins/metabolism
7.
Microorganisms ; 12(2)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38399648

ABSTRACT

Postweaning diarrhoea (PWD) is a frequent multifactorial disease occurring in swine stocks worldwide. Since pathogenic Escherichia (E.) coli play a pivotal role in the pathogenesis of PWD and porcine E. coli are often resistant to different antibiotics, colistin is frequently applied to treat piglets with PWD. However, the application of colistin to livestock has been associated with the emergence of colistin resistance. This case report describes the detection of the colistin resistance gene mcr-1-1 in two E. coli isolated from piglets with PWD in an Austrian organic piglet-producing farm, which was managed by two farmers working as nurses in a hospital. Both mcr-1-positive E. coli were further analysed by Illumina short-read-sequencing, including assemblies and gene prediction. Both isolates belonged to the same clonal type and were positive for eaeH and espX5, which are both virulence genes associated with enteropathogenic E. coli (EPEC). Due to the detection of mcr-1-positive EPEC and based on the results of the antimicrobial resistance testing, the veterinarian decided to apply gentamicin for treatment instead of colistin, leading to improved clinical signs. In addition, after replacing faba beans with whey, PWD was solely observed in 2/10 weaned batches in the consecutive months.

8.
Indian J Med Microbiol ; 47: 100535, 2024.
Article in English | MEDLINE | ID: mdl-38350526

ABSTRACT

PURPOSE: Diarrhoeal illness accounts for a high morbidity and mortality both in paediatric as well as adult groups and diarrhoeagenic Escherichia coli occupies a top position as a causative agent of infectious diarrhoeal illness worldwide. The aim of the current investigation was to determine the virulence and pattern of antibiotic resistance of enteropathogenic, enterotoxigenic, and shiga toxigenic Escherichia coli that are linked to diarrhoea in patients of both adult and paediatric age groups. METHODS: A total of 50 consecutive, nonduplicate Escherichia coli isolates were collected from patients with gastro-enteritis who were admitted to different clinical wards Silchar Medical College and Hospital, Silchar, India. PCR was used to identify the virulence genes of EPEC (eaeA and bfpA), STEC (stx1, stx2, and eae) and ETEC (eltA, eltB, estA1 and estA2) in the isolates of E. coli. The antibiotic susceptibility pattern of virulent E. coli isolates were checked using disc diffusion method. Molecular typing of the virulent E. coli detected in the study based on enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR) was also done. RESULT: Out of 50 E. coli isolates, 13 (26%) were found to carry atleast one virulence gene. 11 isolates harboured eae gene and were characterized as EPEC and two isolates carried stx1 gene of STEC. These virulent isolates showed different antibiotic susceptibility pattern and harboured single or multiple antibiotic resistance genes. ERIC PCR established 12 different clonal patterns of the virulent study isolates of E. coli harbouring. CONCLUSION: EPEC pathotypes were found to be the most detected pathotype in the stool samples. Majority of the virulent isolates were also resistant to multiple antibiotics which is a serious public health concern and therefore requires a proper surveillance and studies to track their reservoirs to contain their spread.


Subject(s)
Enteropathogenic Escherichia coli , Escherichia coli Infections , Escherichia coli Proteins , Gastroenteritis , Shiga-Toxigenic Escherichia coli , Humans , Child , Enteropathogenic Escherichia coli/genetics , Escherichia coli Infections/epidemiology , Escherichia coli Infections/microbiology , Tertiary Care Centers , Diarrhea/microbiology , Shiga-Toxigenic Escherichia coli/genetics , Gastroenteritis/epidemiology , Anti-Bacterial Agents/pharmacology , Escherichia coli Proteins/genetics
9.
Rev Argent Microbiol ; 56(1): 8-15, 2024.
Article in Spanish | MEDLINE | ID: mdl-37500356

