Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Phytomedicine ; 131: 155752, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38833947

ABSTRACT

BACKGROUND: Cutaneous squamous cell carcinoma (cSCC) is one of the most common skin cancers for which effective drugs are urgently needed. Echinatin, a natural compound extracted from Glycyrrhiza plants, has shown promising antitumour effects. However, the efficacy and the direct target of echinatin in cSCC remain unclear. PURPOSE: This study conducted a systematic investigation of the antitumour effects of echinatin on cSCC and the underlying mechanisms involved. STUDY DESIGN AND METHODS: Three cSCC cell lines, a xenograft model, and a UV-induced cSCC mouse model were used to investigate the potential protective effects of echinatin. The interactions between echinatin and glutathione S-transferase mu3 (GSTM3) and between echinatin and peroxiredoxin-2 (PRDX2) were evaluated by a proteome microarray assay, pull-down LC‒MS/MS analysis, surface plasmon resonance, and molecular docking. The potential mechanisms of GSTM3-mediated echinatin activity were analysed by using western blotting, lentivirus infection and small interfering RNA (siRNA) transfection. RESULTS: In this study, we found that echinatin inhibited the proliferation and migration of cSCC cells but had no cytotoxic effect on primary human keratinocytes. Furthermore, echinatin significantly inhibited tumour growth in vivo. Mechanistically, our data showed that echinatin could directly bind to GSTM3 and PRDX2. Notably, echinatin inhibited GSTM3 and PRDX2 levels by promoting their proteasomal degradation, which led to the disruption of ROS production. We then revealed that echinatin increased mitochondrial ROS production by inhibiting GSTM3. Moreover, echinatin triggered ferroptosis by inhibiting GSTM3-mediated ferroptosis negative regulation (FNR) proteins. In addition, echinatin regulated GSTM3-mediated ROS/MAPK signalling. CONCLUSION: Echinatin has good antitumour effects both in vitro and in vivo. Moreover, our findings indicate that GSTM3 and PRDX2 could function as viable targets of echinatin in cSCC. Consequently, echinatin represents a novel treatment for cSCC through the targeting of GSTM3-mediated ferroptosis.


Subject(s)
Carcinoma, Squamous Cell , Ferroptosis , Glutathione Transferase , Skin Neoplasms , Ferroptosis/drug effects , Animals , Skin Neoplasms/drug therapy , Humans , Carcinoma, Squamous Cell/drug therapy , Cell Line, Tumor , Mice , Glutathione Transferase/metabolism , Peroxiredoxins/metabolism , Antineoplastic Agents, Phytogenic/pharmacology , Mice, Inbred BALB C , Cell Proliferation/drug effects , Molecular Docking Simulation , Mice, Nude , Cell Movement/drug effects , Xenograft Model Antitumor Assays , Keratinocytes/drug effects , Chalcones
2.
Curr Issues Mol Biol ; 46(6): 5894-5908, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38921023

ABSTRACT

Lung cancer (LC) represents the leading cause of global cancer deaths, with cigarette smoking being considered a major risk factor. Nicotine is a major hazardous compound in cigarette smoke (CS), which stimulates LC progression and non-small cell lung cancer (NSCLC) specifically through activation of the nicotinic acetylcholine receptor (α7nAChR)-mediated cell-signaling pathways and molecular genes involved in proliferation, angiogenesis, and metastasis. Chalcones (CHs) and their derivatives are intermediate plant metabolites involved in flavonol biosynthesis. Isoliquiritigenin (ILTG), licochalcone A-E (LicoA-E), and echinatin (ECH) are the most common natural CHs isolated from the root of Glycyrrhiza (also known as licorice). In vitro and/or vivo experiments have shown that licorice CHs treatment exhibits a range of pharmacological effects, including antioxidant, anti-inflammatory, and anticancer effects. Despite advances in NSCLC treatment, the mechanisms of licorice CHs in nicotine-induced NSCLC treatment remain unknown. Therefore, the aim of this paper is to review experimental studies through the PubMed/Medline database that reveal the effects of licorice CHs and their potential mechanisms in nicotine-induced NSCLC treatment.

