Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Plants (Basel) ; 13(4)2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38498543

ABSTRACT

The citrus blackfly (CBF), Aleurocanthus woglumi Ashby, is an exotic pest native to Southeast Asia that has spread rapidly to the world's main centers of citrus production, having been recently introduced to Brazil. In this study, a maximum entropy niche model (MaxEnt) was used to predict the potential worldwide distribution of CBF under current and future climate change scenarios for 2030 and 2050. These future scenarios came from the Coupled Model Intercomparison Project Phase 6 (CMIP6), SSP1-2.6, and SSP5-8.5. The MaxEnt model predicted the potential distribution of CBF with area under receiver operator curve (AUC) values of 0.953 and 0.930 in the initial and final models, respectively. The average temperature of the coldest quarter months, precipitation of the rainiest month, isothermality, and precipitation of the driest month were the strongest predictors of CBF distribution, with contributions of 36.7%, 14.7%, 13.2%, and 10.2%, respectively. The model based on the current time conditions predicted that suitable areas for the potential occurrence of CBF, including countries such as Brazil, China, the European Union, the USA, Egypt, Turkey, and Morocco, are located in tropical and subtropical regions. Models from SSP1-2.6 (2030 and 2050) and SSP5-8.5 (2030) predicted that suitable habitats for CBF are increasing dramatically worldwide under future climate change scenarios, particularly in areas located in the southern US, southern Europe, North Africa, South China, and part of Australia. On the other hand, the SSP5-8.5 model of 2050 indicated a great retraction of the areas suitable for CBF located in the tropical region, with an emphasis on countries such as Brazil, Colombia, Venezuela, and India. In general, the CMIP6 models predicted greater risks of invasion and dissemination of CBF until 2030 and 2050 in the southern regions of the USA, European Union, and China, which are some of the world's largest orange producers. Knowledge of the current situation and future propagation paths of the pest serve as tools to improve the strategic government policies employed in CBF's regulation, commercialization, inspection, combat, and phytosanitary management.

2.
Med Vet Entomol ; 38(1): 108-111, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37715451

ABSTRACT

Psathyromyia (Psathyromyia) shannoni sensu stricto (Dyar) is a vector of Leishmania parasite and the second sandfly of medical importance with a wide geographical but discontinuous distribution in America. Preliminary genetic structure analysis using a mitochondrial marker shows that the species integrated by at least four lineages could be the result of ecological adaptations to different environmental scenarios, but this hypothesis had never been proven. The aim of the present study was to analyse whether the genetic structure that detected Pa. shannoni ss. is associated with divergence or conservatism niche. Using Ecological Niche Models (ENMs) theory, we estimated the potential distribution for each genetic lineage, and then, we evaluated the equivalency niche for assessing whether climatic niche was more different than expected. The ENMs identify different suitable distribution areas but the same climatic or ecological conditions for the genetic lineages of Pa. shannoni (conservatism niche). Our findings allow us to speculate that other potential processes or events could be related to the genetic differentiation of Pa. shannoni. These studies are important because they allow us to identify the factors that could restrict the potential distribution of the different lineages whose vectorial competence is still unknown.


Subject(s)
Leishmania , Psychodidae , Animals , Psychodidae/genetics , Psychodidae/parasitology , Ecosystem , Models, Theoretical , Geography , Phylogeny
3.
Ecol Evol ; 13(9): e10531, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37736275

ABSTRACT

Eucalyptus snout beetles are a complex of at least eight cryptic species (Curculionidae: Gonipterus scutellatus complex), native to mainland Australia and Tasmania, that defoliate Eucalyptus trees and are considered important pests. Since the 19th century, three species of the complex have been introduced to other continents. Here, we document the presence of Eucalyptus snout beetles in Ecuador. We used DNA data for species identification and unambiguously demonstrated that the Ecuadorian specimens belong to the species Gonipterus platensis, which has low genetic diversity compared with other species in the complex. We analyzed G. platensis' potential distribution in South America with ecological niche models and found several areas of high to intermediate climatic suitability, even in countries where the pest has not been registered, like Peru and Bolivia. Accurate identification of species in the G. scutellatus complex and understanding of their potential distribution are essential tools for improved management and prevention tactics.


