Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.686
Filter
1.
Angew Chem Int Ed Engl ; : e202410791, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949226

ABSTRACT

Aurothiomalate (AuTM) is an FDA-approved antiarthritic gold drug with unique anticancer properties. To enhance its anticancer activity, we prepared a bioconjugate with human apoferritin (HuHf) by attaching some AuTM moieties to surface protein residues. The reaction of apoferritin with excess AuTM yielded a single adduct, that was characterized by ESI MS and ICP-OES analysis, using three mutant ferritins and trypsinization experiments. The adduct contains ~3 gold atoms per ferritin subunit, arranged in a small cluster bound to Cys90 and Cys102. MD simulations provide a plausible structural model for the cluster. The adduct was evaluated for its pharmacological properties and was found to be significantly more cytotoxic than free AuTM against A2780 cancer cells mainly due to higher gold uptake. NMR-metabolomics showed that AuTM bound to HuHf and free AuTM induced qualitatively similar changes in treated cancer cells, indicating that the effects on cell metabolism are approximately the same, in agreement with independent biochemical experiments. In conclusion, we have demonstrated here that a molecularly precise bioconjugate formed between AuTM and HuHf exhibits anticancer properties far superior to the free drug, while retaining its key mechanistic features. Evidence is provided that human ferritin can serve as an excellent carrier for this metallodrug.

2.
Nat Prod Res ; : 1-8, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949646

ABSTRACT

Recent research has indicated that Panax notoginseng saponins (PNS) extracted from the radix of Panax notoginseng (Burkill) F. H. Chen exert antidepressant effects. This study aimed to assess the antidepressive effects of ginsenoside Rg1 and PNS in a depression model induced by chronic unpredictable mild stress (CUMS). Over a period of three weeks, rats were administered ginsenoside Rg1 at a dose of 30 mg/kg and PNS at dosages ranging from 100 to 200 mg/kg body weight per day. To assess how ginsenoside Rg1 and PNS influence depression-like behaviours in rats, various assessments were conducted, including coat state evaluation, forced swim test, and elevated plus maze test. The levels of cortisol and testosterone in serum samples were analysed using the liquid chromatography-electrospray ionisation tandem mass spectrometry (LC-ESI-MS/MS) method. LC-ESI-MS/MS method provides precise and accurate results. The lower limit of quantification values for cortisol and testosterone were determined as 100 and 2 pg/mL, respectively. Our data demonstrated that both ginsenoside Rg1 and PNS significantly reversed depression-like behaviour in rats by improving coat condition, reducing immobility time in the forced swim test, and increasing time spent in the open arms of the elevated plus maze test. Furthermore, ginsenoside Rg1 and PNS exhibited a regulatory effect on cortisol and testosterone levels in plasma. These findings suggest that ginsenoside Rg1 and PNS may be potential antidepressants in clinical treatment.

3.
Food Chem ; 458: 140278, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38964103

ABSTRACT

High-content sugar in honey frequently results in severe matrix effects and requires complex pretreatment prior to analysis, posing significant challenges for the rapid analysis of honey. In this study, the reversal polarity nano-electrospray ionization mass spectrometry (RP-Nano-ESI-MS) analysis was developed for the direct evaluation of honey samples. The results indicated that RP-Nano-ESI-MS significantly mitigated the matrix effects induced by high-content sugar through the implementation of online desalting. Furthermore, RP-Nano-ESI-MS has been proven capable of not only differentiating acacia honey adulterated with 10% rape honey, but also effectively distinguishing six types of honey and exhibiting remarkable proficiency in detecting honey adulteration and botanical traceability. Additionally, RP-Nano-ESI-MS exhibited strong quantitative abilities, effectively characterizing variations in amino acid composition among six types of honey with high stability and reproducibility. Our studies underscore the significant potential of RP-Nano-ESI-MS for its rapid in situ analysis of sugar-rich foods like honey, especially in their authenticity verification.