3.
Int Immunopharmacol ; 136: 112372, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38850784

ABSTRACT

Hypoxic ischemic encephalopathy (HIE) is a primary cause of neonatal death and disabilities. The pathogenetic process of HIE is closely associated with neuroinflammation. Therefore, targeting and suppressing inflammatory pathways presents a promising therapeutic strategy for the treatment of HIE. Echinatin is an active component of glycyrrhiza, with anti-inflammatory and anti-oxidative properties. It is commonly combined with other traditional Chinese herbs to exert heat-clearing and detoxifying effects. This study aimed to investigate the anti-inflammatory and neuroprotective effects of Echinatin in neonatal rats with hypoxic-ischemic brain damage, as well as in PC12 cells exposed to oxygen-glucose deprivation (OGD). In vivo, Echinatin effectively reduced cerebral edema and infarct volume, protected brain tissue morphology, improved long-term behavioral functions, and inhibited microglia activation. These effects were accompanied by the downregulation of inflammatory factors and pyroptosis markers. The RNA sequencing analysis revealed an enrichment of inflammatory genes in rats with hypoxic-ischemic brain damage, and Protein-protein interaction (PPI) network analysis identified TLR4, MyD88, and NF-κB as the key regulators. In vitro, Echinatin reduced the levels of TLR4 relevant proteins, inhibited nuclear translocation of NF-κB, reduced the expression of downstreams inflammatory cytokines and pyroptosis proteins, and prevented cell membrane destructions. These findings demonstrated that Echinatin could inhibit the TLR4/NF-κB pathway, thereby alleviating neuroinflammation and pyroptosis. This suggests that Echinatin could be a potential candidate for the treatment of HIE.


Subject(s)
Hypoxia-Ischemia, Brain , NF-kappa B , Neuroprotective Agents , Pyroptosis , Rats, Sprague-Dawley , Signal Transduction , Toll-Like Receptor 4 , Animals , Male , Rats , Animals, Newborn , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Brain/drug effects , Brain/pathology , Brain/metabolism , Disease Models, Animal , Hypoxia-Ischemia, Brain/drug therapy , Hypoxia-Ischemia, Brain/metabolism , Hypoxia-Ischemia, Brain/pathology , Inflammation/drug therapy , Microglia/drug effects , Microglia/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , NF-kappa B/metabolism , PC12 Cells , Pyroptosis/drug effects , Signal Transduction/drug effects , Toll-Like Receptor 4/metabolism , NF-kappa B p50 Subunit/metabolism
4.
J Med Virol ; 96(3): e29498, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38436148

ABSTRACT

The outbreak of coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a global threat to human health. In parallel with vaccines, efficacious antivirals are urgently needed. SARS-CoV-2 main protease (Mpro) is an attractive drug target for antiviral development owing to its key roles in virus replication and host immune evasion. Due to the limitations of currently available methods, the development of novel high-throughput screening assays is of the highest importance for the discovery of Mpro inhibitors. In this study, we first developed an improved fluorescence-based assay for rapid screening of Mpro inhibitors from an anti-infection compound library using a versatile dimerization-dependent red fluorescent protein (ddRFP) biosensor. Utilizing this assay, we identified MG-101 as a competitive Mpro inhibitor in vitro. Moreover, our results revealed that ensitrelvir is a potent Mpro inhibitor, but baicalein, chloroquine, ebselen, echinatin, and silibinin are not. Therefore, this robust ddRFP assay provides a faithful avenue for rapid screening and evaluation of Mpro inhibitors to fight against COVID-19.


Subject(s)
COVID-19 , Coronavirus 3C Proteases , Humans , SARS-CoV-2 , Protease Inhibitors/pharmacology , Antiviral Agents/pharmacology
5.
Aging (Albany NY) ; 16(5): 4670-4683, 2024 03 05.
Article in English | MEDLINE | ID: mdl-38446592

ABSTRACT

Surgery and anesthesia are vital medical interventions, but concerns over their potential cognitive side effects, particularly with the use of inhalational anesthetics like sevoflurane, have surfaced. This study delves into the neuroprotective potential of Echinatin against sevoflurane-induced neurotoxicity and the underlying mechanisms. Echinatin, a natural compound, has exhibited anti-inflammatory, antioxidant, and anticancer properties. Sevoflurane, while a popular anesthetic, is associated with perioperative neurocognitive disorders (PND) and neurotoxicity. Our investigation began with cellular models, where Echinatin demonstrated a significant reduction in sevoflurane-induced apoptosis. Mechanistically, we identified ferroptosis, a novel form of programmed cell death characterized by iron accumulation and lipid peroxidation, as a key player in sevoflurane-induced neuronal injury. Echinatin notably suppressed ferroptosis in sevoflurane-exposed cells, suggesting a pivotal role in neuroprotection. Expanding our research to a murine model, we observed perturbations in iron homeostasis, inflammatory cytokines, and antioxidants due to sevoflurane exposure. Echinatin treatment effectively restored iron balance, mitigated inflammation, and preserved antioxidant levels in vivo. Behavioral assessments using the Morris water maze further confirmed Echinatin's neuroprotective potential, as it ameliorated sevoflurane-induced spatial learning and memory impairments. In conclusion, our study unveils Echinatin as a promising candidate for mitigating sevoflurane-induced neurotoxicity. Through the regulation of ferroptosis, iron homeostasis, and inflammation, Echinatin demonstrates significant neuroprotection both in vitro and in vivo. These findings illuminate the potential for Echinatin to enhance the safety of surgical procedures involving sevoflurane anesthesia, minimizing the risk of cognitive deficits and neurotoxicity.


