Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 262
Filter
1.
Sci Rep ; 14(1): 13966, 2024 06 17.
Article in English | MEDLINE | ID: mdl-38886412

ABSTRACT

Foot-propelled diving comprises the primary locomotion-based feeding strategy for many birds, including families such as Phalacrocoracidae, Anhingidae, Podicipedidae, Gaviidae, and the diving ducks within Anatidae. While the morphology of specialized divers is well known, the corresponding morphology is less known for birds not as specialized but capable of diving, such as the coots (Rallidae, Fulica spp.). To compare the osteology of Fulica with other (non-diving) Rallidae, and with foot-propelled diving birds that are distantly related, we considered osteological characters, as well as the proportion of the hind limb bones and the femoral splay angle to construct a phylomorphospace, and to perform a comparative disparity analysis considering ecomorphologically relevant characters related to swimming and diving. Coots resulted to be significantly disparate from other Rallidae showing many traits of specialized foot-propelled divers, but only noticeable when compared with other rallids, as the degree of development of these traits is markedly less than in loons, grebes, or cormorants. This may correspond to a stabilizing selection of characteristics associated with a generalist morphology in Fulica. Studying adaptation in generalist taxa broadens our understanding of ecomorphologically significant features, thereby enabling us to generalize their evolutionary patterns.


Subject(s)
Birds , Diving , Animals , Diving/physiology , Birds/anatomy & histology , Birds/physiology , Phylogeny , Biological Evolution , Locomotion/physiology
2.
J Anat ; 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38922715

ABSTRACT

Although extinct sloths exhibited a wide range of dietary habits, modes of locomotion, and occupied various niches across the Americas, modern sloths are considered quite similar in their habits. The dietary habits of living sloths can be directly observed in the wild, and understanding the mechanical behavior of their jaws during chewing through finite element analysis (FEA) provides a valuable validation tool for comparative analysis with their extinct counterparts. In this study, we used FEA to simulate the mechanical behavior of sloth mandibles under lateral mastication loads, using it as a proxy for oral processing. Our research focused on the six extant sloth species to better understand their diets and validate the use of FEA for studying their extinct relatives. We found that all living sloths have the predominancy of low-stress areas in their mandibles but with significant differences. Choloepus didactylus had larger high-stress areas, which could be linked to a reduced need for processing tougher foods as an opportunistic generalist. Bradypus variegatus and Choloepus hoffmanni are shown to be similar, displaying large low-stress areas, indicating greater oral processing capacity in a seasonal and more competitive environment. Bradypus torquatus, Bradypus pygmaeus, and Bradypus tridactylus exhibited intermediary processing patterns, which can be linked to a stable food supply in more stable environments and a reduced requirement for extensive oral processing capacity. This study sheds light on extant sloths' dietary adaptations and has implications for understanding the ecological roles and evolutionary history of their extinct counterparts.

3.
Anat Rec (Hoboken) ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38716962

ABSTRACT

The humerus is central for locomotion in turtles as quadrupedal animals. Osteological variation across testudine clades remains poorly documented. Here, we systematically describe the humerus anatomy for all major extant turtle clades based on 38 species representing the phylogenetic and ecological diversity of crown turtles. Three Late Triassic species of shelled stem turtles (Testudindata) are included to establish the plesiomorphic humerus morphology. Our work is based on 3D models, establishing a publicly available digital database. Previously defined terms for anatomical sides of the humerus (e.g., dorsal, ventral) are often not aligned with the respective body sides in turtles and other quadrupedal animals with sprawling gait. We propose alternative anatomical directional terms to simplify communication: radial and ulnar (the sides articulating with the radius/ulna), capitular (the side bearing the humeral head), and intertubercular (opposite to capitular surface). Turtle humeri show low morphological variation with exceptions concentrated in locomotory specialists. We propose 15 discrete characters to summarize osteological variation for future phylogenetic studies. Disparity analyses comparing non-shelled and shelled turtles indicate that the presence of the shell constrains humerus variation. Flippered aquatic turtles are released from this constraint and significantly increase overall disparity. Ontogenetic changes of turtle humeri are related to increased ossification and pronunciation of the proximal processes, the distal articulation areas, and the closure of the ectepicondylar groove to a foramen. Some turtle species retain juvenile features into adulthood and provide evidence for paedomorphic evolution. We review major changes of turtle humerus morphology throughout the evolution of its stem group.