4.
Open Life Sci ; 19(1): 20220886, 2024.
Article in English | MEDLINE | ID: mdl-38947764

ABSTRACT

Mulberry is a common crop rich in flavonoids, and its leaves (ML), fruits (M), and branches (Ramulus Mori, RM) have medicinal value. In the present study, a total of 118 flavonoid metabolites (47 flavone, 23 flavonol, 16 flavonoid, 8 anthocyanins, 8 isoflavone, 14 flavanone, and 2 proanthocyanidins) and 12 polyphenols were identified by ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry. The most abundant in ML were 8-C-hexosyl-hesperetin O-hexoside and astragalin, the most abundant in M were 8-C-hexosyl-hesperetin O-hexoside and naringenin, and the most abundant in RM were cyanidin 3-O-galactoside and gallocatechin-gallocatechin. The total flavonoid compositions of ML and RM were essentially the same, but the contents of flavonoid metabolite in more than half of them were higher than those in M. Compared with ML, the contents of flavone and flavonoid in RM and M were generally down-regulated. Each tissue part had a unique flavonoid, which could be used as a marker to distinguish different tissue parts. In this study, the differences between flavonoid metabolite among RM, ML, and M were studied, which provided a theoretical basis for making full use of mulberry resources.

5.
Nat Prod Res ; : 1-10, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38962970

ABSTRACT

The polyphenolic compounds of the n-butanol fraction of Linum tenue Desf. (BFLTe) were characterised by RP-UHPLC-ESI-QTOF-MS analyses with the main presence of 6,8-di-C-glucosyl naringenin (11.7%), vicenin 2-isomer 2 (8.18%), luteolin-7,3'-di-O-ß-D-glucoside (7.18%), isovitexin (5.98%), luteolin-7-O-ß-D-glucoside (5.713%), myricitrin (4.41%), luteolin-4'-O-ß-D-glucoside (4.04%), chlorogenic acid (28.68%), 3-(2,6-dihydroxyphenyl)-4-hydroxy-6-methyl-3H-2-benzofuran-1-one (8.17%) and p-coumaric acid (4.0%.). The antioxidant capacity was evaluated using three complementary methods (DPPH, ABTS and Reducing power). Additionally, the antimicrobial activity was tested against eight bacterial strains and the fungi Candida albicans whereas the antidiabetic activity was performed against α-amylase. The anti-Alzheimer activity was tested by inhibiting the butyrylcholinesterase (BChE). The BFLTe showed, for the first-time, a good antioxidant potential in DPPH (IC50:68.83 ± 2.74 µg/mL), ABTS (IC50:48.73 ± 1.07 µg/mL) and Reducing power assays (A0.50:99.98 ± 1.18 µg/mL) and a moderate antimicrobial activity with 250 and 500 µg/mL MICs values. Moreover, the fraction exhibited an excellent inhibition of the BChE (IC50:33.00 ± 0.85 µg/mL) and α-amylase (IC50:1093.13 ± 12.93 µg/mL).

6.
Food Chem ; 458: 140277, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38970957

ABSTRACT

This study analyzed the metabolite profiles and antioxidant capacities of two waxy and non-waxy Korean red rice accessions newly bred. Fifteen phenolic compounds were detected in the rice samples. Accession1 had high fatty acids, phytosterols, and vitamin E; accession3 had high vitamin E and phytosterol; and accession4 had a high total flavonoid. The correlation analysis findings from this study validated the positive association between all the metabolites and antioxidant activity. in silico results revealed that protocatechuic acid had a docking score of -9.541, followed by luteolin, quercetin, and caffeic acid, all of which had significant docking scores and a significant number of contacts. Similarly, molecular dynamics simulations showed that phytochemicals had root mean square deviation values of <2.8 Å with Keap 1, indicating better stability. This study provides valuable insights into potential directions for future investigations and improvements in the functional qualities of other colored rice varieties.

7.
Molecules ; 29(11)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38893577

ABSTRACT

Daucus capillifolius Gilli is a rare annual wild herb grown in Libya. It belongs to the Apiaceae family, which is one of the largest flowering plant families. Plants of this family are outstanding sources of various secondary metabolites with various biological activities. A UPLC-ESI-MS/MS analysis of different extracts of in vivo and in vitro tissues of Daucus capillifolius together with the fruit extract of the cultivated plant in both ionization modes was carried out for the first time in the current study. Our results reveal the tentative identification of eighty-seven compounds in the tested extracts, including thirty-two phenolic acids and their derivatives; thirty-seven flavonoid glycosides and aglycones of apigenin, luteolin, diosmetin, myricetin and quercetin, containing glucose, rhamnose, pentose and/or glucuronic acid molecules; seven anthocyanins; six tannins; three acetylenic compounds; and three nitrogenous compounds. The tentative identification of the above compounds was based on the comparison of their retention times and ESI-MS/MS fragmentation patterns with those previously reported in the literature. For this Apiaceae plant, our results confirm the presence of a wide array of secondary metabolites with reported biological activities. This study is among the first ones to shed light on the phytoconstituents of this rare plant.