Subject(s)
Chalcones , Ferroptosis , Methyl Ethers , Neurotoxicity Syndromes , Rats , Animals , Mice , Sevoflurane/toxicity , Methyl Ethers/pharmacology , Methyl Ethers/toxicity , Antioxidants/pharmacology , Animals, Newborn , Rats, Sprague-Dawley , Homeostasis , Inflammation/metabolism , Hippocampus/metabolism
6.
Int J Mol Sci ; 25(4)2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38396931

ABSTRACT

A series of novel echinatin derivatives with 1,3,4-oxadiazole moieties were designed and synthesized. Most of the newly synthesized compounds exhibited moderate antiproliferative activity against the four cancer cell lines. Notably, Compound T4 demonstrated the most potent activity, with IC50 values ranging from 1.71 µM to 8.60 µM against the four cancer cell lines. Cell colony formation and wound healing assays demonstrated that T4 significantly inhibited cell proliferation and inhibited migration. We discovered that T4 exhibited moderate binding affinity with the c-KIT protein through reverse docking. The results were effectively validated through subsequent molecular docking and c-KIT enzyme activity assays. In addition, Western blot analysis revealed that T4 inhibits the phosphorylation of downstream proteins of c-KIT. The results provide valuable inspiration for exploring novel insights into the design of echinatin-related hybrids as well as their potential application as c-KIT inhibitors to enhance the efficacy of candidates.


Subject(s)
Antineoplastic Agents , Chalcones , Neoplasms , Oxadiazoles , Humans , Structure-Activity Relationship , Antineoplastic Agents/chemistry , Drug Screening Assays, Antitumor , Molecular Docking Simulation , Cell Proliferation , Molecular Structure , Cell Line, Tumor , Dose-Response Relationship, Drug
7.
Neurochem Int ; 175: 105676, 2024 May.
Article in English | MEDLINE | ID: mdl-38336256

ABSTRACT

BACKGROUND: Microglia-mediated neuroinflammation is the major contributor to the secondary brain injury of ischemic stroke. NLRP3 is one of the major components of ischemia-induced microglial activation. Echinatin, a chalcone found in licorice, was reported to have the activity of anti-inflammation and antioxidant. However, the relative study of echinatin in microglia or ischemic stroke is still unclear. METHODS: We intravenously injected echinatin or vehicle into adult ischemic male C57/BL6J mice induced by 60-min transient middle cerebral artery occlusion (tMCAO). The intraperitoneal injection was performed 4.5 h after reperfusion and then daily for 2 more days. Infarct size, blood brain barrier (BBB) leakage, neurobehavioral tests, and microglial-mediated inflammatory reaction were examined to assess the outcomes of echinatin treatment. LPS and LPS/ATP stimulation on primary microglia were used to explore the underlying anti-inflammatory mechanism of echinatin. RESULTS: Echinatin treatment efficiently decreased the infarct size, alleviated blood brain barrier (BBB) damage, suppressed microglial activation, reduced the production of inflammatory factors (e.g., IL-1ß, IL-6, IL-18, TNF-α, iNOS, COX2), and relieved post-stroke neurological defects in tMCAO mice. Mechanistically, we found that echinatin could suppress the NLRP3 assembly and reduce the production of inflammatory mediators independently of NF-κB and monoamine oxidase (MAO). CONCLUSION: Based on our study, we have identified echinatin as a promising therapeutic strategy for the treatment of ischemic stroke.


Subject(s)
Brain Injuries , Brain Ischemia , Chalcones , Ischemic Stroke , Reperfusion Injury , Mice , Male , Animals , NLR Family, Pyrin Domain-Containing 3 Protein , Neuroinflammatory Diseases , Lipopolysaccharides , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/complications , Infarction/complications , Infarction/drug therapy , Anti-Inflammatory Agents/therapeutic use , Brain Injuries/drug therapy , Ischemic Stroke/drug therapy , Brain Ischemia/drug therapy , Brain Ischemia/prevention & control , Brain Ischemia/complications , Microglia , Reperfusion Injury/drug therapy
8.
Front Microbiol ; 14: 1128144, 2023.
Article in English | MEDLINE | ID: mdl-37125192