Los gorgojos del eucalipto son un complejo de al menos ocho especies crípticas (Curculionidae: complejo Gonipterus scutellatus), nativos de Australia continental y Tasmania, que defolian árboles de eucalipto y son considerados como plagas de importancia. Desde el siglo 19, tres especies de este complejo se han introducido a otros continentes. En este trabajo reportamos la presencia de gorgojos del eucalipto en Ecuador. Usamos datos genéticos para la identificación específica y demostramos claramente que los especímenes ecuatorianos pertenecen a la especie Gonipterus platensis, la cual tiene baja diversidad genética comparada con otras especies en el complejo. Analizamos la distribución potencial de G. platensis en América del Sur con modelos de nicho ecológico y encontramos varias áreas con idoneidad ambiental alta a intermedia, incluso en países donde esta especie no ha sido registrada, como Perú y Bolivia. La correcta identificación de las especies del complejo Gonipterus scutellatus y una mejor comprensión de su distribución potencial constituyen herramientas fundamentales para optimizar medidas de manejo y prevención.

4.
Int J Biometeorol ; 67(7): 1185-1197, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37222775

ABSTRACT

The Caribbean fruit fly, Anastrepha suspensa (Lower, 1862) (Diptera: Tephritidae), is a pest of significant economic importance in Central America and Florida (USA). This study was carried out to examine the influence of climate change on the space-time distribution of A. suspensa on temporal and spatial scales. The CLIMEX software was used to model the current distribution and for climate change. The future distribution was performed using two global climate models (GCMs), CSIRO-Mk3.0 (CS) and MIROC-H (MR), under the emission scenarios (SRES) A2 and A1B for the years 2050, 2080, and 2100. The results indicate a low potential for global distribution of A. suspensa in all scenarios studied. However, tropical areas were identified with high climatic suitability for A. suspensa in South America, Central America, Africa, and Oceania until the end of the century. Projections of areas with climatic suitability for A. suspensa can provide helpful information to develop preventive strategies of phytosanitary management avoiding economic impacts with the introduction of the species.


Subject(s)
Tephritidae , Animals , Software , Forecasting , Climate Change , Central America
5.
Infect Dis Poverty ; 12(1): 32, 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37038199

ABSTRACT

BACKGROUND: Neglected tropical diseases affect the most vulnerable populations and cause chronic and debilitating disorders. Socioeconomic vulnerability is a well-known and important determinant of neglected tropical diseases. For example, poverty and sanitation could influence parasite transmission. Nevertheless, the quantitative impact of socioeconomic conditions on disease transmission risk remains poorly explored. METHODS: This study investigated the role of socioeconomic variables in the predictive capacity of risk models of neglected tropical zoonoses using a decade of epidemiological data (2007-2018) from Brazil. Vector-borne diseases investigated in this study included dengue, malaria, Chagas disease, leishmaniasis, and Brazilian spotted fever, while directly-transmitted zoonotic diseases included schistosomiasis, leptospirosis, and hantaviruses. Environmental and socioeconomic predictors were combined with infectious disease data to build environmental and socioenvironmental sets of ecological niche models and their performances were compared. RESULTS: Socioeconomic variables were found to be as important as environmental variables in influencing the estimated likelihood of disease transmission across large spatial scales. The combination of socioeconomic and environmental variables improved overall model accuracy (or predictive power) by 10% on average (P < 0.01), reaching a maximum of 18% in the case of dengue fever. Gross domestic product was the most important socioeconomic variable (37% relative variable importance, all individual models exhibited P < 0.00), showing a decreasing relationship with disease indicating poverty as a major factor for disease transmission. Loss of natural vegetation cover between 2008 and 2018 was the most important environmental variable (42% relative variable importance, P < 0.05) among environmental models, exhibiting a decreasing relationship with disease probability, showing that these diseases are especially prevalent in areas where natural ecosystem destruction is on its initial stages and lower when ecosystem destruction is on more advanced stages. CONCLUSIONS: Destruction of natural ecosystems coupled with low income explain macro-scale neglected tropical and zoonotic disease probability in Brazil. Addition of socioeconomic variables improves transmission risk forecasts on tandem with environmental variables. Our results highlight that to efficiently address neglected tropical diseases, public health strategies must target both reduction of poverty and cessation of destruction of natural forests and savannas.