4.
J Exp Biol ; 227(9)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38722696

ABSTRACT

Animals deliver and withstand physical impacts in diverse behavioral contexts, from competing rams clashing their antlers together to archerfish impacting prey with jets of water. Though the ability of animals to withstand impact has generally been studied by focusing on morphology, behaviors may also influence impact resistance. Mantis shrimp exchange high-force strikes on each other's coiled, armored telsons (tailplates) during contests over territory. Prior work has shown that telson morphology has high impact resistance. I hypothesized that the behavior of coiling the telson also contributes to impact energy dissipation. By measuring impact dynamics from high-speed videos of strikes exchanged during contests between freely moving animals, I found that approximately 20% more impact energy was dissipated by the telson as compared with findings from a prior study that focused solely on morphology. This increase is likely due to behavior: because the telson is lifted off the substrate, the entire body flexes after contact, dissipating more energy than exoskeletal morphology does on its own. While variation in the degree of telson coil did not affect energy dissipation, proportionally more energy was dissipated from higher velocity strikes and from strikes from more massive appendages. Overall, these findings show that analysis of both behavior and morphology is crucial to understanding impact resistance, and suggest future research on the evolution of structure and function under the selective pressure of biological impacts.


Subject(s)
Crustacea , Animals , Biomechanical Phenomena , Crustacea/physiology , Crustacea/anatomy & histology , Energy Metabolism , Predatory Behavior/physiology , Behavior, Animal/physiology , Video Recording
5.
J Anat ; 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733157

ABSTRACT

The family Bovidae [Mammalia: Artiodactyla] is speciose and has extant representatives on every continent, forming key components of mammal communities. For these reasons, bovids are ideal candidates for studies of ecomorphology. In particular, the morphology of the bovid humerus has been identified as highly related to functional variables such as body mass and habitat. This study investigates the functional morphology of the bovid distal humerus in isolation due to its increased likelihood of preservation in the fossil record, and the resulting opportunity for a better understanding of the ecomorphology of extinct bovids. A landmark scheme of 30 landmarks was used to capture the 3D distal humerus morphology in 111 extant bovid specimens. We find that the distal humerus has identifiable morphologies associated with body mass, habitat preference and tribe affiliation and that some characteristics are shared between high body mass bovids and those living on hard, flat terrain which is likely due to the high stress on the bone in both cases. We directly apply our findings regarding extant bovids to the extinct alcelaphine bovid, Rusingoryx atopocranion from the mid to late Pleistocene (>33-45 ka) Lake Victoria region of Kenya. This species is known for some peculiar morphologies including a domed cranium with hollow nasal crests, and having small hooves for a bovid of its size. Another interesting aspect of Rusingoryx's skeletal morphology which has not been addressed is an unusual protrusion on the lateral epicondyle of the distal humerus. Despite considerable individual variation in the Rusingoryx specimens, we find evidence to support its historical assignment to the tribe Alcelaphini, and that it likely preferred open grassland habitats, which is consistent with independent reconstructions of the palaeoenvironment. We also provide the most accurate body mass estimate for Rusingoryx to date, based on distal humerus centroid size. Overall, we are able to conclude that the distal humerus in extant bovids is highly informative regarding body mass, habitat preference and tribe, and that this can be applied directly to a fossil taxon with promising results.

