Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.610
Filter
1.
Article in English | MEDLINE | ID: mdl-38954333

ABSTRACT

A sustainable future, concerning the energy transformation of a country, heavily relies on the availability of energy resources, particularly renewables such as solar, wind, hydropower, and clean hydrogen. Among these, hydrogen is the most promising energy source due to its high calorific value, ranging between 120 and 140 MJ/kg. It has the potential to lead the market in various industries such as power generation, steel, chemical, petrochemical, and automotive. Significant research has been going on in hydrogen production technologies to reduce costs and improve competitiveness with fossil fuels. One such potential approach includes the use of metal-water reactions, which offer unique opportunities for producing clean hydrogen and other valuable byproducts. However, the quantity of hydrogen produced varies depending on the metal feedstock, type of electrolyte, and the activator or catalyst, used in combination with water. This latest work discusses recent progress on hydrogen production and the effects of variations in different parameters on the process, with a focus on aluminum (Al)-water reactions. Investigations have been conducted and reported on the effect of various activators with different concentrations, the quantity of aluminum scrap feedstock, and the volume of the electrolyte on the kinetics of the metal-water reactions and hydrogen production. Sodium hydroxide (NaOH) was observed to be more effective than potassium hydroxide (KOH) in promoting metal-water reactions. These activator-assisted metal-water reactions help produce clean hydrogen, along with other value-added products such as hydroxides. This work clearly sheds light on the potential utilization of industrial aluminum scrap as feedstock for producing clean hydrogen.

2.
Article in English | MEDLINE | ID: mdl-38954341

ABSTRACT

In this study, novel adsorbents were synthesized via the activation and magnetization of carbon spheres, graphene, and carbon nanotubes fabricated from plastics to improve their surface area and porosity and facilitate their separation from aqueous solutions. Fourier transform infrared spectroscopy "FTIR", X-ray diffraction "XRD", energy-dispersive X-ray spectroscopy "EDX", transmission electron microscope "TEM", and X-ray photoelectron spectroscopy "XPS" affirmed the successful activation and magnetization of the fabricated materials. Further, surface area analysis showed that the activation and magnetization enhanced the surface area. The weight loss ratio decreased from nearly 60% in the case of activated graphene to around 25% after magnetization, and the same trend was observed in the other materials confirming that magnetization improved the thermal stability of the fabricated materials. The prepared carbonaceous materials showed superparamagnetic properties according to the magnetic saturation values obtained from vibrating sample magnetometry analysis, where the magnetic saturation values were 33.77, 38.75, and 27.18 emu/g in the presence of magnetic activated carbon spheres, graphene, and carbon nanotubes, respectively. The adsorption efficiencies of methylene blue (MB) were 76.9%, 96.3%, and 74.8% in the presence of magnetic activated carbon spheres, graphene, and carbon nanotubes, respectively. This study proposes efficient adsorbents with low cost and high adsorption efficiency that can be applied on an industrial scale to remove emerging pollutants.

3.
Article in English | MEDLINE | ID: mdl-38954346

ABSTRACT

In a hydrogen economy, the primary energy source for industry, transportation, and power production is hydrogen gas. Green hydrogen can be generated and utilized in an environmentally friendly and sustainable manner; it seeks to displace fossil fuels. Finding a clean alternative energy source is becoming more crucial due to the depletion of fossil fuels and the major environmental pollution issues they bring when utilized extensively. The paper's objective is to analyze the factors affecting the economy of green hydrogen production pathways for sustainable development to decarbonize the world and the associated challenges faced in terms of technological, social, infrastructure, and people's perceptions while adopting green hydrogen. To achieve this, the research looked at a variety of areas relevant to green hydrogen, such as production techniques, industry applications, benefits for society and the environment, and challenges that need to be overcome before the technology is widely used. The most recent methods of producing hydrogen from fossil fuels, such as steam methane, partial oxidation, autothermal, and plasma reforming, as well as renewable energy sources including biomass and thermochemical reactions and water splitting. Grey hydrogen is now the least expensive type of hydrogen, but, in the future, green hydrogen's levelized cost of hydrogen (LCOH) is expected to be less than $2 per kilogram of hydrogen.