Subject(s)
Plant Extracts , Secondary Metabolism , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry , Plant Extracts/chemistry , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Flavonoids/chemistry , Flavonoids/analysis , Methanol/chemistry , Apiaceae/chemistry , Fruit/chemistry
8.
Sci Total Environ ; 946: 173816, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38852872

ABSTRACT

Arsenic-containing hydrocarbons (AsHC), a subclass of arsenolipids (AsL), have been proven to exert neuro- and cytotoxic effects in in-vitro and in-vivo studies and were shown to pass through biological barriers like the blood-brain barrier. However, there has been no connection as to the environmental relevance of these findings, meaning there is no study based on samples from free living animals that are exposed to these compounds. Here, we report the identification of two AsHC as well as 3 arsenosugar phospholipids (AsPL) in the brains of a pod of stranded long-finned pilot whales (Globicephala melas) as well as the absence of arsenobetaine (AsB) which is often found to be a dominant As species in fish. We show data which suggests that there is an age-dependent accumulation of AsL in the brains of the animals. The results show that, in contrast to other organs, total arsenic as well as arsenolipids accumulate in an asymptotic pattern in the brains of the animals. Total As concentrations were found to range from 87 to 260 µg As/kg wet weight and between 0.6 and 27.6 µg As/kg was present in the form of AsPL958 in the brains of stranded pilot whales which was the most dominant lipophilic species present. The asymptotic relationship between total As, as well as AsPL, concentration in the brain and whale age may suggest that the accumulation of these species takes place prior to the full development of the blood-brain barrier in young whales. Finally, comparison between the organs of local squid, a common source of food for pilot whales, highlighted a comparable AsL profile which indicates a likely bioaccumulation pathway through the food chain.

9.
J Asian Nat Prod Res ; : 1-15, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38869200

ABSTRACT

This study examined the impact of Semen raphani on the absorption of ginsenosides from Panax ginseng C.A. Meyer (ginseng) using a Caco-2 cell model and Ultra-High-Performance Liquid Chromatography-Electrospray Ionization-Tandem Mass Spectrometry (UPLC-ESI-MS). Six primary ginsenosides (Rg1, Re, Rb1, Rb2, Rc, Rd) were quantified. Results showed that Semen Raphani increased the efflux rate of ginsenosides, particularly at higher concentrations, suggesting it inhibits their absorption. The research elucidates the intestinal absorption process of ginsenosides and the antagonistic mechanism of Semen Raphani against ginseng.

10.
J Asian Nat Prod Res ; : 1-10, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38869219

ABSTRACT

Astragalus membranaceus is a traditional Chinese medicine with multiple pharmacological activities. Modern pharmacological research has found that Astragalus membranaceus extract has an inhibitory effect on α-glucosidase, however, which component can inhibit the activity of α-glucosidase and its degree of inhibition are unknown. To address this issue, this study used affinity ultrafiltration screening combined with UPLC-ESI-Orbitrap-MS technology to screen α-glucosidase inhibitors in Astragalus membranaceus. Using affinity ultrafiltration technology, we obtained the active components, and using UPLC-ESI-Orbitrap-MS technology, we quickly analyzed and identified them. As a result, a total of 8 ingredients were selected as α-glucosidase inhibitors.