ABSTRACT

Antimicrobial resistance (AMR) is a global, multifaceted crisis that poses significant challenges to the successful eradication of devastating pathogens, particularly methicillin-resistant Staphylococcus aureus (MRSA), a persistent superbug that causes devastating infections. The scarcity of new antibacterial drugs is obvious, and antivirulence strategies that reduce the pathogenicity of bacteria by weakening their virulence have become the subject of intense investigation. Alpha-hemolysin (Hla), a cytolytic pore-forming toxin, has a pivotal role in S. aureus pathogenesis. Here, we demonstrated that echinatin, a natural compound isolated from licorice, effectively inhibited the hemolytic activity of MRSA at 32 µg/mL. In addition, echinatin did not interfere with bacterial growth and had no significant cytotoxicity at the inhibitory concentration of S. aureus hemolysis. Heptamer formation tightly correlated with Hla-mediated cell invasion, whereas echinatin did not affect deoxycholic acid-induced oligomerization of Hla. Echinatin affected hemolytic activity through indirect binding to Hla as confirmed by the neutralization assay and cellular thermal shift assay (CETSA). Furthermore, qRT-PCR and western blot analyses revealed that echinatin suppressed Hla expression at both the mRNA and protein levels as well as the transcript levels of Agr quorum-sensing system-related genes. Additionally, when echinatin was added to a coculture system of A549 cells and S. aureus, it significantly reduced cell damage. Importantly, echinatin exhibited a significant therapeutic effect in an MRSA-induced mouse pneumonia model. In conclusion, the present findings demonstrated that echinatin significantly inhibits the hemolysin effect and may be a potential candidate compound for combating drug-resistant MRSA infections.

9.
Pharmacol Res ; 191: 106760, 2023 05.
Article in English | MEDLINE | ID: mdl-37023991

ABSTRACT

Osteosarcoma (OS) is a highly aggressive malignant bone tumor that mainly occurs in adolescents. At present, chemotherapy is the most commonly used method in clinical practice to treat OS. However, due to drug resistance, toxicity and long-term side effects, chemotherapy can't always provide sufficient benefits for OS patients, especially those with metastasis and recurrence. Natural products have long been an excellent source of anti-tumor drug development. In the current study, we evaluated the anti-OS activity of Echinatin (Ecn), a natural active component from the roots and rhizomes of licorice, and explored the possible mechanism. We found that Ecn inhibited the proliferation of human OS cells and blocked cell cycle at S phase. In addition, Ecn suppressed the migration and invasion, while induced the apoptosis of human OS cells. However, Ecn had less cytotoxicity against normal cells. Moreover, Ecn inhibited the xenograft tumor growth of OS cells in vivo. Mechanistically, Ecn inactivated Wnt/ß-catenin signaling pathway while activated p38 signaling pathway. ß-catenin over-expression and the p38 inhibitor SB203580 both attenuated the inhibitory effect of Ecn on OS cells. Notably, we demonstrated that Ecn exhibited synergistic inhibitory effect with cisplatin (DDP) on OS cells in vitro and in vivo. Therefore, our results suggest that Ecn may exert anti-OS effects at least partly through regulating Wnt/ß-catenin and p38 signaling pathways. Most meaningfully, the results obtained suggest a potential strategy to improve the DDP-induced tumor-killing effect on OS cells by combining with Ecn.


Subject(s)
Bone Neoplasms , Osteosarcoma , Adolescent , Humans , beta Catenin/metabolism , Cell Proliferation , Osteosarcoma/metabolism , Wnt Signaling Pathway , Apoptosis , Bone Neoplasms/metabolism , Cell Line, Tumor , Cell Movement
10.
Phytother Res ; 37(2): 563-577, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36184899

ABSTRACT

Colorectal cancer (CRC) is a very common and deadly cancer worldwide, and oxaliplatin is used as first-line chemotherapy. However, resistance usually develops, limiting treatment. Echinatin (Ech) is the main component of licorice and exhibits various therapeutic effects on inflammation-mediated diseases and cancer, ischemia/reperfusion, and liver injuries. The present study elucidated the underlying molecular mechanism of Ech-induced apoptosis in both oxaliplatin-sensitive (HT116 and HT29) and -resistant (HCT116-OxR and HT29-OxR) CRC cells. To evaluate the antiproliferative activities of Ech, we performed MTT and soft agar assays. Ech reduced viability, colony size, and numbers of CRC cells. The underlying molecular mechanisms were explored by various flow cytometry analyses. Ech-induced annexin-V stained cells, reactive oxygen species (ROS) generation, cell cycle arrest, JNK/p38 MAPK activation, endoplasmic reticulum (ER) stress, mitochondrial membrane potential depolarization, and multi-caspase activity. In addition apoptosis-, cell cycle-, and ER stress-related protein levels were confirmed by western blotting. Moreover, we verified ROS-mediated cell death by treatment with inhibitors such as N-acetyl-L-cysteine, SP600125, and SB203580. Taken together, Ech exhibits anticancer activity in oxaliplatin-sensitive and -resistant CRCs by inducing ROS-mediated apoptosis through the JNK/p38 MAPK signaling pathway. This is the first study to show that Ech has the potential to treat drug-resistant CRC, providing new directions for therapeutic strategies targeting drug-resistant CRC.