Subject(s)
Chagas Disease , Communicable Diseases , Animals , Humans , Ecosystem , Poverty , Zoonoses/epidemiology , Neglected Diseases/epidemiology , Neglected Diseases/parasitology
6.
Neotrop Entomol ; 52(4): 760-771, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37058226

ABSTRACT

The mango weevil, Sternochetus mangiferae (Fabricius) (Curculionidae), pest present in Brazil and is restricted to some municipalities in the Rio de Janeiro State. This curculionid attacks the mango crop exclusively and puts mango production globally at risk, especially those destined for export. Using ecological modeling tools, this study is the first to map the potential risk of S. mangiferae in Brazil. We aimed to identify the potential distribution of this pest in Brazilian states, drawing up thematic maps of regions that present suitable and unsuitable climatic conditions for the establishment of the pest using the MaxEnt ecological niche model. The average annual temperature, the annual precipitation, the average daytime temperature range, and the annual temperature range were the variables that contributed most to the selected model. The MaxEnt model predicted highly suitable areas for S. mangiferae throughout the Brazilian coast, especially on the northeast coast. The region responsible for more than 50% of mango production in Brazil, the São Francisco Valley, was classified by the model with suitability for the pest; it can impacts exportations due to the imposition of phytosanitary barriers. This information can be used in strategies to prevent the introduction and establishment of this pest in new areas and monitor programs in areas with recent occurrence. In addition, the model results can be used in future research plans on S. mangiferae in worldwide modeling studies and climate change scenarios.

7.
Trop Med Infect Dis ; 8(3)2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36977179

ABSTRACT

Although the utility of Ecological Niche Models (ENM) and Species Distribution Models (SDM) has been demonstrated in many ecological applications, their suitability for modelling epidemics or pandemics, such as SARS-Cov-2, has been questioned. In this paper, contrary to this viewpoint, we show that ENMs and SDMs can be created that can describe the evolution of pandemics, both in space and time. As an illustrative use case, we create models for predicting confirmed cases of COVID-19, viewed as our target "species", in Mexico through 2020 and 2021, showing that the models are predictive in both space and time. In order to achieve this, we extend a recently developed Bayesian framework for niche modelling, to include: (i) dynamic, non-equilibrium "species" distributions; (ii) a wider set of habitat variables, including behavioural, socio-economic and socio-demographic variables, as well as standard climatic variables; (iii) distinct models and associated niches for different species characteristics, showing how the niche, as deduced through presence-absence data, can differ from that deduced from abundance data. We show that the niche associated with those places with the highest abundance of cases has been highly conserved throughout the pandemic, while the inferred niche associated with presence of cases has been changing. Finally, we show how causal chains can be inferred and confounding identified by showing that behavioural and social factors are much more predictive than climate and that, further, the latter is confounded by the former.

8.
Integr Zool ; 18(1): 93-109, 2023 Jan.
Article in English | MEDLINE | ID: mdl-34932894

ABSTRACT

Different models are available to estimate species' niche and distribution. Mechanistic and correlative models have different underlying conceptual bases, thus generating different estimates of a species' niche and geographic extent. Hybrid models, which combining correlative and mechanistic approaches, are considered a promising strategy; however, no synthesis in the literature assessed their applicability for terrestrial vertebrates to allow best-choice model considering their strengths and trade-offs. Here, we provide a systematic review of studies that compared or integrated correlative and mechanistic models to estimate species' niche for terrestrial vertebrates under climate change. Our goal was to understand their conceptual, methodological, and performance differences, and the applicability of each approach. The studies we reviewed directly compared mechanistic and correlative predictions in terms of accuracy or estimated suitable area, however, without any quantitative analysis to support comparisons. Contrastingly, many studies suggest that instead of comparing approaches, mechanistic and correlative methods should be integrated (hybrid models). However, we stress that the best approach is highly context-dependent. Indeed, the quality and effectiveness of the prediction depends on the study's objective, methodological design, and which type of species' niche and geographic distribution estimated are more appropriate to answer the study's issue.


Subject(s)
Climate Change , Ecosystem , Animals
9.
Mar Environ Res ; 169: 105394, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34166865

ABSTRACT

Given the ecological and biogeochemical importance of rhodolith beds, it is necessary to investigate how future environmental conditions will affect these organisms. We investigated the impacts of increased nutrient concentrations, acidification, and marine heatwaves on the performance of the rhodolith-forming species Lithothamnion crispatum in a short-term experiment, including the recovery of individuals after stressor removal. Furthermore, we developed an ecological niche model to establish which environmental conditions determine its current distribution along the Brazilian coast and to project responses to future climate scenarios. Although L. crispatum suffered a reduction in photosynthetic performance when exposed to stressors, they returned to pre-experiment values following the return of individuals to control conditions. The model showed that the most important variables in explaining the current distribution of L. crispatum on the Brazilian coast were maximum nitrate and temperature. In future ocean conditions, the model predicted a range expansion of habitat suitability for this species of approximately 58.5% under RCP 8.5. Physiological responses to experimental future environmental conditions corroborated model predictions of the expansion of this species' habitat suitability in the future. This study, therefore, demonstrates the benefits of applying combined approaches to examine potential species responses to climate-change drivers from multiple angles.