11.
Se Pu ; 42(6): 590-598, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-38845520

ABSTRACT

Fluorescent whitening agents (FWAs) are dyes that emit visible blue or blue-purple fluorescence upon ultraviolet-light absorption. Taking advantage of light complementarity, FWAs can compensate for the yellow color of many substances to achieve a whitening effect; thus, they are used extensively in various applications. FWAs are generally stable, but their presence in the environment can lead to pollution and accumulation in the body through the food chain. Recent studies have revealed that some types of FWAs, such as coumarin-based FWAs, may exhibit photo-induced mutagenic effects that can trigger allergic reactions in humans and even pose carcinogenic risks. Hence, the development of an accurate and highly sensitive method for detecting FWAs in food-related samples is a crucial endeavor. Owing to the high polarity and structural similarity of FWAs, the accurate determination of these substances in complex food samples requires an analytical method that offers both efficient separation and sensitive detection. Capillary electrophoresis (CE) exhibits essential features such as high separation efficiency, short analysis times, very small sample injection requirements, minimal use of organic solvents, and simple operation. Thus, it is often used as an effective alternative to liquid chromatographic techniques. Over the past few decades, electrospray ionization mass spectrometry (ESI-MS) has been utilized as a highly sensitive and accurate detection method in numerous chemical analytical fields because it enables the analysis of molecular structures. By combining the high separation efficiency of CE with the high sensitivity of ESI-MS, a powerful tool for identifying and quantifying trace amounts of FWAs in food samples may be obtained. In this study, we present a method based on sheathless CE coupled with electrospray ionization tandem mass spectrometry (ESI-MS/MS) for the simultaneous detection of six trace FWAs in flour. In the proposed method, the CE separation device is directly coupled to the mass spectrometer through a sheathless interface without the need for a sheath liquid for electric contact, thereby avoiding the dilution of the analytes and improving detection sensitivity. Various conditions that could affect extraction recovery, separation efficiency, and detection sensitivity were evaluated and optimized. The FWAs were effectively extracted from the sample matrix with reduced matrix effects by ultrasonic-assisted extraction at a temperature of 30 ℃ for 20 min using CHCl3-MeOH (3∶2, v/v) as the extraction solvent. The extract was centrifuged, dried under N2, and reconstituted in CHCl3-MeOH (1∶4, v/v) for subsequent analysis. During the detection process, the CE device was coupled to the ESI-MS/MS instrument via a highly sensitive porous spray needle, which served as the sheathless electrospray interface. The target FWAs were scanned in positive-ion mode (ESI+) to ensure the stability and intensity of the obtained signals. Additionally, multiple-reaction monitoring (MRM) mode and MS/MS analysis were used to simultaneously quantify the six targets with high selectivity. The developed sheathless CE-ESI-MS/MS method detected the FWAs with high sensitivity over wide linear ranges with low method limits of detection (0.04-0.67 ng/g). The recoveries of the six target FWAs at three spiked levels were between 77.5% and 97.2%, with good interday (RSD≤11.5%) and intraday (RSD≤10.2%) precision. Analyses of the six target FWAs in eight commercial flour samples were performed using this method, and four positive samples were identified. These results demonstrate that the proposed CE-ESI-MS/MS method is a promising strategy for the determination of trace FWAs in complex food sample matrices with efficient separation and high sensitivity.


Subject(s)
Electrophoresis, Capillary , Flour , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry , Electrophoresis, Capillary/methods , Spectrometry, Mass, Electrospray Ionization/methods , Tandem Mass Spectrometry/methods , Flour/analysis , Fluorescent Dyes/chemistry , Food Contamination/analysis
12.
Methods Mol Biol ; 2820: 89-98, 2024.
Article in English | MEDLINE | ID: mdl-38941017

ABSTRACT

Fishery products are one of the main human nutritional sources, and due to the consumption increase, the quality of the derived products may be modified, during catching, technological processing, and storage. Detection and identification of pathogenic and spoilage microorganisms in fishery products is needed because the first may be involved in human diseases, while the second is responsible of significant economic losses. In this sense, liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) method and computational analysis of MS data are useful tools for characterizing and identifying different microorganisms and to develop promising strategies for food science investigations. Moreover, in the past decade, metaproteomic methodologies have progressed for the study of microorganisms isolated from their natural samples and independently of the culture restrictions. Metaproteomics enables assessment of proteins and pathways from individual members of the consortium. Metaproteomics can provide a detailed understanding of which organisms occupy specific metabolic niches, how they interact, and how they utilize nutrients, and these insights can be obtained directly from environmental samples.According to that, the sample preparation of the fishery product, the LC-ESI-MS/MS dedicated method, and the MS data analysis were described in the present chapter to obtain the metaproteomic analysis of the respective microbiomes or microbial communities.