6.
J Morphol ; 285(5): e21708, 2024 May.
Article in English | MEDLINE | ID: mdl-38717945

ABSTRACT

Guitarfishes and sawfishes are included in the order Rhinopristiformes, which currently encompasses five families: Pristidae, Rhinobatidae, Trygonorrhinidae, Rhinidae and Glaucostegidae. Considering the low number of studies focused on oral structures in Rhinopristiformes and the need to better understand their internal morphology, this study aimed to (1) evaluate and describe the morphological variation of the oropharyngeal denticles of guitarfishes and sawfish; (2) evaluate and describe the ontogenetic and sexual variation of the oropharyngeal denticles of Zapteryx brevirostris; (3) propose characters potentially useful for taxonomic and systematic purposes and (4) discuss the possible functions and advantages of these structures. Tissue samples were taken from the oropharyngeal region of specimens preserved in 70% alcohol and then prepared for visualization in scanning electron microscopy. A new method for sampling the pharynx region is proposed herein. Considerable morphological variation between families and genera was observed. However, no variation between conspecifics was found. Regional variations of denticles when examining a single individual were observed in shape, ornamentation, and orientation. In Zapteryx brevirostris, males had a significantly higher density of denticles in the ventral region than females and lower densities were observed in juveniles. The four characters discussed here are based on the presence of keels, number of cusps, distal end elongation and width/length ratio of the oropharyngeal denticles. Among the possible functions and advantages of these structures are the improvement of food adherence, tissue protection against food abrasion and parasitism, and attenuation of hydrodynamic drag in the oropharyngeal cavity during food ingestion.


Subject(s)
Oropharynx , Animals , Oropharynx/anatomy & histology , Oropharynx/physiology , Male , Female , Microscopy, Electron, Scanning
7.
Arthropod Struct Dev ; 80: 101361, 2024 May.
Article in English | MEDLINE | ID: mdl-38795499

ABSTRACT

One of the least studied eyes of any beetle taxon are those of the scarabaeoid family Passalidae. Some members of this family of around 600 species worldwide are known to have superposition eyes (Aceraius grandis; A. hikidai) while others have apposition eyes (Cylindrocaulus patalis; Ceracupes yui). In C. yui of nearly 3 cm body length (this paper) the retinal layer is very thin and occupies approximately half of an ommatidium's total length, the latter amounting to 284 and 266 µm in the respective dorsal and ventral eye regions. The two eye regions are almost completely separated by a prominent cuticular canthus, a feature usually associated with the presence of a tracheal tapetum, a clear-zone between dioptric and light-perceiving structures and a regular array of smooth facets. In C. yui the facets are smooth (but not very regular) and a tracheal tapetum and a clear-zone are absent. The rhabdoms, formed by 8-9 retinula cells, are complicated, multilobed structures with widths and lengths of around 15 and 80 µm, respectively. The combination of some superposition and mostly apposition eye features, e.g., extensive corneal exocones, relatively small number of ommatidia, absence of a clear-zone and tracheal bush, suggest an adaptation of this species' eye to the fossorial lifestyle of C. yui, and, thus, a manifestation of the passalid eye's plasticity.


Subject(s)
Coleoptera , Animals , Coleoptera/ultrastructure , Coleoptera/anatomy & histology , Microscopy, Electron, Scanning , Compound Eye, Arthropod/ultrastructure , Compound Eye, Arthropod/anatomy & histology , Microscopy, Electron, Transmission , Female , Male , Eye/ultrastructure , Eye/anatomy & histology
8.
Proc Biol Sci ; 291(2021): 20240215, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38654651

ABSTRACT

Phenotypic plasticity is the ability of a single genotype to vary its phenotype in response to the environment. Plasticity of the skeletal system in response to mechanical input is widely studied, but the timing of its transcriptional regulation is not well understood. Here, we used the cichlid feeding apparatus to examine the transcriptional dynamics of skeletal plasticity over time. Using three closely related species that vary in their ability to remodel bone and a panel of 11 genes, including well-studied skeletal differentiation markers and newly characterized environmentally sensitive genes, we examined plasticity at one, two, four and eight weeks following the onset of alternate foraging challenges. We found that the plastic species exhibited environment-specific bursts in gene expression beginning at one week, followed by a sharp decline in levels, while the species with more limited plasticity exhibited consistently low levels of gene expression. This trend held across nearly all genes, suggesting that it is a hallmark of the larger plasticity regulatory network. We conclude that plasticity of the cichlid feeding apparatus is not the result of slowly accumulating gene expression difference over time, but rather is stimulated by early bursts of environment-specific gene expression followed by a return to homeostatic levels.