Subject(s)
Ecosystem , Rhodophyta , Brazil , Climate Change , Humans , Temperature
10.
Insects ; 12(5)2021 May 14.
Article in English | MEDLINE | ID: mdl-34069076

ABSTRACT

The African citrus psyllid, Trioza erytreae (Del Guercio) (Hemiptera: Triozidae), is a vector of Candidatus Liberibacter africanus (CLaf), a pathogen that causes huanglongbing (HLB) in Africa. Trioza erytreae has invaded areas of Asia and Europe and has threatened citrus production due to its biological habits and the transmission of CLaf. Mexico is a country where citrus production has a vital role from the economic and social point of view. Therefore, ecological niche modeling (ENM) was used to determine if Mexico has the environmental availability that will allow T. erytreae invasion. We analyzed whether or not the distribution of Casimiroa edulis La Llave (Rutaceae) in the country could be a factor that enables the dispersal of T. eytreae. The environmental connectivity between five points of entry into the country (two ports and three airports) was explored to determine possible routes of dispersal of T. erytrae. The results showed that Mexico has wide availability for the invasion of the African citrus psyllid, which coincides with essential citrus areas of the country and with the distribution of C. edulis. Of the entry points studied, the Port of Veracruz showed nearby areas with environmental connectivity. Preventive monitoring measures for T. erytreae in Mexico should focus on Veracruz state because it has an entry point, ideal environmental availability, citrus areas, and specimens of C. edulis.

11.
Pathog Glob Health ; 115(2): 108-120, 2021 03.
Article in English | MEDLINE | ID: mdl-33427124

ABSTRACT

Leishmaniasis is a public health problem worldwide. We aimed to predict ecological niche models (ENMs) for visceral (VL) and cutaneous (CL) leishmaniasis and the sand flies involved in the transmission of leishmaniasis in São Paulo, Brazil. Phlebotomine sand flies were collected between 1985 and 2015. ENMs were created for each sand fly species using Maximum Entropy Species Distribution Modeling software, and 20 climatic variables were determined. Nyssomyia intermedia (Lutz & Neiva, 1912) and Lutzomyia longipalpis (Lutz & Neiva, 1912), the primary vectors involved in CL and VL, displayed the highest suitability across the various regions, climates, and topographies. L. longipalpis was found in the border of Paraná an area currently free of VL. The variables with the greatest impact were temperature seasonality, precipitation, and altitude. Co-presence of multiple sand fly species was observed in the cuestas and coastal areas along the border of Paraná and in the western basalt areas along the border of Mato Grosso do Sul. Human CL and VL were found in 475 of 546 (86.7%) and 106 of 645 (16.4%) of municipalities, respectively. Niche overlap between N. intermedia and L. longipalpis was found with 9208 human cases of CL and 2952 cases of VL. ENMs demonstrated that each phlebotomine sand fly species has a unique geographic distribution pattern, and the occurrence of the primary vectors of CL and VL overlapped. These data can be used by public authorities to monitor the dispersion and expansion of CL and VL vectors in São Paulo state.


Subject(s)
Insect Vectors , Leishmaniasis , Psychodidae , Animals , Brazil , Cities , Ecosystem , Entropy , Humans , Leishmaniasis/epidemiology , Leishmaniasis/transmission
12.
Acta Trop ; 214: 105764, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33227259