ABSTRACT

Diarrheagenic Escherichia coli comprises a heterogeneous group of pathotypes or pathogenic variants that share phenotypic characteristics with marked differences in virulence genes, colonization sites, pathogenesis, clinical presentation, and epidemiology of infection. The most studied pathotypes are Shiga toxin-producing E.coli (STEC), enterotoxigenic E.coli (ETEC), enteropathogenic E.coli (EPEC), enteroaggregative E.coli (EAEC), and enteroinvasive E.coli (EIEC). The objective of the study was to characterize the isolates of diarrheagenic E.coli from an outpatient pediatric population with diarrhea attended in two public hospitals from Buenos Aires, Argentina. Diarrheagenic E.coli pathotypes were investigated by amplifying characteristic virulence gene fragments: intimin (eae), heat-labile toxin (lt), heat-stable toxins (stp, sth), invasion plasmid antigen H (ipaH), transcriptional activator R (aggR) and Shiga toxins (stx1, stx2). Molecular subtyping of isolates was performed using PFGE (XbaI). Diarrheagenic E.coli was detected in 14% (84/601) of cases. The EAEC pathotype was prevalent, while ETEC, STEC, EPEC and EIEC were found in a lower proportion. EAEC isolates exhibited a high degree of genetic diversity. All pathotypes were found in children under 5years of age, while only EAEC, EIEC and ETEC were detected in the older population. Future studies that include the characterization of isolates from a greater number of genes and populations from other geographical areas will be necessary to determine the relevance of diarrheagenic E.coli in Argentina.


Subject(s)
Enteropathogenic Escherichia coli , Escherichia coli Infections , Child , Humans , Argentina/epidemiology , Outpatients , Diarrhea/epidemiology , Escherichia coli Infections/epidemiology , Enteropathogenic Escherichia coli/genetics , Hospitals
10.
Chembiochem ; 25(2): e202300638, 2024 01 15.
Article in English | MEDLINE | ID: mdl-37971396

ABSTRACT

This study aimed to identify inhibitors of the translocated intimin receptor (Tir) of enteropathogenic Escherichia coli (EPEC). EPEC is an intestinal pathogen that causes diarrhea and is a major health concern worldwide. Because Tir is a key virulence factor involved in EPEC pathogenesis, inhibiting its function is a potential strategy for controlling EPEC infections. Virtual screening was applied to chemical libraries to search for compounds that inhibit Tir-mediated bacterial adherence to host cells. Three sites were targeted using the cocrystal structure published earlier. A selection of compounds was then assessed in a cell-based infection model and fluorescence microscopy assay. The results of this study provide a basis for further optimization and testing of Tir inhibitors as potential therapeutic agents for EPEC infections.


Subject(s)
Enteropathogenic Escherichia coli , Escherichia coli Infections , Escherichia coli Proteins , Humans , Enteropathogenic Escherichia coli/metabolism , Adhesins, Bacterial/metabolism , Escherichia coli Proteins/metabolism , Receptors, Cell Surface/chemistry , Carrier Proteins , Escherichia coli Infections/microbiology
11.
Int J Mol Sci, v. 25, n. 5, 2878, mar. 2024
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5287

ABSTRACT

Enteropathogenic Escherichia coli (EPEC) produce a capsule of polysaccharides identical to those composing the O-antigen polysaccharide of its LPS (lipopolysaccharide) molecules. In light of this, the impact of O26 polysaccharides on the immune evasion mechanisms of capsulated O26 EPEC compared to non-capsulated enterohemorrhagic Escherichia coli (EHEC) was investigated. Our findings reveal that there was no significant difference between the levels in EPEC and EHEC of rhamnose (2.8:2.5), a molecule considered to be a PAMP (Pathogen Associated Molecular Patterns). However, the levels of glucose (10:1.69), heptose (3.6:0.89) and N-acetylglucosamine (4.5:2.10), were significantly higher in EPEC than EHEC, respectively. It was also observed that the presence of a capsule in EPEC inhibited the deposition of C3b on the bacterial surface and protected the pathogen against lysis by the complement system. In addition, the presence of a capsule also protected EPEC against phagocytosis by macrophages. However, the immune evasion provided by the capsule was overcome in the presence of anti-O26 polysaccharide antibodies, and additionally, these antibodies were able to inhibit O26 EPEC adhesion to human epithelial cells. Finally, the results indicate that O26 polysaccharides can generate an effective humoral immune response, making them promising antigens for the development of a vaccine against capsulated O26 E. coli.

