ABSTRACT
Coastal and estuarine systems play an important role in the maintenance of marine biodiversity, providing nursery, feeding, developmental and reproductive areas for terrestrial and aquatic species. The Fundão dam collapse is considered one of the biggest environmental disasters in Brazil, causing great social, economic and ecological damage in the affected areas. In our study, we used beta diversity and its components as a tool to monitor the spatio-temporal variation of fish larvae in four marine areas adjacent to the Doce River. The results show that the four areas undergo different spatio-temporal dynamics, with the composition of fish larvae in the Doce being simplified in the last years after the dam burst, compared to the other adjacent marine areas. In addition, turbidity is an important factor that has caused the homogenization of the larval composition of the Doce, demonstrating that mud resuspension events can cause a decrease in diversity and also suggesting the toxicity of the mud composition. The change from negative to positive additive and colonizing components in recent years suggests a slight recovery of diversity in the Doce compared to other marine areas. Finally, we have shown that some species may be tolerant to the impact, but with probable behavioral, energetic and physiological costs, which justifies the constant monitoring of these areas.
Subject(s)
Biodiversity , Environmental Monitoring , Fishes , Larva , Animals , Brazil , Larva/growth & development , RiversABSTRACT
In October 2023, several colonies of an alien soft coral species were reported on shallow reefs in southwest Puerto Rico. The soft coral was identified as a xeniid octocoral (species undetermined), resembling the octocoral Unomia stolonifera, which has invaded and overgrown reefs in Venezuela in recent years. To conclusively characterize the species of the invading xeniid, we employed multilocus barcoding targeting four genes (ND2, mtMutS, COI, and 28S) of three separate colonies across three locations in southwest Puerto Rico. Sequence comparisons with xeniid sequences from GenBank, including those from the genera Xenia and Unomia, indicated a 100% sequence identity (>3,000 bp combined) with the species Xenia umbellata (Octocorallia : Malacalcyonacea : Xeniidae). Xenia umbellata is native to the Red Sea and to our knowledge, this represents the first confirmed case of this species as an invader on Caribbean reefs. Similar to U. stolonifera, X. umbellata is well known for its ability to rapidly overgrow substrate as well as tolerate environmental extremes. In addition, X. umbellata has recently been proposed as a model system for tissue regeneration having the ability to regenerate completely from a single tentacle. These characteristics greatly amplify X. umbellata's potential to adversely affect any reef it invades. Our findings necessitate continued collaborative action between local management agencies and stakeholders in Puerto Rico, as well as neighboring islands, to monitor and control this invasion prior to significant ecological perturbation.
ABSTRACT
The genus Senecio is distributed worldwide, being responsible of poisoning in livestock and humans. Many species of Senecio have high invasion and expansion capacity, highly competitive with agricultural and native plant species, causing ecological damage. Particularly in Uruguay, poisoning by Senecio have grown exponentially to reach epidemic proportions. Herein we describe Seneciosis as a re-emerging and expanding epidemic disease affecting cattle, by describing clinico-pathological, epidemiological and genetic variation of species involved, as well as an experimental intoxication with Senecio oxyphyllus. For this, a study was carried out on 28 cattle farms in Eastern Uruguay, with history of seneciosis from 2010 to 2016. Plants of fifty populations of Senecio were sampled, in 2015 and 2016, for identification, analysis of alkaloids and study of genetic variation. In turn, post-mortem examination was performed in cattle of natural and an experimental case to confirm the intoxication, showing microscopic characteristic lesions (hepatomegalocytosis, diffuse fibrosis and ductal reaction). Four species of Senecio were identified: S. oxyphyllus, S. madagascariensis, S. selloi and S. brasiliensis. In the genetic study, 489 molecular markers of amplified sequence-related polymorphisms (SRAP), associated with species and pasture, were used for genetic variation analysis. There was no statistically significant association between genetic variation determined by molecular markers and population (specimens of same species collected from the same farm), botanically determined species, or geographical origin. The increase of seneciosis in cattle in the last years, the presence of species not identified to the moment with implication in the poisoning outbreaks and expansion of these plants shows that the disease is in an epidemic growing active stage. In turn, the experimental poisoning with S. oxyphyllus confirms its chronic hepatotoxic effect, being an emergent species for the region, of high distribution and toxic risk. This latter turned out the main Senecio species involved. This case of expansion of harmful plant for animal production and desirable plant species, can be useful as a model of ecopathological characterization, which is likely to occur with other toxic plants in different geographical ranges globally.
Subject(s)
Cattle Diseases/epidemiology , Plant Poisoning/veterinary , Senecio , Alkaloids , Animals , Cattle , Health Status , Introduced Species , Liver , Plant Poisoning/epidemiology , Plants, Toxic , Surveys and Questionnaires , Uruguay/epidemiologyABSTRACT
In species-rich tropical forests, effective biodiversity management demands measures of progress, yet budgetary limitations typically constrain capacity of decision makers to assess response of biological communities to habitat change. One approach is to identify ecological-disturbance indicator species (EDIS) whose monitoring is also monetarily cost-effective. These species can be identified by determining individual species' responses to disturbance across a gradient; however, such responses may be confounded by factors other than disturbance. For example, in mountain environments the effects of anthropogenic habitat alteration are commonly confounded by elevation. EDIS have been identified with the indicator value (IndVal) metric, but there are weaknesses in the application of this approach in complex montane systems. We surveyed birds, small mammals, bats, and leaf-litter lizards in differentially disturbed cloud forest of the Ecuadorian Andes. We then incorporated elevation in generalized linear (mixed) models (GL(M)M) to screen for EDIS in the data set. Finally, we used rarefaction of species accumulation data to compare relative monetary costs of identifying and monitoring EDIS at equal sampling effort, based on species richness. Our GL(M)M generated greater numbers of EDIS but fewer characteristic species relative to IndVal. In absolute terms birds were the most cost-effective of the 4 taxa surveyed. We found one low-cost bird EDIS. In terms of the number of indicators generated as a proportion of species richness, EDIS of small mammals were the most cost-effective. Our approach has the potential to be a useful tool for facilitating more sustainable management of Andean forest systems.