Subject(s)
Microbiota , Proteomics , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry , Proteomics/methods , Tandem Mass Spectrometry/methods , Chromatography, Liquid/methods , Spectrometry, Mass, Electrospray Ionization/methods , Fisheries , Humans , Fish Products/microbiology , Fish Products/analysis , Animals , Food Microbiology
13.
Antioxidants (Basel) ; 13(6)2024 May 27.
Article in English | MEDLINE | ID: mdl-38929093

ABSTRACT

The search results offer comprehensive insights into the phenolic compounds, antioxidant, anti-inflammatory, cytotoxic effects, LC-MS/MS analysis, molecular docking, and MD simulation of the identified phenolic compounds in the Astragalus arpilobus subsp. hauarensis extract (AAH). The analysis revealed substantial levels of total phenolic content (TPC), with a measured value of 191 ± 0.03 mg GAE/g DM. This high TPC was primarily attributed to two key phenolic compounds: total flavonoid content (TFC) and total tannin content (TTC), quantified at 80.82 ± 0.02 mg QE/g DM and 51.91 ± 0.01 mg CE/g DM, respectively. LC-MS/MS analysis identified 28 phenolic compounds, with gallic acid, protocatechuic acid, catechin, and others. In the DPPH scavenging assay, the IC50 value for the extract was determined to be 19.44 ± 0.04 µg/mL, comparable to standard antioxidants like BHA, BHT, ascorbic acid, and α-tocopherol. Regarding anti-inflammatory activity, the extract demonstrated a notably lower IC50 value compared to both diclofenac and ketoprofen, with values of 35.73 µg/mL, 63.78 µg/mL, and 164.79 µg/mL, respectively. Cytotoxicity analysis revealed significant cytotoxicity of the A. arpilobus extract, with an LC50 value of 28.84 µg/mL, which exceeded that of potassium dichromate (15.73 µg/mL), indicating its potential as a safer alternative for various applications. Molecular docking studies have highlighted chrysin as a promising COX-2 inhibitor, with favorable binding energies and interactions. Molecular dynamic simulations further support chrysin's potential, showing stable interactions with COX-2, comparable to the reference ligand S58. Overall, the study underscores the pharmacological potential of A. arpilobus extract, particularly chrysin, as a source of bioactive compounds with antioxidant and anti-inflammatory properties. Further research is warranted to elucidate the therapeutic mechanisms and clinical implications of these natural compounds.

14.
J Ethnopharmacol ; 333: 118471, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38901680

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: In Brazil, the leaves of Hancornia speciosa Gomes have a traditional use for treating hypertension and diabetes. Experimental investigations have confirmed the anti-hypertensive and hypoglycemic properties of extracts derived from H. speciosa leaves across various experimental models. These biological activities have been mostly ascribed to its major constituent, bornesitol, along with other cyclitols, flavonoids, and cinnamic acid derivatives. AIM OF STUDY: The objective of this study was to characterize the chemical structure of proanthocyanidins from H. speciosa leaves and explore their in vitro activity on the release of pro-inflammatory cytokines and oxidative stress. MATERIAL AND METHODS: The acetone/water (7:3) extract of H. speciosa leaves (HsE) was prepared by percolation and fractionated by column chromatography over Sephadex LH20 to afford the proanthocyanidin-rich fraction HsFr3. Structure characterization of the proanthocyanidins constituents of HsFr3 was accomplished by extensive UPLC-DAD-ESI-MS/MS analysis coupled to degradation reaction through thiolysis. The effect of HsE, HsFr3, and bornesitol on the release of TNF, IL-1ß and IL-6 in LPS-stimulated THP-1 cells was assayed by ELISA. The effect of the samples on oxidative stress induced by LPS in THP-1 cell was investigated using a DCFH-DA fluorescent assay. RESULTS: Fractionation of HsE afforded HsFr3, primarily composed of six proanthocyanidins. Their chemical structures were characterized as dimeric (4 isomers) and trimeric (2 isomers) procyanidins C-glycosides of the B-type. HsE, HsFr3, and bornesitol reduced the release of pro-inflammatory cytokines TNF and IL-1ß in LPS-stimulated THP-1 cells, while no significant effect was observed on IL-6. All samples reduced the oxidative stress induced by LPS in THP-1 cells, whereas bornesitol, tested at lower concentrations, induced an equivalent response to HsE and HsFr3. CONCLUSIONS: Our findings provide additional evidence to support the ethnomedical use of H. speciosa in managing hypertension and hyperglycemia, due to the direct association of oxidative stress, TNF, and IL-1ß with the maintenance and aggravation of these deleterious conditions. The dimeric and trimeric procyanidin C-glycosides, characterized in the species, contribute to diminish oxidative stress and the release or pro-inflammatory cytokines, whereas bornesitol was shown to induce similar effect at lower concentrations.