12.
J Appl Microbiol ; 134(11)2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37962953

ABSTRACT

AIM: This study aims to investigate the prevalence of intestinal pathogenic Escherichia coli (InPEC) in healthy pig-related samples and evaluate the potential virulence of the InPEC strains. METHODS AND RESULTS: A multiplex PCR method was established to identify different pathotypes of InPEC. A total of 800 rectal swab samples and 296 pork samples were collected from pig farms and slaughterhouses in Hubei province, China. From these samples, a total of 21 InPEC strains were isolated, including 19 enteropathogenic E. coli (EPEC) and 2 shiga toxin-producing E. coli (STEC) strains. By whole-genome sequencing and in silico typing, it was shown that the sequence types and serotypes were diverse among the strains. Antimicrobial susceptibility assays showed that 90.48% of the strains were multi-drug resistant. The virulence of the strains was first evaluated using the Galleria mellonella larvae model, which showed that most of the strains possessed medium to high pathogenicity. A moderately virulent EPEC isolate was further selected to characterize its pathogenicity using a mouse model, which suggested that it could cause significant diarrhea. Bioluminescence imaging (BLI) was then used to investigate the colonization dynamics of this EPEC isolate, which showed that the EPEC strain could colonize the mouse cecum for up to 5 days.


Subject(s)
Enteropathogenic Escherichia coli , Escherichia coli Infections , Escherichia coli Proteins , Shiga-Toxigenic Escherichia coli , Humans , Enteropathogenic Escherichia coli/genetics , Escherichia coli Infections/epidemiology , Escherichia coli Infections/veterinary , Virulence , Diarrhea , Virulence Factors , Shiga-Toxigenic Escherichia coli/genetics
13.
Heliyon ; 9(9): e20059, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37809422

ABSTRACT

This study aimed to investigate the prevalence of Shiga toxin-producing Escherichia coli (STEC), Enteropathogenic E. coli (EPEC), and Enterotoxigenic E. coli (ETEC) in common food animals (cattle, goats, and pigs) reared by tribal communities and smallholder farmers in Northeast India. The isolates were characterized for the presence of virulence genes, extended-spectrum beta-lactamases (ESBL) production, antimicrobial resistance, and biofilm production, and the results were statistically interpreted. In pathotyping 141 E. coli isolates, 10 (7.09%, 95% CI: 3.45%-12.66%) were identified as STEC, 2 (1.42%, 95% CI: 0.17%-5.03%) as atypical-EPEC, and 1 (0.71%, 95% CI: 0.02%-3.89%) as typical-EPEC. None of the isolates were classified as ETEC. Additionally, using the phenotypic combination disc method (ceftazidime with and without clavulanic acid), six isolates (46.1%, 95% CI: 19.22%-74.87%) were determined to be ESBL producers. Among the STEC/EPEC strains, eleven (84.6%, 95% CI: 54.55%-98.08%) and one (7.7%, 95% CI: 0.19%-36.03%) strains were capable of producing strong or moderate biofilms, respectively. PFGE analysis revealed indistinguishable patterns for certain isolates, suggesting clonal relationships. These findings highlight the potential role of food animals reared by tribal communities and smallholder farmers as reservoirs of virulent biofilm-forming E. coli pathotypes, with implications for food contamination and zoonotic infections. Therefore, monitoring these pathogens in food animals is crucial for optimizing public health through one health strategy.

14.
Gut Microbes ; 15(1): 2228042, 2023.
Article in English | MEDLINE | ID: mdl-37417543

ABSTRACT

Virulent genes present in Escherichia coli (E. coli) can cause significant human diseases. These enteropathogenic E. coli (EPEC) and enterotoxigenic E. coli (ETEC) isolates with virulent genes show different expression levels when grown under diverse laboratory conditions. In this research, we have performed differential gene expression analysis using publicly available RNA-seq data on three pathogenic E. coli hybrid isolates in an attempt to characterize the variation in gene interactions that are altered by the presence or absence of virulent factors within the genome. Almost 26.7% of the common genes across these strains were found to be differentially expressed. Out of the 88 differentially expressed genes with virulent factors identified from PATRIC, nine were common in all these strains. A combination of Weighted Gene Co-Expression Network Analysis and Gene Ontology Enrichment Analysis reveals significant differences in gene co-expression involving virulent genes common among the three investigated strains. The co-expression pattern is observed to be especially variable among biological pathways involving metabolism-related genes. This suggests a potential difference in resource allocation or energy generation across the three isolates based on genomic variation.


