ABSTRACT
BACKGROUND: The distinct arterial and venous cell fates are dictated by a combination of various genetic factors which form diverse types of blood vessels such as arteries, veins, and capillaries. We report here that YULINK protein is involved in vasculogenesis, especially venous formation. METHODS: In this manuscript, we employed gene knockdown, yeast two-hybrid, FLIM-FRET, immunoprecipitation, and various imaging technologies to investigate the role of YULINK gene in zebrafish and human umbilical vein endothelial cells (HUVECs). RESULTS: Knockdown of YULINK during the arterial-venous developmental stage of zebrafish embryos led to the defective venous formation and abnormal vascular plexus formation. Knockdown of YULINK in HUVECs impaired their ability to undergo cell migration and differentiation into a capillary-like tube formation. In addition, the phosphorylated EPHB4 was decreased in YULINK knockdown HUVECs. Yeast two-hybrid, FLIM-FRET, immunoprecipitation, as well as imaging technologies showed that YULINK colocalized with endosome related proteins (EPS15, RAB33B or TICAM2) and markers (Clathrin and RHOB). VEGF-induced VEGFR2 internalization was also compromised in YULINK knockdown HUVECs, demonstrating to the involvement of YULINK. CONCLUSION: This study suggests that YULINK regulates vasculogenesis, possibly through endocytosis in zebrafish and HUVECs.
Subject(s)
Saccharomyces cerevisiae , Zebrafish , Animals , Humans , Human Umbilical Vein Endothelial Cells , Zebrafish/genetics , Cell Movement , Cell Differentiation , Neovascularization, PhysiologicABSTRACT
BACKGROUND: The distinct arterial and venous cell fates are dictated by a combination of various genetic factors which form diverse types of blood vessels such as arteries, veins, and capillaries. We report here that YULINK protein is involved in vasculogenesis, especially venous formation. METHODS: In this manuscript, we employed gene knockdown, yeast two-hybrid, FLIM-FRET, immunoprecipitation, and various imaging technologies to investigate the role of YULINK gene in zebrafish and human umbilical vein endothelial cells (HUVECs). RESULTS: Knockdown of YULINK during the arterial-venous developmental stage of zebrafish embryos led to the defective venous formation and abnormal vascular plexus formation. Knockdown of YULINK in HUVECs impaired their ability to undergo cell migration and differentiation into a capillary-like tube formation. In addition, the phosphorylated EPHB4 was decreased in YULINK knockdown HUVECs. Yeast two-hybrid, FLIM-FRET, immunoprecipitation, as well as imaging technologies showed that YULINK colocalized with endosome related proteins (EPS15, RAB33B or TICAM2) and markers (Clathrin and RHOB). VEGF-induced VEGFR2 internalization was also compromised in YULINK knockdown HUVECs, demonstrating to the involvement of YULINK. CONCLUSION: This study suggests that YULINK regulates vasculogenesis, possibly through endocytosis in zebrafish and HUVECs. Key points Knockdown of YULINK with morpholino in embryos of double transgenic zebrafish exhibited abnormal venous formation. Tube formation and phosphorylated EPHB4 were decreased in YULINK knockdown HUVECs. FLIM-FRET, immunoprecipitation, as well as other imaging technologies showed that YULINK colocalized with endosome related proteins (EPS15, RAB33B and TICAM2) and endosome markers (Clathrin and RHOB). Knockdown of YULINK decreased the internalization of VEGF and VEGFR2 in HUVECs.
Subject(s)
Humans , Animals , Saccharomyces cerevisiae , Zebrafish/genetics , Cell Differentiation , Cell Movement , Neovascularization, Physiologic , Human Umbilical Vein Endothelial CellsABSTRACT
OBJECTIVES: lncRNA ABHD11 antisense RNA 1 (ABHD11-AS1) acts as an oncogene involved in papillary thyroid carcinoma (PTC) occurrence and progression. ABHD11-AS1 exerts biologic functions by some miRNAs and proteins to regulate multiple targets. Identification of novel mechanism of ABHD11-AS1 could be helpful in therapeutic targeting for PTC treatment. METHODS: Differentially expressed lncRNAs were selected from TCGA database. qRT-PCR analysis was applied to examine the expression of ABHD11-AS1 in PTC cell lines and tissues. The relationship of ABHD11-AS1 expression and clinicopathological features was analyzed by Kaplan-Meier analysis. Two PTC cell lines (TPC-1 and KTC-1) were transfected with pcDNA 3.1, pcDNA3.1-ABHD11-AS1, si-NC and si-ABHD11-AS1, respectively, to verify the ABHD11-AS1 oncogene-regulating capacity to promote tumor progression. The cell metastasis and proliferation had been evaluated both in vitro and in vivo. RESULTS: High expression of ABHD11-AS1 was found in PTC tissues (P < 0.01), which was significantly correlated with lymph node metastasis (P < 0.05). ABHD11-AS1 overexpression noticeably promoted cell proliferation, migration, and invasion capabilities, which were obviously decreased upon ABHD11-AS1 knockdown. ABHD11-AS1 positively regulated EGFR/EPS15L1 pathway, as EGFR, EPS15L1, STAT3, and p-STAT3 were activated. CONCLUSION: ABHD11-AS1 promotes tumor progression in PTC by regulating EPS15L1/EGFR pathway.