Subject(s)
Cichlids , Animals , Cichlids/genetics , Cichlids/physiology , Feeding Behavior , Skull , Gene Expression Regulation , Phenotype
9.
Exp Appl Acarol ; 92(4): 567-686, 2024 May.
Article in English | MEDLINE | ID: mdl-38639851

ABSTRACT

The dentition of the chelal moveable digit in cohabiting astigmatids from UK beehives (i.e., Carpoglyphus lactis (Linnaeus), Glycyphagus domesticus (DeGeer), and Tyrophagus putrescentiae (Schrank)) is characterised for the first time using quantitative tribological measures within a 2D mechanical model. The trophic function of astigmatid chelae are reviewed in terms of macroscopic tools used by humans including hooking devices, pliers, shears, rasps and saws. Comparisons to oribatid claws and isopod dactyli are made. The overall pattern of the moveable digit form of T. putrescentiae is not just a uniformly shrunken/swollen version between the other two taxa at either the macro- or micro-scale. Mastication surface macro-roughness values are in the range of international Roughness Grade Numbers N5-N6. The moveable digit of C. lactis has low rugosity values compared to the glycyphagid and acarid (which are topographically more similar and match that roughness typical of some coral reef surfaces). C. lactis has the most plesiomorphic moveable digit form. The mastication surface of all three species as a chewing tool is distinctly ornamented despite the moveable digit of C. lactis looking like a bar-like beam. The latter has more opportunities to be a multifunctional tool behaviourally than the other two species. Little evidence of any differences in the 'spikiness' of any 'toothiness' is found. Some differences with laboratory cultured specimens are found in C. lactis and possibly T. putrescentiae suggesting where selection on the digit may be able to occur. The chelal surface of T. putrescentiae has been deformed morphologically during evolution the most, that of C. lactis the least. Repeated localised surface differentiation is a feature of the moveable digit in G. domesticus compared to the likely more concerted changes over certain nearby locations in T. putrescentiae. An impactful chelal teeth design is present in G. domesticus but this is more equivocal in T. putrescentiae. Pockets within the mastication surface of the glycyphagid (and to some extent for the acarid) may produce foodstuff crunch forces of the scale of the chelal tips of oribatids. The moveable digit dentition of G. domesticus is adapted to shred foodstuff (like a ripsaw) more than that of the grazing/shearing dentition of T. putrescentiae. The collecting 'picker' design of C. lactis posterior teeth matches the size of Bettsia alvei hyphae which attacks hive-stored pollen. Detritus accumulated in chelal digit gullets through a sawing action matches the smallest observed ingested material. The dentition of C. lactis should produce less friction when moving through food material than G. domesticus. C. lactis is the most hypocarnivorous and may 'skim' through fluids when feeding. Astigmatid teeth do matter. The three commensal species can avoid direct competition. Future work is proposed in detail.


Subject(s)
Mites , Animals , Mites/physiology , Mites/anatomy & histology , Tooth/anatomy & histology , Mastication/physiology , United Kingdom
10.
Proc Biol Sci ; 291(2021): 20240262, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38654646