15.
Metabolites ; 14(6)2024 May 30.
Article in English | MEDLINE | ID: mdl-38921451

ABSTRACT

The chemical profiles of both Zygophyllum album (Z. album) aerial parts and roots extracts were evaluated with LC-ESI-TOF-MS/MS analysis. Twenty-four compounds were detected. Among them, some are detected in both the aerial parts and the roots extracts, and others were detected in the aerial parts only. The detected compounds were mainly flavonoids, phenolic compounds, triterpenes and other miscellaneous compounds. Such compounds contribute to the diverse pharmacological activities elicited by the Z. album species. This study aimed to elucidate the antiepileptic effect of Z. album aerial parts and roots crude extracts against pentylenetetrazole (PTZ)-induced kindling in mice. Male albino mice were divided into four groups, eight animals each. All groups, except the control group, were kindled with PTZ (35 mg/kg i.p.), once every alternate day for a total of 15 injections. One group was left untreated (PTZ group). The remaining two groups were treated prior to PTZ injection with either Z. album aerial parts or roots crude extract (400 mg/kg, orally). Pretreatment with either extract significantly reduced the seizure scores, partially reversed the histological changes in the cerebral cortex and exerted antioxidant/anti-inflammatory efficacy evinced by elevated hippocampal total antioxidant capacity and SOD and catalase activities, parallel to the decrement in MDA content, iNOS activity and the TXNIB/NLRP3 axis with a subsequent decrease in caspase 1 activation and a release of IL-1ß and IL-18. Moreover, both Z. album extracts suppressed neuronal apoptosis via upregulating Bcl-2 expression and downregulating that of Bax, indicating their neuroprotective and antiepileptic potential. Importantly, the aerial parts extract elicited much more antiepileptic potential than the roots extract did.

16.
Mar Drugs ; 22(6)2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38921591

ABSTRACT

This study aimed to improve the conventional procedure of alginate isolation from the brown seaweed (Laminaria digitata L.) biomass and investigate the possibility of further valorization of the ethanolic fraction representing the byproduct after the degreasing and depigmentation of biomass. The acid treatment of biomass supported by ultrasound was modeled and optimized regarding the alginate yield using a response surface methodology based on the Box-Behnken design. A treatment time of 30 min, a liquid-to-solid ratio of 30 mL/g, and a treatment temperature of 47 °C were proposed as optimal conditions under which the alginate yield related to the mass of dry biomass was 30.9%. The use of ultrasonic radiation significantly reduced the time required for the acid treatment of biomass by about 4 to 24 times compared to other available conventional procedures. The isolated alginate had an M/G ratio of 1.08, which indicates a greater presence of M-blocks in its structure and the possibility of forming a soft and elastic hydrogel with its use. The chemical composition of the ethanolic fraction including total antioxidant content (293 mg gallic acid equivalent/g dry weight), total flavonoid content (14.9 mg rutin equivalent/g dry weight), contents of macroelements (the highest content of sodium, 106.59 mg/g dry weight), and microelement content (the highest content of boron, 198.84 mg/g dry weight) was determined, and the identification of bioactive compounds was carried out. The results of ultra high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry analysis confirmed the presence of 48 compounds, of which 41 compounds were identified as sugar alcohol, phenolic compounds, and lipids. According to the 2,2-diphenyl-1-picrylhydrazyl assay, the radical scavenging activity of the ethanolic fraction (the half-maximal inhibitory concentration of 42.84 ± 0.81 µg/mL) indicated its strong activity, which was almost the same as in the case of the positive control, synthetic antioxidant butylhydroxytoluene (the half-maximal inhibitory concentration of 36.61 ± 0.79 µg/mL). Gram-positive bacteria (Staphylococcus aureus, Enterococcus faecalis, and Bacillus cereus) were more sensitive to the ethanolic fraction compared to Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa, and Shigella sonnei). The obtained results indicated the possibility of the further use of the ethanolic fraction as a fertilizer for plant growth in different species and antifouling agents, applicable in aquaculture.


