ABSTRACT
The Rio Pearlfish, Nematolebias whitei, is a bi-annual killifish species inhabiting seasonal pools in the Rio de Janeiro region of Brazil that dry twice per year. Embryos enter dormant diapause stages in the soil, waiting for the inundation of the habitat which triggers hatching and commencement of a new life cycle. Rio Pearlfish represents a convergent, independent origin of annualism from other emerging killifish model species. While some transcriptomic datasets are available for Rio Pearlfish, thus far, a sequenced genome has been unavailable. Here, we present a high quality, 1.2 Gb chromosome-level genome assembly, genome annotations, and a comparative genomic investigation of the Rio Pearlfish as representative of a vertebrate clade that evolved environmentally cued hatching. We show conservation of 3D genome structure across teleost fish evolution, developmental stages, tissues, and cell types. Our analysis of mobile DNA shows that Rio Pearlfish, like other annual killifishes, possesses an expanded transposable element profile with implications for rapid aging and adaptation to harsh conditions. We use the Rio Pearlfish genome to identify its hatching enzyme gene repertoire and the location of the hatching gland, a key first step in understanding the developmental genetic control of hatching. The Rio Pearlfish genome expands the comparative genomic toolkit available to study convergent origins of seasonal life histories, diapause, and rapid aging phenotypes. We present the first set of genomic resources for this emerging model organism, critical for future functional genetic, and multiomic explorations of "Eco-Evo-Devo" phenotypes of resilience and adaptation to extreme environments.
Subject(s)
Cyprinodontiformes , Fundulidae , Animals , Biological Evolution , Brazil , Extreme Environments , GenomeABSTRACT
A number of strategies have emerged that appear to relate to the evolution of mechanisms for sexual determination in vertebrates, among which are genetic sex determination caused by sex chromosomes and environmental sex determination, where environmental factors influence the phenotype of the sex of an individual. Within the reptile group, some orders such as: Chelonia, Crocodylia, Squamata and Rhynchocephalia, manifest one of the most intriguing and exciting environmental sexual determination mechanisms that exists, comprising temperature-dependent sex determination (TSD), where the temperature of incubation that the embryo experiences during its development is fundamental to establishing the sex of the individual. This makes them an excellent model for the study of sexual determination at the molecular, cellular and physiological level, as well as in terms of their implications at an evolutionary and ecological level. There are different hypotheses concerning how this process is triggered and this review aims to describe any new contributions to particular TSD hypotheses, analyzing them from the "eco-evo-devo" perspective.
Subject(s)
Reptiles/physiology , Sex Determination Processes , Temperature , Animals , Gonadal Steroid Hormones/physiology , Gonads/physiology , Hypothalamo-Hypophyseal System , Phenotype , Sex Determination Processes/geneticsABSTRACT
Embryos of annual killifish diapause in soil egg banks while ponds are dry. Their rates of development and survival in different developmental stages determine the numbers and stages of embryos at rewetting. In the Argentinean pearlfish Austrolebias bellottii, we investigated plasticity for desiccation in such embryonal life history components across phases of mild desiccation and rewetting and also effects of life history on hatching. In comparison with nonannuals, our data suggest that incidences of diapause have become relatively independent of the occurrence of desiccation, as if they have become genetically assimilated. We found limited survival effects of desiccation, limited developmental delays, and an acceleration of development into the prehatching stage. This response can be adaptive when desiccation informs that an opportunity to hatch approaches. Embryos arrest development in the prehatching stage (diapause DIII) or in the dispersed-cell phase (diapause DI). Parental pair variation in rates of development and survival in the earliest developmental stages affects the fraction of embryos that are in DI at rewetting and the number surviving. Given such effects on life history fitness components, rates during embryonal development seem "visible" to selection and the developmental system can thus adapt when pair variation contains a heritable component. In agreement with expectations for the presence of diversified bet-hedging, some embryos hatched and others not in over half of the clutches with several developed embryos at the moment of rewetting. Hatching probabilities increased for eggs produced later in the experiment, and they increased when embryos were rewetted a second time after two months. This response is opposite of what is expected when age-dependent hatching would be adapted to exploit opportunities for completing another generation before the dry season.