ABSTRACT

The fossil fish Ptychodus Agassiz, 1834, characterized by a highly distinctive grinding dentition and an estimated gigantic body size (up to around 10 m), has remained one of the most enigmatic extinct elasmobranchs (i.e. sharks, skates and rays) for nearly two centuries. This widespread Cretaceous taxon is common in Albian to Campanian deposits from almost all continents. However, specimens mostly consist of isolated teeth or more or less complete dentitions, whereas cranial and post-cranial skeletal elements are very rare. Here we describe newly discovered material from the early Late Cretaceous of Mexico, including complete articulated specimens with preserved body outline, which reveals crucial information on the anatomy and systematic position of Ptychodus. Our phylogenetic and ecomorphological analyses indicate that ptychodontids were high-speed (tachypelagic) durophagous lamniforms (mackerel sharks), which occupied a specialized predatory niche previously unknown in fossil and extant elasmobranchs. Our results support the view that lamniforms were ecomorphologically highly diverse and represented the dominant group of sharks in Cretaceous marine ecosystems. Ptychodus may have fed predominantly on nektonic hard-shelled prey items such as ammonites and sea turtles rather than on benthic invertebrates, and its extinction during the Campanian, well before the end-Cretaceous crisis, might have been related to competition with emerging blunt-toothed globidensine and prognathodontine mosasaurs.


Subject(s)
Fossils , Phylogeny , Sharks , Animals , Fossils/anatomy & histology , Mexico , Sharks/anatomy & histology , Sharks/classification , Sharks/physiology , Biological Evolution , Tooth/anatomy & histology
11.
Anat Rec (Hoboken) ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38597514

ABSTRACT

Sabertoothed mammalian predators, all now extinct, were almost exclusively feloid carnivorans (Eutheria, Placentalia): here a couple of extinct metatherian predators are considered in comparison with the placental sabertooths. Thylacosmilus (the "marsupial sabertooth") and Thylacoleo (the "marsupial lion") were both relatively large (puma-sized) carnivores of the Plio-Pleistocene in the Southern Hemisphere (Argentina and Australia, respectively). Both carnivores have captured the public imagination, especially as predators that were somehow analogous to northern placental forms. But a more detailed consideration of their morphology shows that neither can be simply analogized with its supposed placental counterpart. While Thylacosmilus did indeed have saber-like canines, many aspects of its anatomy show that it could not have killed prey in the manner proposed for the sabertoothed felids such as Smilodon. Rather than being an active predator, it may have been a specialized scavenger, using the hypertrophied canines to open carcasses, and perhaps deployed a large tongue to extract the innards. Thylacoleo lacked canines, and its supposedly "caniniform" incisors could not have acted like a felid's canines. Nevertheless, while its mode of dispatching its prey remains a subject for debate, it was clearly a powerful predator, likely to be capable of bringing down prey bigger than itself while hunting alone. In that regard, it may have filled the ecomorphological role proposed for placental sabertooths, and so despite the lack of canines can be nominated as the true "marsupial sabertooth" out of the two extinct taxa.

12.
Exp Appl Acarol ; 92(4): 687-737, 2024 May.
Article in English | MEDLINE | ID: mdl-38622432

ABSTRACT

Changes in the functional shape of astigmatan mite moveable digit profiles are examined to test if Tyrophagus putrescentiae (Acaridae) is a trophic intermediate between a typical micro-saprophagous carpoglyphid (Carpoglyphus lactis) and a common macro-saprophagous glycyphagid (Glycyphagus domesticus). Digit tip elongation in these mites is decoupled from the basic physics of optimising moveable digit inertia. Investment in the basal ramus/coronoid process compared to that for the moveable digit mastication length varies with feeding style. A differentiated ascending ramus is indicated in C. lactis and in T. putrescentiae for different trophic reasons. Culturing affects relative investments in C. lactis. A markedly different style of feeding is inferred for the carpoglyphid. The micro-saprophagous acarid does not have an intermediate pattern of trophic functional form between the other two species. Mastication surface shape complexity confirms the acarid to be heterodontous. T. putrescentiae is a particularly variably formed species trophically. A plausible evolutionary path for the gradation of forms is illustrated. Digit form and strengthening to resist bending under occlusive loads is explored in detail. Extensions to the analytical approach are suggested to confirm the decoupling of moveable digit pattern from cheliceral and chelal adaptations. Caution is expressed when interpreting ordinations of multidimensional data in mites.