Subject(s)
Enteropathogenic Escherichia coli , Enterotoxigenic Escherichia coli , Escherichia coli Infections , Escherichia coli Proteins , Gastrointestinal Microbiome , Humans , Gene Expression Profiling , Escherichia coli Proteins/genetics
15.
Int Rev Cell Mol Biol ; 377: 65-86, 2023.
Article in English | MEDLINE | ID: mdl-37268351

ABSTRACT

Enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC) are human enteric pathogens that contribute significantly to morbidity and mortality worldwide. These extracellular pathogens attach intimately to intestinal epithelial cells and cause signature lesions by effacing the brush border microvilli, a property they share with other "attaching and effacing" (A/E) bacteria, including the murine pathogen Citrobacter rodentium. A/E pathogens use a specialized apparatus called a type III secretion system (T3SS) to deliver specific proteins directly into the host cytosol and modify host cell behavior. The T3SS is essential for colonization and pathogenesis, and mutants lacking this apparatus fail to cause disease. Thus, deciphering effector-induced host cell modifications is critical for understanding A/E bacterial pathogenesis. Several of the ∼20-45 effector proteins delivered into the host cell modify disparate mitochondrial properties, some via direct interactions with the mitochondria and/or mitochondrial proteins. In vitro studies have uncovered the mechanistic basis for the actions of some of these effectors, including their mitochondrial targeting, interaction partners, and consequent impacts on mitochondrial morphology, oxidative phosphorylation and ROS production, disruption of membrane potential, and intrinsic apoptosis. In vivo studies, mostly relying on the C. rodentium/mouse model, have been used to validate a subset of the in vitro observations; additionally, animal studies reveal broad changes to intestinal physiology that are likely accompanied by mitochondrial alterations, but the mechanistic underpinnings remain undefined. This chapter provides an overview of A/E pathogen-induced host alterations and pathogenesis, specifically focusing on mitochondria-targeted effects.


Subject(s)
Epithelial Cells , Mitochondria , Animals , Humans , Mice , Citrobacter rodentium/physiology
16.
Zoonoses Public Health ; 70(6): 542-554, 2023 09.
Article in English | MEDLINE | ID: mdl-37317052

ABSTRACT

Seal populations in Canadian waters provide sustenance to coastal communities. There is potential for pathogenic and/or antimicrobial-resistant bacteria to transfer to humans through inadvertent faecal contamination of seal products. The objective of this study was to investigate the occurrence and potential antimicrobial resistance of Salmonella spp., Escherichia coli and Listeria monocytogenes in faecal samples collected from grey seals (Halichoerus grypus) in the Gulf of St. Lawrence and from ringed seals (Pusa hispida) in Frobisher Bay and Eclipse Sound, Nunavut, Canada. Grey seals were harvested during commercial hunts or during scientific sampling; ringed seals were collected by Inuit hunters during subsistence harvests. Virulence genes defining pathogenic E. coli were identified by PCR, and antimicrobial susceptibility testing was performed on recovered isolates. In grey seals, E. coli was detected in 34/44 (77%) samples, and pathogenic E. coli (extraintestinal E. coli [ExPEC], enteropathogenic E. coli [EPEC] or ExPEC/EPEC) was detected in 13/44 (29%) samples. Non-susceptibility to beta-lactams and quinolones was observed in isolates from 18 grey seals. In ringed seals from Frobisher Bay, E. coli was detected in 4/45 (9%) samples; neither virulence genes nor antimicrobial resistance was detected in these isolates. In ringed seals from Eclipse Sound, E. coli was detected in 8/50 (16%) samples and pathogenic E. coli (ExPEC and ExPEC/EPEC) in 5/50 (10%) samples. One seal from Eclipse Sound had an E. coli isolate resistant to beta-lactams. A monophasic Salmonella Typhimurium was recovered from 8/50 (16%) seals from Eclipse Sound. All Salmonella isolates were resistant to ampicillin, streptomycin, sulfisoxazole and tetracycline. L. monocytogenes was not detected in any sample. These findings suggest that seals may act as important sentinel species and as reservoirs or vectors for antimicrobial-resistant and virulent E. coli and Salmonella species. Further characterization of these isolates would provide additional insights into the source and spread of antimicrobial resistance and virulence genes in these populations of free-living seals.