ABSTRACT

The Middle Paranapanema region in the state of São Paulo, Brazil, is an area with high diversity for Biomphalaria species, with municipalities historically marked by cases of schistosomiasis transmission. The objectives of the study were to evaluate the current distribuition and predict the future distribution of habitats of Biomphalaria species at a high spatial resolution along 114 freshwater sites in the Middle Paranapanema watershed. The modelling encompassed 55 municipalities of the Middle Paranapanema region, which were analyzed through the maximum entropy algorithm. All geographic coordinates of the Biomphalaria species collected from 2015-2018 and environmental data were obtained through WorldClim, HydroSHEDS, TOPODATA and Secretaria do Meio Ambiente for the 1970-2017 period. For the 2041-2060 period we used the HadGEM2-ES climate model. Due to climate change, MaxEnt showed that there was a high probability for the maintenance of B. glabrata habitats near Ourinhos and Assis, an expansion of scattered spots, and a 50% probability that the species will spread throughout new suitable areas. The results showed that the geographical range of B. straminea will most likely expand in the future along the Middle Paranapanema hydrographic basin, especially in the municipalities near Ourinhos. For B. glabrata and B. straminea, the geographic expansion was related to the predicted increase in the annual temperature range. The habitats suitable for B. tenagophila and B. peregrina seemed to slightly expand around the west border of the Middle Paranapanema region. Biomphalaria occidentalis may have a small reduction in its distribution due to climate change. The variables that contributed the most to the future modelling for these three species were precipitation and temperature. Identifying the sites with intermediate hosts for schistosomiasis may guide public health measures to avoid or reduce future transmissions in this region.


Subject(s)
Biomphalaria/physiology , Ecosystem , Animal Distribution , Animals , Brazil , Disease Reservoirs , Models, Biological , Schistosoma mansoni , Schistosomiasis mansoni
13.
Animals (Basel) ; 10(10)2020 Oct 06.
Article in English | MEDLINE | ID: mdl-33036157

ABSTRACT

The spectacled, or Andean, bear (Tremarctos ornatus) is classified as vulnerable by the IUCN due to climate change and human-induced habitat fragmentation. There is an urgent need for the conservation of spectacled bear at real time. However, the lack of knowledge about the distribution of this species is considered as one of the major limitations for decision-making and sustainable conservation. In this study, 92 geo-referenced records of the spectacled bear, 12 environmental variables and the MaxEnt entropy modelling have been used for predictive modelling for the current and future (2050 and 2070) potential distribution of the spectacled bear in Amazonas, northeastern Peru. The areas of "high", "moderate" and "low" potential habitat under current conditions cover 1.99% (836.22 km2), 14.46% (6081.88 km2) and 20.73% (8718.98 km2) of the Amazon, respectively. "High" potential habitat will increase under all climate change scenarios, while "moderate" and "low" potential habitat, as well as total habitat, will decrease over the time. The "moderate", "low" and total potential habitat are distributed mainly in Yunga montane forest, combined grasslands/rangelands and secondary vegetation and Yunga altimontane (rain) forest, while "high" potential habitat is also concentrated in the Jalca. The overall outcome showed that the most of the important habitats of the spectacled bear are not part of the protected natural areas of Amazonas, under current as well as under future scenarios.

14.
J Econ Entomol ; 113(1): 306-314, 2020 02 08.
Article in English | MEDLINE | ID: mdl-31579914

ABSTRACT

Native to Asia, the spotted lanternfly, Lycorma delicatula (White), is an emerging pest of many commercially important plants in Korea, Japan, and the United States. Determining its potential distribution is important for proactive measures to protect commercially important commodities. The objective of this study was to assess the establishment risk of L. delicatula globally and in the United States using the ecological niche model MAXENT, with a focus on Washington State (WA), where large fruit industries exist. The MAXENT model predicted highly suitable areas for L. delicatula in Asia, Oceania, South America, North America, Africa, and Europe, but also predicted that tropical habitats are not suitable for its establishment, contrary to published information. Within the United States, the MAXENT model predicted that L. delicatula can establish in most of New England and the mid-Atlantic states, the central United States and the Pacific Coast states, including WA. If introduced, L. delicatula is likely to establish in fruit-growing regions of the Pacific Northwest. The most important environmental variables for predicting the potential distribution of L. delicatula were mean temperature of driest quarter, elevation, degree-days with a lower developmental threshold value of 11°C, isothermality, and precipitation of coldest quarter. Results of this study can be used by regulatory agencies to guide L. delicatula surveys and prioritize management interventions for this pest.