Subject(s)
Acaridae , Animals , Acaridae/physiology , Acaridae/growth & development , Acaridae/anatomy & histology , Extremities/anatomy & histology , Biomechanical Phenomena , Feeding Behavior , Mastication , Female
13.
Mol Ecol ; 33(7): e17305, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38421099

ABSTRACT

Across its Holarctic range, Arctic charr (Salvelinus alpinus) populations have diverged into distinct trophic specialists across independent replicate lakes. The major aspect of divergence between ecomorphs is in head shape and body shape, which are ecomorphological traits reflecting niche use. However, whether the genomic underpinnings of these parallel divergences are consistent across replicates was unknown but key for resolving the substrate of parallel evolution. We investigated the genomic basis of head shape and body shape morphology across four benthivore-planktivore ecomorph pairs of Arctic charr in Scotland. Through genome-wide association analyses, we found genomic regions associated with head shape (89 SNPs) or body shape (180 SNPs) separately and 50 of these SNPs were strongly associated with both body and head shape morphology. For each trait separately, only a small number of SNPs were shared across all ecomorph pairs (3 SNPs for head shape and 10 SNPs for body shape). Signs of selection on the associated genomic regions varied across pairs, consistent with evolutionary demography differing considerably across lakes. Using a comprehensive database of salmonid QTLs newly augmented and mapped to a charr genome, we found several of the head- and body-shape-associated SNPs were within or near morphology QTLs from other salmonid species, reflecting a shared genetic basis for these phenotypes across species. Overall, our results demonstrate how parallel ecotype divergences can have both population-specific and deeply shared genomic underpinnings across replicates, influenced by differences in their environments and demographic histories.


Subject(s)
Genome-Wide Association Study , Somatotypes , Animals , Trout/genetics , Genomics , Quantitative Trait Loci/genetics
14.
Biol Lett ; 20(1): 20230526, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38263882

ABSTRACT

The diversity of vertebrate skeletons is often attributed to adaptations to distinct ecological factors such as diet, locomotion, and sensory environment. Although the adaptive evolution of skull, appendicular skeleton, and vertebral column is well studied in vertebrates, comprehensive investigations of all skeletal components simultaneously are rarely performed. Consequently, we know little of how modes of evolution differ among skeletal components. Here, we tested if ecological and phylogenetic effects led to distinct modes of evolution among the cranial, appendicular and vertebral regions in extant carnivoran skeletons. Using multivariate evolutionary models, we found mosaic evolution in which only the mandible, hindlimb and posterior (i.e. last thoracic and lumbar) vertebrae showed evidence of adaptation towards ecological regimes whereas the remaining skeletal components reflect clade-specific evolutionary shifts. We hypothesize that the decoupled evolution of individual skeletal components may have led to the origination of distinct adaptive zones and morphologies among extant carnivoran families that reflect phylogenetic hierarchies. Overall, our work highlights the importance of examining multiple skeletal components simultaneously in ecomorphological analyses. Ongoing work integrating the fossil and palaeoenvironmental record will further clarify deep-time drivers that govern the carnivoran diversity we see today and reveal the complexity of evolutionary processes in multicomponent systems.


Subject(s)
Mandible , Skull , Humans , Animals , Phylogeny , Head , Fossils
15.
J Anat ; 244(1): 22-41, 2024 01.
Article in English | MEDLINE | ID: mdl-37591692

ABSTRACT

Marine amniotes have played many crucial roles in ocean ecosystems since the Triassic, including predation at the highest trophic levels. One genus often placed into this guild is the large Early Jurassic neoichthyosaurian Temnodontosaurus, the only post-Triassic ichthyosaurian known with teeth which bear a distinct cutting edge or carina. This taxonomically problematic genus is currently composed of seven species which show a wide variety of skull and tooth morphologies. Here we assess the craniodental disparity in Temnodontosaurus using a series of functionally informative traits. We describe the range of tooth morphologies in the genus in detail, including the first examples of serrated carinae in ichthyosaurians. These consist of false denticles created by the interaction of enamel ridgelets with the carinal keel, as well as possible cryptic true denticles only visible using scanning electron microscopy. We also find evidence for heterodonty in the species T. platyodon, with unicarinate mesial teeth likely playing a role in prey capture and labiolingually compressed, bicarinate distal teeth likely involved in prey processing. This type of heterodonty appears to be convergent with a series of other marine amniotes including early cetaceans. Overall, the species currently referred to as the genus Temnodontosaurus show a range of craniodental configurations allowing prey to be captured and processed in different ways - for example, T. eurycephalus has a deep snout and relatively small bicarinate teeth likely specialised for increased wound infliction and grip-and-tear feeding, whereas T. platyodon has a more elongate yet robust snout and larger teeth and may be more adapted for grip-and-shear feeding. These results suggest the existence of niche partitioning at higher trophic levels in Early Jurassic ichthyosaurians and have implications for future work on the taxonomy of this wastebasket genus, as well as for research into the ecology of other extinct megapredatory marine tetrapods.