Subject(s)
Colorectal Neoplasms , MAP Kinase Signaling System , Humans , Reactive Oxygen Species/metabolism , Oxaliplatin/pharmacology , Cell Line, Tumor , Apoptosis , p38 Mitogen-Activated Protein Kinases/metabolism , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism
11.
Chinese Pharmacological Bulletin ; (12): 882-889, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1013801

ABSTRACT

Aim To investigate the effect of echinatin on the non-alcoholic fatty liver disease model of free fatty acids ( FFA) -induced HepG2 cells and its mechanism. Methods The experimental groups were divided into control group, FFA model group and echinatin group (0.3 , 1, 3 μmol • L

12.
Zhongguo Zhong Yao Za Zhi ; 47(22): 6146-6154, 2022 Nov.
Article in Chinese | MEDLINE | ID: mdl-36471939

ABSTRACT

Since exploding rates of modern mental diseases, application of antidepressants has increased. Worryingly, the antidepressant-induced liver injury has gradually become a serious health burden. Furthermore, since most of the knowledge about antidepressant hepatotoxicity are from pharmacovigilance and clinical case reports and lack of observational studies, the underlying mechanisms are poorly understood and there is a lack of efficient treatment strategies. In this study, antidepressant paroxetine directly triggered inflammasome activation evidenced by caspase-1 activation and downstream effector cytokines interleukin(IL)-1ß secretion. The pretreatment of echinatin, a bioactive component of licorice, completely blocked the activation. This study also found that echinatin effectively inhibited the production of inflammasome-independent tumor necrosis factor α(TNF)-α induced by paroxetine. Mechanistically, the accumulation of mitochondrial reactive oxygen species(mtROS) was a key upstream event of paroxetine-induced inflammasome activation, which was dramatically inhibited by echinatin. In the lipopolysaccharide(LPS)-mediated idiosyncratic drug-induced liver injury(IDILI) model, the combination of LPS and paroxetine triggered aberrant activation of the inflammasome to induce idiosyncratic hepatotoxicity, which was reversed by echinatin pretreatment. Notably, this study also found that various bioactive components of licorice had an inhibitory effect on paroxetine-triggered inflammasome activation. Meanwhile, multiple antidepressant-induced aberrant activation of the inflammasome could be completely blocked by echinatin pretreatment. In conclusion, this study provides a novel insight for mechanism of antidepressant-induced liver injury and a new strategy for the treatment of antidepressant-induced hepatotoxicity.


Subject(s)
Antidepressive Agents , Chalcones , Chemical and Drug Induced Liver Injury, Chronic , Glycyrrhiza , Paroxetine , Animals , Humans , Mice , Antidepressive Agents/adverse effects , Chemical and Drug Induced Liver Injury, Chronic/prevention & control , Glycyrrhiza/chemistry , Inflammasomes/drug effects , Interleukin-1beta/metabolism , Lipopolysaccharides/toxicity , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Paroxetine/adverse effects , Tumor Necrosis Factor-alpha , Chalcones/pharmacology , Chalcones/therapeutic use
13.
Front Microbiol ; 13: 1003692, 2022.
Article in English | MEDLINE | ID: mdl-36386683

ABSTRACT

A new antibacterial strategy based on inhibiting bacterial quorum sensing (QS) has emerged as a promising method of attenuating bacterial pathogenicity and preventing bacterial resistance to antibiotics. In this study, we screened Echinatin (Ech) with high-efficiency anti-QS from 13 flavonoids through the AI-2 bioluminescence assay. Additionally, crystal violet (CV) staining combined with confocal laser scanning microscopy (CLSM) was used to evaluate the effect of anti-biofilm against Escherichia coli (E. coli). Further, the antibacterial synergistic effect of Ech and marketed antibiotics were measured by broth dilution and Alamar Blue Assay. It was found that Ech interfered with the phenotype of QS, including biofilm formation, exopolysaccharide (EPS) production, and motility, without affecting bacterial growth and metabolic activity. Moreover, qRT-PCR exhibited that Ech significantly reduced the expression of QS-regulated genes (luxS, pfs, lsrB, lsrK, lsrR, flhC, flhD, fliC, csgD, and stx2). More important, Ech with currently marketed colistin antibiotics (including colistin B and colistin E) showed significantly synergistically increased antibacterial activity in overcoming antibiotic resistance of E. coli. In summary, these results suggested the potent anti-QS and novel antibacterial synergist candidate of Ech for treating E. coli infections.