Subject(s)
Enteropathogenic Escherichia coli , Seals, Earless , Humans , Animals , Anti-Bacterial Agents/pharmacology , Canada/epidemiology , Drug Resistance, Bacterial/genetics , Salmonella , beta-Lactams
17.
Clin Infect Dis ; 76(76 Suppl1): S77-S86, 2023 04 19.
Article in English | MEDLINE | ID: mdl-37074433

ABSTRACT

BACKGROUND: To address knowledge gaps regarding diarrheagenic Escherichia coli (DEC) in Africa, we assessed the clinical and epidemiological features of enteroaggregative E. coli (EAEC), enteropathogenic E. coli (EPEC), and Shiga toxin-producing E. coli (STEC) positive children with moderate-to-severe diarrhea (MSD) in Mali, The Gambia, and Kenya. METHODS: Between May 2015 and July 2018, children aged 0-59 months with medically attended MSD and matched controls without diarrhea were enrolled. Stools were tested conventionally using culture and multiplex polymerase chain reaction (PCR), and by quantitative PCR (qPCR). We assessed DEC detection by site, age, clinical characteristics, and enteric coinfection. RESULTS: Among 4840 children with MSD and 6213 matched controls enrolled, 4836 cases and 1 control per case were tested using qPCR. Of the DEC detected with TAC, 61.1% were EAEC, 25.3% atypical EPEC (aEPEC), 22.4% typical EPEC (tEPEC), and 7.2% STEC. Detection was higher in controls than in MSD cases for EAEC (63.9% vs 58.3%, P < .01), aEPEC (27.3% vs 23.3%, P < .01), and STEC (9.3% vs 5.1%, P < .01). EAEC and tEPEC were more frequent in children aged <23 months, aEPEC was similar across age strata, and STEC increased with age. No association between nutritional status at follow-up and DEC pathotypes was found. DEC coinfection with Shigella/enteroinvasive E. coli was more common among cases (P < .01). CONCLUSIONS: No significant association was detected between EAEC, tEPEC, aEPEC, or STEC and MSD using either conventional assay or TAC. Genomic analysis may provide a better definition of the virulence factors associated with diarrheal disease.


Subject(s)
Coinfection , Enteropathogenic Escherichia coli , Escherichia coli Infections , Shiga-Toxigenic Escherichia coli , Child , Humans , Escherichia coli Infections/epidemiology , Escherichia coli Infections/diagnosis , Shiga-Toxigenic Escherichia coli/genetics , Coinfection/epidemiology , Diarrhea/epidemiology , Diarrhea/diagnosis , Enteropathogenic Escherichia coli/genetics , Kenya
18.
Front Cell Infect Microbiol ; 13: 1103552, 2023.
Article in English | MEDLINE | ID: mdl-36864885

ABSTRACT

Introduction: Enteropathogenic Escherichia coli (EPEC) is a diarrheagenic pathogen and one of the major causes of gastrointestinal illness in developing countries. EPEC, similar to many other Gram-negative bacterial pathogens, possesses essential virulence machinery called the type III secretion system (T3SS) that enables the injection of effector proteins from the bacteria into the host cytoplasm. Of these, the translocated intimin receptor (Tir) is the first effector to be injected, and its activity is essential for the formation of attaching and effacing lesions, the hallmark of EPEC colonization. Tir belongs to a unique group of transmembrane domain (TMD)-containing secreted proteins, which have two conflicting destination indications, one for bacterial membrane integration and another for protein secretion. In this study, we examined whether TMDs participate in the secretion, translocation, and function of Tir in host cells. Methods: We created Tir TMD variants with the original or alternative TMD sequence. Results: We found that the C-terminal TMD of Tir (TMD2) is critical for the ability of Tir to escape integration into the bacterial membrane. However, the TMD sequence was not by itself sufficient and its effect was context-dependent. Moreover, the N-terminal TMD of Tir (TMD1) was important for the postsecretion function of Tir at the host cell. Discussion: Taken together, our study further supports the hypothesis that the TMD sequences of translocated proteins encode information crucial for protein secretion and their postsecretion function.