Subject(s)
Coleoptera , Ecosystem , Animals , Head , Skull , Cetacea , Fossils , Biological Evolution
16.
Evolution ; 78(1): 39-52, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-37862600

ABSTRACT

Frequent and strong morphological convergence suggests that determinism tends to supersede historical contingencies in evolutionary radiations. For many lineages living within the water column of rivers and streams, hydrodynamic forces drive widespread morphological convergence. Living below the sediment-water interface may release organisms from these hydrodynamic pressures, permitting a broad array of morphologies, and thus less convergence. However, we show here that the semi-infaunal freshwater mussels have environmentally determined convergence in shell morphology. Using 3D morphometric data from 715 individuals among 164 Nearctic species, we find that species occurring in rivers with high flow rates have evolved traits that resist dislodgement from their burrowed position in the streambed: thicker shells for their body size, with the thickest sector of the shell being the most deeply buried. Species occurring in low flow environments have evolved thinner and more uniformly thickened shells, corresponding to an alternative adaptation to dislodgement: increased burrowing efficiency. Within species, individuals also show increased shell thickness for their body size at higher flow rates, suggesting that ecophenotypy may, in part, be an important mechanism for establishing populations in new environments and thus evolutionary divergence in this highly imperiledinvertebrate group.


Subject(s)
Biological Evolution , Bivalvia , Humans , Animals , Fresh Water , Rivers , Water
17.
Anat Rec (Hoboken) ; 307(8): 2713-2748, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38102921

ABSTRACT

The cranium of turtles (Testudines) is characterized by the secondary reduction of temporal fenestrae and loss of cranial joints (i.e., characteristics of anapsid, akinetic skulls). Evolution and ontogeny of the turtle cranium are associated with shape changes. Cranial shape variation among Testudines can partially be explained by dietary and functional adaptations (neck retraction), but it is unclear if cranial topology shows similar ecomorphological signal, or if it is decoupled from shape evolution. We assess the topological arrangement of cranial bones (i.e., number, relative positioning, connections), using anatomical network analysis. Non-shelled stem turtles have similar cranial arrangements to archosauromorph outgroups. Shelled turtles (Testudinata) evolve a unique cranial organization that is associated with bone losses (e.g., supratemporal, lacrimal, ectopterygoid) and an increase in complexity (i.e., densely and highly interconnected skulls with low path lengths between bones), resulting from the closure of skull openings and establishment of unusual connections such as a parietal-pterygoid contact in the secondary braincase. Topological changes evolutionarily predate many shape changes. Topological variation and taxonomic morphospace discrimination among crown turtles are low, indicating that cranial topology may be constrained. Observed variation results from repeated losses of nonintegral bones (i.e., premaxilla, nasal, epipterygoid, quadratojugal), and changes in temporal emarginations and palate construction. We observe only minor ontogenetic changes. Topology is not influenced by diet and habitat, contrasting cranial shape. Our results indicate that turtles have a unique cranial topology among reptiles that is conserved after its initial establishment, and shows that cranial topology and shape have different evolutionary histories.