14.
Front Plant Sci ; 13: 932594, 2022.
Article in English | MEDLINE | ID: mdl-36061790

ABSTRACT

Echinatin and licochalcone A (LCA) are valuable chalcones preferentially accumulated in roots and rhizomes of licorice (Glycyrrhiza inflata). The licorice chalcones (licochalcones) are valued for their anti-inflammatory, antimicrobial, and antioxidant properties and have been widely used in cosmetic, pharmaceutical, and food industries. However, echinatin and LCA are accumulated in low quantities, and the biosynthesis and regulation of licochalcones have not been fully elucidated. In this study, we explored the potential of a R2R3-MYB transcription factor (TF) AtMYB12, a known regulator of flavonoid biosynthesis in Arabidopsis, for metabolic engineering of the bioactive flavonoids in G. inflata hairy roots. Overexpression of AtMYB12 in the hairy roots greatly enhanced the production of total flavonoids (threefold), echinatin (twofold), and LCA (fivefold). RNA-seq analysis of AtMYB12-overexpressing hairy roots revealed that expression of phenylpropanoid/flavonoid pathway genes, such as phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), and flavanone 3'-hydroxylase (F3'H), is significantly induced compared to the control. Transient promoter activity assay indicated that AtMYB12 activates the GiCHS1 promoter in plant cells, and mutation to the MYB-binding motif in the GiCHS1 promoter abolished activation. In addition, transcriptomic analysis revealed that AtMYB12 overexpression reprograms carbohydrate metabolism likely to increase carbon flux into flavonoid biosynthesis. Further, AtMYB12 activated the biotic defense pathways possibly by activating the salicylic acid and jasmonic acid signaling, as well as by upregulating WRKY TFs. The transcriptome of AtMYB12-overexpressing hairy roots serves as a valuable source in the identification of potential candidate genes involved in LCA biosynthesis. Taken together, our findings suggest that AtMYB12 is an effective gene for metabolic engineering of valuable bioactive flavonoids in plants.

15.
Adv Clin Exp Med ; 30(11): 1195-1203, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34510844

ABSTRACT

BACKGROUND: Oxidative stress has been reported to be an early factor in the development of cataracts. Echinatin (Ech) is an active ingredient of licorice that exhibits antioxidant effects. OBJECTIVES: To investigate the effects of Ech on oxidative stress-induced lens epithelial cell (LEC) damage. MATERIAL AND METHODS: Human lens epithelial B3 cells (HLECs) were exposed to hydrogen peroxide (H2O2) and were pretreated with or without Ech. For rescue experiments, ML385, an inhibitor of the Nrf2 pathway, was added into the medium. RESULTS: Echinatin reversed the H2O2-induced reduction of cell viability in B3 cells. Additionally, H2O2 induced oxidative stress, evidenced by an increase of reactive oxygen species (ROS) and malondialdehyde (MDA) levels, and a decrease in superoxide dismutase (SOD) and catalase (CAT) levels, which could be abolished by Ech. Echinatin treatment also reduced HLEC apoptosis induced by H2O2. In addition, Ech pretreatment promoted Bcl-2 expression, and suppressed Bax and caspase-3 expression levels, in H2O2-treated B3 cells. Moreover, H2O2 significantly reduced Nrf2 nuclear localization, as well as HO-1 and NQO1 expression, which could be reversed by Ech. Inhibition of Nrf2 by ML385 aggravated H2O2-induced oxidative damage and apoptosis in HLECs, and the protective effects of Ech on H2O2-induced oxidative damage and apoptosis could be restored by ML385. CONCLUSIONS: Echinatin mitigates H2O2-induced oxidative damage and apoptosis in HLECs via the Nrf2/HO-1 pathway, suggesting that Ech may be a potential drug for the treatment of cataracts.