4.
Waste Manag ; 186: 307-317, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38954922

ABSTRACT

Rapid expansion in urban areas has engendered a superfluity of municipal solid waste (MSW) stemming from contemporary civilization, encompassing commercial sectors and human undertakings. Kerbside waste, a type of MSW, has the potential for recycling and reuse at the end of its first life cycle, but is often limited to a linear cycle. This study aimed to assess the life cycle costs of different separation and recycling methods for handling kerbside waste. A new life cycle cost model, drawing from the circular economy's value retention process (VRP) model, has been created and applied to assess the continuous recycling of kerbside glass. The study investigates two key separation techniques, kerbside recycling mixed bin recycling (KRMB) kerbside glass recycling separate bin (KGRSB) and analyses their impact on the life cycle cost of the recycling process. Additionally, the research explores two approaches of recycling and downcycling: closed-loop recycling, which pertains to the recycling of glass containers, and open-looped recycling, which involves the use of recycled glass in asphalt. The results showed when use annually collected waste as the functional unit, the KRMB model incurred lower costs compared to the KGRSB model due to its lower production output. However, when evaluated over a 1-ton production of glass container and asphalt, the KGRSB method demonstrated superior cost performance with a 40-50% reduction compared to the KRMB method. The open-loop recycling method (asphalt) incurred a higher cost compared to the closed-loop recycling method due to its larger production volume over a 21-year period.

5.
Article in English | MEDLINE | ID: mdl-38958861

ABSTRACT

In accordance with the framework of the Circular Blue Bioeconomy in the Mediterranean region, the objective of this study was to evaluate the biotransformation of blue swimming crab (Portunus segnis) residues obtained from the port of Sfax by an extracellular chitinase produced by Nocardiopsis halophila strain TN-X8 isolated from Chott El Jerid (Tozeur, Tunisia). From the analysis of multiple extremophilic Actinomycetota, it was determined that strain TN-X8 exclusively utilized 60 g/L of raw blue swimming crab as its carbon and energy source, achieving a chitinase activity of approximately 950 U/mL following a 6-day incubation period at 40 °C. Pure chitinase, designated as ChiA-Nh30, was obtained after heat treatment, followed by ammonium sulfate fractionation and Sephacryl® S-200 column chromatography. The maximum ChiA-Nh30 activity was observed at pH 3 and 75 °C. Interestingly, compared with cyclohexamidine, ChiA-Nh30 showed a good antifungal effect against four pathogenic fungi. Furthermore, when using colloidal chitin as substrate, ChiA-Nh30 demonstrated a higher degree of catalytic efficiency than the commercially available Chitodextrinase®. In addition, ChiA-Nh30 could be immobilized by applying encapsulation and encapsulation-adsorption techniques. The kaolin and charcoal used acted as excellent binders, resulting in improved ChiA-Nh30 stability. For the immobilized ChiA-Nh30, the yield of N-acetyl-D-glucosamine monomers released from 20% (w/v) blue swimming crab residues increased by 3.1 (kaolin) and 2.65 (charcoal) times, respectively.

6.
Chimia (Aarau) ; 78(6): 397-402, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38946412

ABSTRACT

Nanomaterials hold immense potential for numerous applications in energy, health care, and environmental sectors, playing an important role in our daily lives. Their utilization spans from improving energy efficiency to enhancing medical diagnostics, and mitigating environmental pollution, thus presenting a multifaceted approach towards achieving sustainability goals. To ensure the sustainable and safe utilization of nanomaterials, a thorough evaluation of potential hazards and risks is essential throughout their lifecycle-from resource extraction and production to use and disposal. In this review, we focus on understanding and addressing potential environmental and health risks associated with nanomaterial utilization. We advocate for a balanced approach with early hazard identification, safe-by-design principles, and life cycle assessments, while emphasizing safe handling and disposal practices, collaboration, and continuous improvement. Our goal is to ensure responsible nanotechnology development, fostering innovation alongside environmental and community well-being, through a holistic approach integrating science, ethics, and proactive risk assessment.