Subject(s)
Hemiptera , Africa , Animals , Asia , Europe , Japan , North America , Republic of Korea , South America , United States , Washington
15.
Pest Manag Sci ; 75(10): 2706-2715, 2019 Oct.
Article in English | MEDLINE | ID: mdl-30779307

ABSTRACT

BACKGROUND: For the first time, a model was applied at the global scale to investigate the effects of climate change on Dalbulus maidis. D. maidis is the main vector of three plant pathogens of maize crops and has been reported as one of the most important maize pests in Latin America. We modelled the effects of climate change on this pest using three Global Climate Models under two Representative Concentration Pathways (RCPs) using MaxEnt software. RESULTS: Overall, climate change will lead to a decrease in suitable areas for D. maidis. In South America, climate change will decrease the areas suitable for the pest, especially in Brazil. However, Argentina, Chile, Colombia, Ecuador, Peru and Venezuela will have small areas that are highly suitable for the corn leafhopper. Outside the pest's range, Ethiopia, Kenya, Rwanda, Burundi and South Africa also should be concerned about the risk of corn leafhopper invasions in the future because they are projected to have conditions that are highly suitable for this insect in some areas. CONCLUSION: This study allows the relevant countries to increase their quarantine measures and guide researchers to develop new Zea mays varieties that are resistant or tolerant to D. maidis. In addition, the maize-stunting pathogens for the areas are highlighted in this modelling. © 2019 Society of Chemical Industry.


Subject(s)
Animal Distribution , Climate Change , Hemiptera/physiology , Plant Dispersal , Zea mays/physiology , Animals , Models, Biological
16.
Mol Ecol ; 28(3): 644-657, 2019 02.
Article in English | MEDLINE | ID: mdl-30525264

ABSTRACT

A primary challenge for modern phylogeography is understanding how ecology and geography, both contemporary and historical, shape the spatial distribution and evolutionary histories of species. Phylogeographic patterns are the result of many factors, including geology, climate, habitat, colonization history and lineage-specific constraints. Assessing the relative influences of these factors is difficult because few species, regions and environments are sampled in enough detail to compare competing hypotheses rigorously and because a particular phylogeographic pattern can potentially result from different evolutionary scenarios. The silky anoles (Anolis sericeus complex) of Central America and Mexico are abundant and found in all types of lowland terrestrial habitat, offering an excellent opportunity to test the relative influences of the factors affecting diversification. Here, we performed a range-wide statistical phylogeographic analysis on restriction site-associated DNA (RAD) markers from silky anoles and compared the phylogeographic patterns we recovered to historical and contemporary environmental and topographic data. We constructed niche models to compare niche overlap between sister lineages and conducted coalescent simulations to characterize how the major lineages of silky anoles have diverged. Our results revealed that the mode of divergence for major lineage diversification events was geographic isolation, resulting in ecological divergence between lineages, followed by secondary contact. Moreover, comparisons of parapatric sister lineages suggest that ecological niche divergence contributed to isolation by environment in this system, reflecting the natural history differences among populations in divergent environments.


Subject(s)
Ecosystem , Genetics, Population , Lizards/genetics , Animals , Biological Evolution , Central America , Mexico , Models, Genetic , Phylogeography
17.
Braz. J. Biol. ; 77(4): 686-695, Nov. 2017. mapas, tab, ilus
Article in English | VETINDEX | ID: vti-20381

ABSTRACT

Ecological niche modeling has contributed to the investigation of the geographical distribution and conservation of rare or little recorded species. Therefore, we studied the known and potential distributions of Colobosauroides carvalhoi Soares and Caramaschi 1998 and discuss the implications for its conservation. Data were obtained by manual collections made in quarterly samplings in three different regions, considering the regions with occurrence records and surrounding areas. The known distribution was determined by occurrence records and literature data, and potential distribution was estimated with an ecological niche model by the MaxEnt algorithm. Twenty-five specimens were collected exclusively in forest formations of Caatinga and Caatinga-Cerrado. Our data corroborated the relative rarity of C. carvalhoi and reflected the biogeographical history of the group, where it is restricted to forest formations with milder environmental conditions. The occurrence records indicated new records of C. carvalhoi, but the known distribution value is compatible with a restricted distribution. The ecological niche model estimated few areas with environmental suitability for the species and corroborated the restricted and relict distribution patterns. Finally, the known and potential distribution values were compatible with criteria for threatened species. These results suggest a worrisome scenario for C. carvalhoi conservation. However, the limited data about the species population do not allow the proper definition of its conservation status. Therefore, we suggest using potential distribution values with alternative criteria for redefining the conservation status of C. carvalhoi and the development of new studies that support a better assessment of its conservation aspects.(AU)