Subject(s)
Hydrogen Peroxide , NF-E2-Related Factor 2 , Antioxidants/pharmacology , Apoptosis , Cell Survival , Chalcones , Epithelial Cells/metabolism , Heme Oxygenase-1/metabolism , Hydrogen Peroxide/toxicity , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Reactive Oxygen Species
16.
Front Pharmacol ; 11: 593225, 2020.
Article in English | MEDLINE | ID: mdl-33584269

ABSTRACT

Background: Echinatin (Ech) has been reported to exert antioxidant and anti-inflammatory activities. In this study, we aimed to characterize the functional role of Ech in myocardial ischemic/reperfusion (MI/R) injury and elucidate its underlying mechanism of action. Method: We established in vivo and in vitro models of MI/R injury to determine the effect of Ech on MI/R injury. Gene expression was examined using quantitative real-time polymerase chain reaction and western blotting. Myocardial infarction was assessed using tetrazolium chloride staining and the degree of myocardial injury was evaluated by measuring lactate dehydrogenase (LDH) and creatine kinase-myocardial band (CK-MB) levels. Cell apoptosis was detected using the terminal deoxynucleotidyl transfer-mediated dUTP nick end-labeling (TUNEL) assay. The viability of H9c2 cells was determined using Cell Counting Kit-8 assay. Results: MI/R induced myocardial infarction, which was mitigated by Ech treatment. Moreover, Ech treatment resulted in a marked decline of LDH and CK-MB levels in the serum and myocardium of MI/R rats. Ech treatment also restrained cardiomyocyte apoptosis in vivo and in vitro, as evidenced by reduction in LDH release, the number of TUNEL-positive cells, and caspase-3 activity. Furthermore, Ech administration inhibited MI/R-induced activation of Hippo/Yes-associated protein signaling in vivo and in vitro, as indicated by inhibition of mammalian sterile 20-like protein kinase 1, large tumor suppressor one, and YAP phosphorylation and promotion of YAP nuclear translocation. However, silencing of YAP counteracted the protective effect of Ech on hypoxia/reoxygenation-induced myocardial injury in vitro. Conclusion: Ech exerted its protective effect against MI/R injury at least partially by suppressing the Hippo/YAP signaling pathway, providing novel insights into the remission of MI/R injury.

17.
Phytother Res ; 34(2): 388-400, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31698509

ABSTRACT

Patients with non-small-cell lung cancer (NSCLC) containing epidermal growth factor receptor (EGFR) amplification or sensitive mutations initially respond to tyrosine kinase inhibitor gefitinib; however, the treatment is less effective over time. Gefitinib resistance mechanisms include MET gene amplification. A therapeutic strategy targeting MET as well as EGFR can overcome resistance to gefitinib. In the present study we identified Echinatin (Ecn), a characteristic chalcone in licorice, which inhibited both EGFR and MET and strongly altered NSCLC cell growth. The antitumor efficacy of Ecn against gefitinib-sensitive or -resistant NSCLC cells with EGFR mutations and MET amplification was confirmed by suppressing cell proliferation and anchorage-independent colony growth. During the targeting of EGFR and MET, Ecn significantly blocked the kinase activity, which was validated with competitive ATP binding. Inhibition of EGFR and MET by Ecn decreases the phosphorylation of downstream target proteins ERBB3, AKT and ERK compared with total protein expression or control. Ecn induced the G2/M cell cycle arrest, and apoptosis via the intrinsic pathway of caspase-dependent activation. Ecn induced ROS production and GRP78, CHOP, DR5 and DR4 expression as well as depolarized the mitochondria membrane potential. Therefore, our results suggest that Ecn is a promising therapeutic agent in NSCLC therapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung/pathology , Chalcones/pharmacology , Gefitinib/pharmacology , Lung Neoplasms/pathology , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Apoptosis/drug effects , Carcinoma, Non-Small-Cell Lung/drug therapy , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Resistance, Neoplasm , Endoplasmic Reticulum Chaperone BiP , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , Glycyrrhiza/chemistry , Humans , Lung Neoplasms/drug therapy , Molecular Docking Simulation , Plant Roots/chemistry , Protein Kinase Inhibitors , Proto-Oncogene Proteins c-met/genetics , Quinazolines/pharmacology
18.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-846694