Subject(s)
Biological Evolution , Skull , Turtles , Animals , Turtles/anatomy & histology , Skull/anatomy & histology , Phylogeny , Fossils/anatomy & histology
18.
Proc Biol Sci ; 290(2011): 20231400, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38018109

ABSTRACT

Carnivores (cats, dogs and kin) are a diverse group of mammals that inhabit a remarkable range of ecological niches. While the relationship between ecology and morphology has long been of interest in carnivorans, the application of quantitative techniques has resulted in a recent explosion of work in the field. Therefore, they provide a case study of how quantitative techniques, such as geometric morphometrics (GMM), have impacted our ability to tease apart complex ecological signals from skeletal anatomy, and the implications for our understanding of the relationships between form, function and ecological specialization. This review provides a synthesis of current research on carnivoran ecomorphology, with the goal of illustrating the complex interaction between ecology and morphology in the skeleton. We explore the ecomorphological diversity across major carnivoran lineages and anatomical systems. We examine cranial elements (skull, sensory systems) and postcranial elements (limbs, vertebral column) to reveal mosaic patterns of adaptation related to feeding and hunting strategies, locomotion and habitat preference. We highlight the crucial role that new approaches have played in advancing our understanding of carnivoran ecomorphology, while addressing challenges that remain in the field, such as ecological classifications, form-function relationships and multi-element analysis, offering new avenues for future research.


Subject(s)
Biological Evolution , Carnivora , Animals , Dogs , Phylogeny , Carnivora/anatomy & histology , Skull/anatomy & histology , Locomotion
19.
Am Nat ; 202(6): 830-850, 2023 12.
Article in English | MEDLINE | ID: mdl-38033182

ABSTRACT

AbstractMigration can have a profound influence on rates and patterns of phenotypic evolution. Diadromy is the migration between marine and freshwater habitats for feeding and reproduction that can require individuals to travel tens to thousands of kilometers. The high energetic demands of diadromy are predicted to select for ecomorphological traits that maximize swimming and locomotor efficiency. Intraspecific studies have shown repeated instances of divergence among diadromous and nondiadromous populations in locomotor and foraging traits, which suggests that at a macroevolutionary scale diadromous lineages may experience convergent evolution onto one or multiple adaptive optima. We tested for differences in rates and patterns of phenotypic evolution among diadromous and nondiadromous lineages in Clupeiformes, a clade that has evolved diadromy more than 10 times. Our results show that diadromous clupeiforms show convergent evolution for some locomotor traits and faster rates of evolution, which we propose are adaptive responses to the locomotor demands of migration. We also find evidence that diadromous lineages show convergence into multiple regions of multivariate trait space and suggest that these respective trait spaces are associated with differences in migration and trophic ecology. However, not all locomotor traits and no trophic traits show evidence of convergence or elevated rates of evolution associated with diadromy. Our results show that long-distance migration influences the tempo and patterns of phenotypic evolution at macroevolutionary scales, but there is not a single diadromous syndrome.


Subject(s)
Ecosystem , Fishes , Humans , Animals , Phylogeny , Fishes/physiology , Fresh Water , Ecology , Biological Evolution
20.
Ecol Evol ; 13(11): e10715, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38020680

ABSTRACT

Fish morphology is incredibly plastic and local/resident morphology can be influenced by factors including habitat, predation, resource availability, and water velocity. Through analysis of body shape using geometric morphometrics, we describe the degree of phenotypic plasticity within a generalist fish species resident to low-order tributaries of Green Bay and Lake Michigan. We predicted that isolated populations of creek chub (Semotilus atromaculatus) would display plastic responses in body shape due to differences in selective pressures imposed by stream environments. We show that body shape of creek chub was significantly different between streams which are considered to be isolated populations, and while we expected body shape variation to remain constant between study years, we found that shape was not fixed and changed over time in the same manner among focal streams. The diversity of creek chub diet and degree of agricultural land use in the watershed were significant predictors of body morphology. The effect of resource availability and land use within the watershed demonstrates how selective pressures influence phenotypes at the population level. Our study provides insight into morphological changes of stream fish populations, which may be important in the context of changing ecosystems and novel conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...