A modelagem ecológica de nicho vem contribuindo para investigar a distribuição geográfica e conservação de espécies raras ou com poucos registros de ocorrência. Neste sentido, investigou-se a distribuição conhecida e potencial da espécie Colobosauroides carvalhoi Soares & Caramaschi, 1998, discutindo as implicações para a conservação da espécie. Os dados foram coletados por meio de coletas manuais realizadas em amostragens trimestrais realizadas em três regiões distintas, considerando as regiões com registros de ocorrência conhecidos e áreas adjacentes. A distribuição conhecida foi determinada a partir dos novos registros de ocorrência e dados da literatura e a distribuição potencial estimada por meio de um modelo ecológico de nicho com uso do algoritmo MaxEnt. Vinte e cinco exemplares da espécie C. carvalhoi foram coletados exclusivamente em formações arbóreas da Caatinga e áreas de interface entre a Caatinga e o Cerrado. Estes resultados corroboram a relativa raridade da espécie e refletem a história biogeográfica do grupo, relacionada a ambientes florestados e que apresentam condições ambientais mais amenas. Os registros de ocorrência de C. carvalhoi indicam novos registros, entretanto, o valor de distribuição conhecida foi compatível com valores de distribuição restrita. O modelo ecológico de nicho estimou poucas áreas adequadas à ocorrência da espécie, corroborando um padrão de distribuição restrita e relictual. Por fim, os valores de distribuição conhecida e potencial estimados são compatíveis com valores definidos para espécies ameaçadas. Estes resultados sugerem um cenário preocupante para a conservação de C. carvalhoi. Entretanto, a atual limitação de dados populacionais dificulta uma adequada avaliação de seu status de conservação. Portanto, sugerimos o uso dos valores de distribuição potencial como critério alternativo para avaliar seu status de conservação até que novos estudos possam subsidiar uma melhor avaliação da conservação da espécie.(AU)

18.
Braz. j. biol ; Braz. j. biol;77(4): 686-695, Nov. 2017. tab, graf
Article in English | LILACS | ID: biblio-888819

ABSTRACT

Abstract Ecological niche modeling has contributed to the investigation of the geographical distribution and conservation of rare or little recorded species. Therefore, we studied the known and potential distributions of Colobosauroides carvalhoi Soares and Caramaschi 1998 and discuss the implications for its conservation. Data were obtained by manual collections made in quarterly samplings in three different regions, considering the regions with occurrence records and surrounding areas. The known distribution was determined by occurrence records and literature data, and potential distribution was estimated with an ecological niche model by the MaxEnt algorithm. Twenty-five specimens were collected exclusively in forest formations of Caatinga and Caatinga-Cerrado. Our data corroborated the relative rarity of C. carvalhoi and reflected the biogeographical history of the group, where it is restricted to forest formations with milder environmental conditions. The occurrence records indicated new records of C. carvalhoi, but the known distribution value is compatible with a restricted distribution. The ecological niche model estimated few areas with environmental suitability for the species and corroborated the restricted and relict distribution patterns. Finally, the known and potential distribution values ​​were compatible with criteria for threatened species. These results suggest a worrisome scenario for C. carvalhoi conservation. However, the limited data about the species population do not allow the proper definition of its conservation status. Therefore, we suggest using potential distribution values with alternative criteria for redefining the conservation status of C. carvalhoi and the development of new studies that support a better assessment of its conservation aspects.


Resumo A modelagem ecológica de nicho vem contribuindo para investigar a distribuição geográfica e conservação de espécies raras ou com poucos registros de ocorrência. Neste sentido, investigou-se a distribuição conhecida e potencial da espécie Colobosauroides carvalhoi Soares & Caramaschi, 1998, discutindo as implicações para a conservação da espécie. Os dados foram coletados por meio de coletas manuais realizadas em amostragens trimestrais realizadas em três regiões distintas, considerando as regiões com registros de ocorrência conhecidos e áreas adjacentes. A distribuição conhecida foi determinada a partir dos novos registros de ocorrência e dados da literatura e a distribuição potencial estimada por meio de um modelo ecológico de nicho com uso do algoritmo MaxEnt. Vinte e cinco exemplares da espécie C. carvalhoi foram coletados exclusivamente em formações arbóreas da Caatinga e áreas de interface entre a Caatinga e o Cerrado. Estes resultados corroboram a relativa raridade da espécie e refletem a história biogeográfica do grupo, relacionada a ambientes florestados e que apresentam condições ambientais mais amenas. Os registros de ocorrência de C. carvalhoi indicam novos registros, entretanto, o valor de distribuição conhecida foi compatível com valores de distribuição restrita. O modelo ecológico de nicho estimou poucas áreas adequadas à ocorrência da espécie, corroborando um padrão de distribuição restrita e relictual. Por fim, os valores de distribuição conhecida e potencial estimados são compatíveis com valores definidos para espécies ameaçadas. Estes resultados sugerem um cenário preocupante para a conservação de C. carvalhoi. Entretanto, a atual limitação de dados populacionais dificulta uma adequada avaliação de seu status de conservação. Portanto, sugerimos o uso dos valores de distribuição potencial como critério alternativo para avaliar seu status de conservação até que novos estudos possam subsidiar uma melhor avaliação da conservação da espécie.