ABSTRACT

Objective: A method was established to obtain fingerprint and determination of six components in Glycyrrhizae Radix et Rhizoma Pieces (GRRP) based on HPLC-PDA, and samples with four kinds of softening methods (showering moistening, steaming, 70 ℃ decompression steaming, 85 ℃ decompression steaming) were analyzed. Methods: The content of total flavonoids and total saponins was determined by ultraviolet spectrophotometry with liquiritin and glycyrrhizic acid as reference materials. Simultaneous determination of six components of liquiritin, ononin, isoliquiritin, glycyrrhizin, echinatin, glycyrrhizic acid was performed based on HPLC. Changes of the components content in the samples which treated by different softening methods were compared. The similarity evaluation of samples with different softening methods was carried out by the chromatographic fingerprint similarity evaluation system of traditional Chinese medicine, and cluster analysis was also carried out. Results: The results showed that the content of total flavonoids and total saponins in untreated samples was the highest, and the content of total flavonoids and total saponins in samples treated by showering moistening was the lowest. The three treatment methods of atmospheric pressure steaming, steaming decompression at 70 ℃ and steaming decompression at 85 ℃ had little effect on the samples. The content determination showed that the content of isoliquiritin was decreased significantly after softening treatment. The difference among the different softening treatment groups was not significant. The samples with different softening methods of the three batches of samples were grouped together with their raw products. Different softening methods had no significant difference in the composition of the medicinal herbs. Conclusion: The established method can quickly and accurately determine the six components, and in particular, the content of isoglycyrrhizin should be monitored. Combining production efficiency, production cost and quality evaluation, steaming is the most feasible in the production process. This study provided theoretical guidance for the large-scale production of softening, which was conducive to further standardizing the production process of GRRP.

19.
Molecules ; 24(22)2019 Nov 09.
Article in English | MEDLINE | ID: mdl-31717502

ABSTRACT

Esophageal squamous cell carcinoma (ESCC) is a poor prognostic cancer with a low five-year survival rate. Echinatin (Ech) is a retrochalone from licorice. It has been used as a herbal medicine due to its anti-inflammatory and anti-oxidative effects. However, its anticancer activity or underlying mechanism has not been elucidated yet. Thus, the objective of this study was to investigate the anti-tumor activity of Ech on ESCC by inducing ROS and ER stress dependent apoptosis. Ech inhibited ESCC cell growth in anchorage-dependent and independent analysis. Treatment with Ech induced G2/M phase of cell cycle and apoptosis of ESCC cells. It also regulated their related protein markers including p21, p27, cyclin B1, and cdc2. Ech also led to phosphorylation of JNK and p38. Regarding ROS and ER stress formation associated with apoptosis, we found that Ech increased ROS production, whereas its increase was diminished by NAC treatment. In addition, ER stress proteins were induced by treatment with Ech. Moreover, Ech enhanced MMP dysfunction and caspases activity. Furthermore, it regulated related biomarkers. Taken together, our results suggest that Ech can induce apoptosis in human ESCC cells via ROS/ER stress generation and p38 MAPK/JNK activation.


Subject(s)
Apoptosis/genetics , Chalcones/pharmacology , Endoplasmic Reticulum Stress/drug effects , Esophageal Neoplasms/drug therapy , Esophageal Squamous Cell Carcinoma/drug therapy , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Esophageal Neoplasms/metabolism , Esophageal Squamous Cell Carcinoma/metabolism , G2 Phase Cell Cycle Checkpoints/drug effects , Humans , JNK Mitogen-Activated Protein Kinases/metabolism , MAP Kinase Signaling System/drug effects , Phosphorylation/drug effects , p38 Mitogen-Activated Protein Kinases/metabolism
20.
J Pharm Biomed Anal ; 168: 133-137, 2019 May 10.
Article in English | MEDLINE | ID: mdl-30807917

ABSTRACT

Echinatin, one of the bioactive components of licorice, has exhibited diverse therapeutic effects, including anti-inflammatory and anti-oxidant effects. However, determination and pharmacokinetic study of echinatin in biomatrices have not been conducted. In this study, a simple and fast ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for the quantification of echinatin in rat plasma was developed, fully validated and subsequently well used in a pharmacokinetic research of echinatin after oral and intravenous administration. Rat plasma samples were operated with a simple one-step acetonitrile precipitation, and licochalcone A was used as the internal standard. Chromatographic separation of echinatin was conducted using an UPLC BEN C18 column and a gradient water (containing 0.1% formic acid)-acetonitrile mobile phase. A Waters XEVO TQS-micro Triple-Quadrupole Tandem Mass Spectrometer operating in positive electrospray ionization mode was used for detection. The approach was proved to be linear in the range of 1-1000 ng/mL and well satisfy the requirements from the guidelines of FDA. A pharmacokinetic study of echinatin was carried out by the new developed method following intravenous and oral administration to adult male Sprague-Dawley rats. Echinatin was demonstrated to be quickly absorbed and eliminated and extensively distributed with an absolute bioavailability of approximately 6.81%.


Subject(s)
Antioxidants/analysis , Chalcones/analysis , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Administration, Intravenous , Administration, Oral , Animals , Antioxidants/administration & dosage , Antioxidants/pharmacokinetics , Biological Availability , Chalcones/administration & dosage , Chalcones/pharmacokinetics , Male , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...