Subject(s)
Nanostructures , Risk Assessment , Humans , Environmental Pollution/prevention & control , Nanotechnology/methods
7.
Data Brief ; 54: 110286, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38962187

ABSTRACT

This study provides sequence datasets of endophytic and rhizobacteria of jute using 16S rRNA gene sequencing. The plant samples were first surface sterilized and DNA of the bacteria from soil and jute roots and stem was extracted using Quick-DNA™ Fungal/Bacterial Miniprep Kit. The purified DNA was amplified and subjected to polymerase chain reaction using forward and reverse primers. The PCR products were sequenced on Applied Biosystems ABI 3500XL Genetic Analyser (Applied Biosystems, ThermoFisher Scientific). The sequences were analyzed using BioEdit version 7.2.5 and then BLAST on NCBI. The identifiable bacteria include the rhizobacteria, Citrobacter fruendii RZS23 (accession number: CP024673.1), endophytic bacteria, Bacillus cereus EDR23 (accession number: LN890242.1), and Morganella morganii EDS23 (accession number: KR094121.1). The plant growth-promoting traits exhibited by these bacteria suggest their future exploration as bioinoculants.

8.
J Environ Manage ; 365: 121670, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38963956

ABSTRACT

In the era of climate change and carbon neutrality, China is actively coping with its carbon lock-in dilemma. In this context, the development of the digital economy is considered a possible path to carbon unlocking. This study contributes to the literature by providing a comprehensive analysis of how the digital economy can be leveraged to address carbon lock-in, highlighting the importance of formal environmental regulation and informal environmental regulation in enhancing this effect. Accordingly, following findings are highlighted. (1) Our primary findings provide strong evidence on the negative effect of the digital economy on carbon lock-in; by implication, improving the digital economy is an efficient measure for eradicating carbon lock-in. (2) The digital economy shows the greatest marginal impact on industrial lock-in, while its inhibiting effect on behavior lock-in is the least pronounced. Moreover, the digital economy plays a prominent role in curbing carbon lock-in in provinces with a higher level of physical, human, and social capital. And the asymmetric impacts of the digital economy on carbon lock-in are significant at most quantiles. (3) Environmental regulation is a significant moderator. Put differently, the synergy of formal environmental regulation and the digital economy, as well as informal environmental regulation and the digital economy, are important means to break carbon lock-in. (4) The carbon lock-in mitigation effect of the digital economy is caused mainly by increasing technical market turnover and the efficiency of energy consumption.

9.
J Environ Manage ; 365: 121627, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38963960

ABSTRACT

Current research in Circular Economy (CE) fails to address the occurrence of Rebound Effects (RE), which are systemic and behavioural responses to the implementation of interventions hindering the potential sustainability benefits. This paper aims to advance the academic discussion and the practical consideration of RE by exploring the potential of using System Dynamics (SD) to enable the ex-ante identification of potential RE of CE initiatives. A five-stage simulation-based approach for the identification and mitigation of potential rebound effects (AIMRE) is proposed. Its application is demonstrated in a use-oriented product/service system (PSS) case focused on a high-end dress rental service. The AIMRE enables the representation of the magnitude and reasons for RE occurrence through 14 scenarios. The finding highlights the importance of considering the interplay between consumers' and companies' decision-making processes in quantifying, understanding, and mitigating RE occurrence.

10.
J Environ Manage ; 365: 121603, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38963967

ABSTRACT

Water treatment has turned out to be more important in most societies due to the expansion of most economies and to advancement of industrialization. Developing efficient materials and technologies for water treatment is of high interest. Thin film nanocomposite membranes are regarded as the most effective membranes available for salts, hydrocarbon, and environmental pollutants removal. These membranes improve productivity while using less energy than conventional asymmetric membranes. Here, the polyvinylidene fluoride (PVDF) membranes have been successfully modified via dip single-step coating by silica-aminopropyl triethoxysilane/trimesic acid/melamine nanocomposite (Si-APTES-TA-MM). The developed membranes were evaluated for separating the emulsified oil/water mixture, the surface wettability of the membrane materials is therefore essential. During the conditioning step, that is when the freshwater was introduced, the prepared membrane reached a flux of about 27.77 L m-2 h-1. However, when the contaminated water was introduced, the flux reached 18 L m-2 h-1, alongside an applied pressure of 400 kPa. Interestingly, during the first 8 h of the filtration test, the membrane showed 90 % rejection for ions including Mg2+, and SO42- and ≈100 % for organic pollutants including pentane, isooctane, toluene, and hexadecane. Also, the membrane showed 98 % rejection for heavy metals including strontium, lead, and cobalt ions. As per the results, the membrane could be recommended as a promising candidate to be used for a mixture of salt ions, hydrocarbons, and mixtures of heavy metals from wastewater.