Subject(s)
Animals , Conservation of Natural Resources , Animal Distribution , Lizards , Brazil , Endangered Species , Models, Biological
19.
Int J Health Geogr ; 16(1): 28, 2017 08 07.
Article in English | MEDLINE | ID: mdl-28784125

ABSTRACT

BACKGROUND: Emerging and understudied pathogens often lack information that most commonly used analytical tools require, such as negative controls or baseline data; thus, new analytical strategies are needed to analyze transmission patterns and drivers of disease emergence. Zoonotic infections with Vaccinia virus (VACV) were first reported in Brazil in 1999, VACV is an emerging zoonotic Orthopoxvirus, which primarily infects dairy cattle and farmers in close contact with infected cows. Prospective studies of emerging pathogens could provide critical data that would inform public health planning and response to outbreaks. By using the location of 87-recorded outbreaks and publicly available bioclimatic data, we demonstrate one such approach. Using an ecological niche model (ENM) algorithm, we identify the environmental conditions under which VACV outbreaks have occurred, and determine additional locations in two affected countries that may be susceptible to transmission. Further, we show how suitability for the virus responds to different levels of various environmental factors and highlight the most important factors in determining its transmission. METHODS: A literature review was performed and the geospatial coordinates of 87 molecularly confirmed VACV outbreaks in Brazil were identified. An ENM was generated using MaxENT software by combining principal component analysis results of 19 bioclim spatial layers, and 25 randomly selected subsets of the original list of 87 outbreaks. RESULTS: The final ENM predicted all areas where Brazilian outbreaks occurred, one out of five of the Colombian outbreak regions and identified new regions within Brazil that are suitable for transmission based on bioclimatic factors. Further, the most important factors in determining transmission suitability are precipitation of the wettest quarter, annual precipitation, mean temperature of the coldest quarter and mean diurnal range. CONCLUSION: The analyses here provide a means by which to study patterns of an emerging infectious disease and identify regions that are potentially suitable for its transmission, in spite of the paucity of high-quality critical data. Policy and methods for the control of infectious diseases often use a reactionary model, addressing diseases only after significant impact on human health has ensued. The methodology used in the present work allows the identification of areas where disease is likely to appear, which could be used for directed intervention.


Subject(s)
Disease Outbreaks , Geographic Mapping , Vaccinia virus/isolation & purification , Vaccinia/epidemiology , Zoonoses/epidemiology , Animals , Brazil/epidemiology , Cattle , Disease Outbreaks/statistics & numerical data , Ecological and Environmental Phenomena , Humans , Vaccinia/diagnosis , Zoonoses/diagnosis
20.
Spat Spatiotemporal Epidemiol ; 21: 1-11, 2017 06.
Article in English | MEDLINE | ID: mdl-28552183

ABSTRACT

Ecuador in the northwestern edge of South America is struggling by vector-borne diseases with an endemic-epidemic behavior leading to an enormous public health problem. Malaria, which has a cyclicality in its dynamics, is closely related to climatic, ecological and socio-economic phenomena. The main objective of this research has been to compare three different prediction species models, the so-called Maxent, logistic regression and multi criteria evaluation with fuzzy logic, in order to determine the model which best describes the ecological niche of the Anopheles spp species, which transmits malaria within Ecuador. After performing a detailed data collection and data processing, we applied the mentioned models and validated them with a statistical analysis in order to discover that the Maxent model has been the model that best defines the distribution of Anopheles spp within the territory. The determined sites, which are of high strategic value and important for the increasing national development, will now be able to initiate preventive countermeasures based on this study.


Subject(s)
Anopheles/growth & development , Ecology/statistics & numerical data , Ecosystem , Insect Vectors , Malaria/transmission , Animals , Ecuador , Geographic Information Systems , Geography , Logistic Models
SELECTION OF CITATIONS
SEARCH DETAIL