Subject(s)
Alginates , Antioxidants , Ethanol , Laminaria , Seaweed , Alginates/chemistry , Laminaria/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Ethanol/chemistry , Seaweed/chemistry , Biomass , Flavonoids/chemistry , Flavonoids/isolation & purification , Edible Seaweeds
17.
J Asian Nat Prod Res ; : 1-13, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38945168

ABSTRACT

Bamboo leaf extract (BLE) is a pale brown powder extracted from bamboo leaves, and it is listed in the Chinese Standard GB-2760 as a legal and safe food additive. The present study aims to identify and characterize the major flavonoids in BLE. The identification of major flavonoids was carried out using ultra performance liquid chromatography combined with electrospray ionization quadruple time-of-flight tandem mass spectrometry (HPLC/ESI-QTOF-MS/MS). A total of 31 flavonoid compounds were identified and tentatively characterized base on reference standards and MS dissociation mechanisms. HPLC/ESI-QTOF-MS can serve as an important analytical platform to identification structure of bamboo leaf flavonoids (BLF).

18.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38931391

ABSTRACT

Hymedesmiidae is one of the largest families of marine sponges and stands out as an exceptional source of variable metabolites with diverse biological activities. In this study, the ethyl acetate fraction (HE) of a Hymedesmia sp. marine sponge from the Red Sea, Egypt, was analyzed for the first time using Ultra-performance liquid chromatography electrospray ionization tandem mass spectrometry (UPLC-ESI-MS/MS) analysis. The analysis tentatively identified 29 compounds in this fraction, including the isolation and identification of six compounds (two pyrimidine nucleosides, one purine, and two pyrimidine bases in addition to one cerebroside) for the first time. The structures of the isolated compounds were established by 1D and 2D NMR (nuclear magnetic resonance), MS (mass spectrometry), and IR (infrared) spectroscopy. Furthermore, the cytotoxic, antioxidant, and antimicrobial activities of the ethyl acetate fraction were evaluated in vitro. The fraction exhibited strong DPPH scavenging activity with an IC50 of 78.7 µg/mL, compared to ascorbic acid as a positive control with an IC50 of 10.6 µg/mL. It also demonstrated significant cytotoxic activity with IC50 values of 13.5 µg/mL and 25.3 µg/mL against HCT-116 and HEP-2 cell lines, respectively, compared to vinblastine as a positive control with IC50 values of 2.34 µg/mL and 6.61 µg/mL against HCT-116 and HEP-2, respectively. Additionally, the ethyl acetate fraction displayed promising antibacterial activity against S. aureus with a MIC value of 62.5 µg/mL, compared to ciprofloxacin as a positive control with MIC values of 1.56 µg/mL for Gram-positive bacteria and 3.125 µg/mL for Gram-negative bacteria. It also exhibited activity against E. coli and P. aeruginosa with MIC values of 250 µg/mL and 500 µg/mL, respectively. Briefly, this is the first report on the biological activities and secondary metabolite content of the ethyl acetate fraction of Hymedesmia sp. marine sponge, emphasizing the potential for further research against resistant bacterial and fungal strains, as well as different cancer cell lines. The ethyl acetate fraction of Hymedesmia sp. is a promising source of safe and unique natural drugs with potential therapeutic and pharmaceutical benefits.