11.
J Environ Manage ; 366: 121676, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38972187

ABSTRACT

The challenges posed by unsustainable practices in today's economy underscore the urgent need for a transition toward a circular economy (CE) and a holistic supply chain (SC) perspective. Benchmarking plays a pivotal role in managing circular SCs, offering a metric to gauge progress. However, the lack of consensus on the optimal benchmarking approach hampers effective implementation of circular business practices. To address this gap, we conducted a systematic review of the literature, identifying 29 pertinent publications. The analysis revealed 30 unique attributes and sub-attributes for benchmarking circularity, which were clustered into five main attributes. The main attributes are goals, subjects, key performance indicators (KPIs), data sources, and evaluation methods, while the sub-attributes are organised as features of the main attributes and depicted as a feature model. Drawing from selected publications, we illustrated each feature with examples. Our model offers a comprehensive benchmarking reference for circularity and will be a valuable tool for managers in the transition toward circularity. Supply chains seeking to benchmark their transition to circularity can apply the reference model to ensure that their benchmarking strategy is consistent with state-of-the-art knowledge. By providing a generic circularity benchmarking approach that is valid for diverse economic sectors, our findings contribute to theoretical efforts to address the lack of generic frameworks for CE.

12.
Curr Res Microb Sci ; 7: 100250, 2024.
Article in English | MEDLINE | ID: mdl-38974669

ABSTRACT

The increasing demand for sustainable energy has brought biobutanol as a potential substitute for fossil fuels. The Clostridium genus is deemed essential for biobutanol synthesis due to its capability to utilize various substrates. However, challenges in maintaining fermentation continuity and achieving commercialization persist due to existing barriers, including butanol toxicity to Clostridium, low substrate utilization rates, and high production costs. Proper substrate selection significantly impacts fermentation efficiency, final product quality, and economic feasibility in Clostridium biobutanol production. This review examines underutilized substrates for biobutanol production by Clostridium, which offer opportunities for environmental sustainability and a green economy. Extensive research on Clostridium, focusing on strain development and genetic engineering, is essential to enhance biobutanol production. Additionally, critical suggestions for optimizing substrate selection to enhance Clostridium biobutanol production efficiency are also provided in this review. In the future, cost reduction and advancements in biotechnology may make biobutanol a viable alternative to fossil fuels.

13.
Heliyon ; 10(12): e32932, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38975066

ABSTRACT

This study investigates the simultaneous influence of the digital economy, environmental technologies, business activity, and institutional quality on both the environment and economic growth in G7 economies from 1996 to 2020. The study provides an in-depth analysis to investigate the influence of institutional quality, particularly the regulatory environment, on business activity. Employing a rigorous methodology encompassing correlation analysis, long-term examination using Driscoll and regression estimators, and the utilization of various digital economy indicators such as internet usage and cell subscriptions, we uncover significant insights. The findings underscore the substantial impact of digital economies in mitigating carbon emissions and driving economic growth at an accelerated rate. Moreover, the study reveals that certain regulatory constraints on corporate operations can paradoxically facilitate carbon emission management while also fostering economic expansion. The study validates the presence of an inverted U-shaped Environmental Kuznets Curve (EKC) in G7 economies. This suggests that there is a specific point at which economic activities start to contribute more to carbon emissions. Moreover, the study highlights the importance of achieving a balance between economic growth driven by foreign direct investment and the goals of environmental sustainability. Environmental technology is becoming increasingly important in the regulation of emissions. Significantly, the study highlights the need to enhance the quality of implementing institutional regulations. It suggests that G7 economies can improve both environmental quality and economic growth by adopting superior regulatory methods. These findings are relevant for governments seeking economic growth and environmental protection. They suggest the need for specific policy actions to accomplish sustainable development goals.