Subject(s)
Enteropathogenic Escherichia coli , Escherichia coli Proteins , Type III Secretion Systems , Cytoplasm , Protein Transport , Bodily Secretions , Enteropathogenic Escherichia coli/genetics , Receptors, Cell Surface , Escherichia coli Proteins/genetics
19.
Front Microbiol ; 14: 1063368, 2023.
Article in English | MEDLINE | ID: mdl-36876072

ABSTRACT

Introduction: Enteropathogenic Escherichia coli (EPEC), enterohemorrhagic E. coli (EHEC) and Citrobacter rodentium (CR) belong to a group of pathogens that share the ability to form "attaching and effacing" (A/E) lesions on the intestinal epithelia. A pathogenicity island known as the locus of enterocyte effacement (LEE) contains the genes required for A/E lesion formation. The specific regulation of LEE genes relies on three LEE-encoded regulators: Ler activates the expression of the LEE operons by antagonizing the silencing effect mediated by the global regulator H-NS, GrlA activates ler expression and GrlR represses the expression of the LEE by interacting with GrlA. However, despite the existing knowledge of LEE regulation, the interplay between GrlR and GrlA and their independent roles in gene regulation in A/E pathogens are still not fully understood. Methods: To further explore the role that GrlR and GrlA in the regulation of the LEE, we used different EPEC regulatory mutants and cat transcriptional fusions, and performed protein secretion and expression assays, western blotting and native polyacrylamide gel electrophoresis. Results and discussion: We showed that the transcriptional activity of LEE operons increased under LEE-repressing growth conditions in the absence of GrlR. Interestingly, GrlR overexpression exerted a strong repression effect over LEE genes in wild-type EPEC and, unexpectedly, even in the absence of H-NS, suggesting that GrlR plays an alternative repressor role. Moreover, GrlR repressed the expression of LEE promoters in a non-EPEC background. Experiments with single and double mutants showed that GrlR and H-NS negatively regulate the expression of LEE operons at two cooperative yet independent levels. In addition to the notion that GrlR acts as a repressor by inactivating GrlA through protein-protein interactions, here we showed that a DNA-binding defective GrlA mutant that still interacts with GrlR prevented GrlR-mediated repression, suggesting that GrlA has a dual role as a positive regulator by antagonizing GrlR's alternative repressor role. In line with the importance of the GrlR-GrlA complex in modulating LEE gene expression, we showed that GrlR and GrlA are expressed and interact under both inducing and repressing conditions. Further studies will be required to determine whether the GrlR alternative repressor function depends on its interaction with DNA, RNA, or another protein. These findings provide insight into an alternative regulatory pathway that GrlR employs to function as a negative regulator of LEE genes.

20.
Gut Microbes ; 15(1): 2190308, 2023.
Article in English | MEDLINE | ID: mdl-36949030

ABSTRACT

Pathogenic subsets of Escherichia coli include diarrheagenic (DEC) strains that cause disease within the gut and extraintestinal pathogenic E. coli (ExPEC) strains that are linked with urinary tract infections, bacteremia, and other infections outside of intestinal tract. Among DEC strains is an emergent pathotype known as atypical enteropathogenic E. coli (aEPEC), which can cause severe diarrhea. Recent sequencing efforts revealed that some E. coli strains possess genetic features that are characteristic of both DEC and ExPEC isolates. BA1250 is a newly reclassified hybrid strain with characteristics of aEPEC and ExPEC. This strain was isolated from a child with diarrhea, but its genetic features indicate that it might have the capacity to cause disease at extraintestinal sites. The spectrum of adhesins encoded by hybrid strains like BA1250 are expected to be especially important in facilitating colonization of diverse niches. E. coli common pilus (ECP) is an adhesin expressed by many E. coli pathogens, but how it impacts hybrid strains has not been ascertained. Here, using zebrafish larvae as surrogate hosts to model both gut colonization and extraintestinal infections, we found that ECP can act as a multi-niche colonization and virulence factor for BA1250. Furthermore, our results indicate that ECP-related changes in activation of envelope stress response pathways may alter the fitness of BA1250. Using an in silico approach, we also delineated the broader repertoire of adhesins that are encoded by BA1250, and provide evidence that the expression of at least a few of these varies in the absence of functional ECP.


Subject(s)
Enteropathogenic Escherichia coli , Escherichia coli Infections , Extraintestinal Pathogenic Escherichia coli , Gastrointestinal Microbiome , Animals , Enteropathogenic Escherichia coli/genetics , Extraintestinal Pathogenic Escherichia coli/genetics , Fimbriae, Bacterial/genetics , Virulence/genetics , Zebrafish , Virulence Factors/genetics , Diarrhea , Adhesins, Bacterial/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...