19.
BMC Complement Med Ther ; 24(1): 232, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877470

ABSTRACT

BACKGROUND: Alzheimer's disease is a neurodegenerative age-related disease that primarily affects the elderly population leading to progressive memory impairments and neural deficits. It is counted as a major cause of geriatric dependency and disability. The pathogenesis of Alzheimer's disease incidence is complex and involves various hypotheses, including the cholinergic hypothesis, deposition of ß-amyloid plaques, neuroinflammation, oxidative stress, and apoptosis. Conventional treatments such as donepezil aim to delay the symptoms but do not affect the progression of the disease and may cause serious side effects like hepatoxicity. The use of natural candidates for Alzheimer's disease treatment has drawn the attention of many researchers as it offers a multitargeted approach. METHODS: This current study investigates the metabolic profiles of total defatted methanolic extract of Vitex pubescens bark and its polar fractions, viz. ethyl acetate and n-butanol, using ultra-performance liquid chromatography-electrospray ionization-quadrupole time-of-flight tandem mass spectrometry(UPLC-ESI-QTOF/MS/MS) technique as well as evaluate the antioxidant using free radical scavenging assays, viz. DPPH and ABTS assays and in-vitro acetylcholinesterase inhibitory activities using Ellman's microplate assay. RESULTS: Metabolic profiling revealed a total of 71, 43, and 55 metabolites tentatively identified in the defatted methanolic extract, ethyl acetate, and n-butanol fractions, respectively. Phenolic acids were the most abundant class, viz. benzoic acids, and acyl quinic acid derivatives followed by flavonoids exemplified mainly by luteolin-C-glycosides and apigenin-C-glycosides. Quantification of the total phenolic and flavonoid contents in the total defatted methanolic extract confirmed its enrichment with phenolics and flavonoids equivalent to 138.61 ± 9.39 µg gallic acid/mg extract and 119.63 ± 4.62 µg rutin/mg extract, respectively. Moreover, the total defatted methanolic extract exhibited promising antioxidant activity confirmed through DPPH and ABTS assays with a 50% inhibitory concentration (IC50) value equivalent to 52.79 ± 2.16 µg/mL and 10.02 ± µg/mL, respectively. The inhibitory activity of acetylcholine esterase (AchE) was assessed using in-vitro Ellman's colorimetric assay, the total defatted methanolic extract, ethyl acetate, and n-butanol fractions exhibited IC50 values of 52.9, 15.1 and 108.8 µg/mL that they proved the significant inhibition of AchE activity. CONCLUSION: The results obtained herein unraveled the potential use of the total methanolic extract of Vitex pubescens bark and its polar fractions as natural candidates for controlling Alzheimer's disease progression.


Subject(s)
Antioxidants , Cholinesterase Inhibitors , Plant Bark , Plant Extracts , Tandem Mass Spectrometry , Vitex , Plant Extracts/pharmacology , Plant Extracts/chemistry , Antioxidants/pharmacology , Cholinesterase Inhibitors/pharmacology , Plant Bark/chemistry , Tandem Mass Spectrometry/methods , Vitex/chemistry , Chromatography, High Pressure Liquid , Spectrometry, Mass, Electrospray Ionization , Humans
20.
Carbohydr Res ; 542: 109193, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38908218

ABSTRACT

Feruloylated oligosaccharides (FOs) generated by decomposing plant hemicellulose, offer a wide range of potential applications in both the food and biomedical areas. As a graminaceous plant, bamboo is rich in hemicellulose. However, the structural composition and activity studies of FOs from it were rarely reported. In this study, FOs from Phyllostachys acuta (pFOs) obtained by enzymatic hydrolysis were isolated by AmberliteXAD-2 and C18 SPE columns. Then, pFOs were qualitatively and quantitatively analyzed by UPLC-ESI-MS/MS after labeled by 3-Amino-9-ethyl-carbazole (AEC), and the chemical antioxidant activity of pFOs and effects of pFOs on H2O2-induced oxidative damage were investigated. Finally, 14 of pFOs isomers were distinguished and identified, of which 10 did not contain hexoses and 4 did, and the three most abundant pFO structures were 12 (Iso 7, F1A1X2H2-AEC, 29.04 %), 11 (Iso 6, F1A1X1H2-AEC, 17.96 %), and 4 (Iso 3-1, F1A1X3-AEC, 15.57 %). The results of antioxidant studies showed that pFOs possessed certain reducing power, scavenging DPPH radicals, scavenging superoxide anion radicals, and scavenging hydroxyl radicals. Among them, the ability to clear DPPH radicals was particularly significant. pFOs significantly reduced the viability of RAW264.7 cells after H2O2 induction, whereas pFOs had a significant protective effect (p < 0.001). pFOs increased the viability of T-AOC and SOD enzymes in oxidatively damaged cells, as well as had a significant inhibition effect on ROS elevation (p < 0.001). This study lays the foundation for the structural analysis and antioxidant activity evaluation of bamboo-derived feruloyl oligosaccharides for their application in food and pharmaceutical fields.

SELECTION OF CITATIONS
SEARCH DETAIL
...