14.
Heliyon ; 10(12): e32878, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38975073

ABSTRACT

Household single-use packaging has poor rates of recycling, and presents a challenge in transitioning to a circular packaging economy. This study characterises the flows of household single-use packaging in the municipal waste system for 2020-21 in New South Wales, Australia. Households are an important source of packaging usage in Australia, accounting for over 40 % of all packaging used in 2020-21. Our focus spans 17 single-use packaging materials and 11 formats. We estimate the composition of single-use consumer packaging in the kerbside collection stream, and the ultimate fate of used packaging. Results show 1000 ± 8 % kt of packaging was used by households in NSW in 2020-21 (∼123 kg/cap). Composition of the used packaging stream was dominated by glass (36 %), paper (29 %) and plastic (28 %) packaging. HDPE (26 % of plastic packaging), LDPE (24 %) and PET (19 %) were the main polymers in use. 63 % ± 5 % of used packaging was collected for recycling, and 34 % ± 7 % was recovered via recyclate generation and overseas exports. Glass packaging had the highest recycling rates at 52 % ± 3 %, while plastic packaging had the poorest at 11 % ± 10 %. Findings indicate incorrect disposal of recyclables at the household to mixed-waste systems as a major limitation of the system to improve recycling rates. Expansion in recovery capacity is also essential for improving recycling rates, and the potential for generating the packaging-grade recyclate essential for meeting recycled content targets. The study offers contributions to the understanding of consumer packaging managed within the municipal waste system. Insights gained have application in informing sustainable packaging and waste management strategies.

15.
Heliyon ; 10(12): e32735, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38975095

ABSTRACT

Food loss and waste (FLW) contains an abundance of nutrient components that can be extracted and converted into valuable bioproducts through biorefining (e.g., pharmaceuticals, cosmetics, nutrients). Australia has identified bioproducts from a FLW feedstock as one avenue through which it can meet its commitment to UN Sustainable Development Goal Target 12.3, aiming to halve food waste by 2030. An industry for bioproducts in Australia is, however, nascent and will require targeted and sustained policy intervention to advance in line with the production targets it has set to meet Target 12.3. The aim of this critical review is threefold. Firstly, it draws on the research literature to identify barriers to advancing a bioproduct industry from FLW. Secondly, it constructs a taxonomy of policies available to overcome these barriers and support industry development. Finally, it applies the taxonomy to established policy settings in Australia (examining both national settings and Queensland state settings) and the European Union (EU), where the industry and associated policy is more mature. Australia has few national policies directly targeting a bioproduct industry. A comparative assessment of policy settings allows this review to identify lessons Australia can draw from the EU experience as it advances its own industry. Findings demonstrate a complex and fragmented policy landscape. Key recommendations from the literature emphasise the need to establish coordinated strategic instruments; target research and development opportunities for optimised, sustainable processes; and implement appropriate incentives to establish a 'level playing field', as technology readiness increases. The critical requirement for policy stability and coherence, flags the need to lay groundwork policy in this area as a priority.

16.
Front Public Health ; 12: 1352754, 2024.
Article in English | MEDLINE | ID: mdl-38947347

ABSTRACT

Total factor productivity is an important symbol of high-quality economic development. At present, the question of whether the digital economy can infuse fresh impetus into enhancing total factor productivity has emerged as a prominent concern in China. This paper constructs a new undesirable output to measure comprehensive total factor productivity (CTFP) with the slack-based measure (SBM) undesirable Malmquist-Luenberger index by using 2011-2020 Chinese provincial panel data. Then, this paper explores the impact of the digital economy (DIG) on CTFP with a fixed effects (FE) panel model and a mediating effect model. The results show that CTFP increases by an average of 3.9%, technical efficiency contributes -1.1%, and the contribution rate of technological progress is 5.0%. Technological progress is the main source of CTFP growth. The empirical findings show that the DIG has a positive and significant impact on CTFP. This paper conducts various robustness tests, and the results remain consistent with the previous conclusion. Moreover, mechanism tests suggest that the promoting effect of the DIG on CTFP can be attributed to three main effects: technological innovation, the factor endowment structure and the educational level. Furthermore, the results of heterogeneity analysis demonstrate that the promoting effect of the DIG on CTFP exists in China's eastern, central and western regions. The findings of this research can serve as a valuable reference for informing decision-making processes related to environmental governance and high-quality economic development in China.


Subject(s)
Economic Development , China , Humans , Efficiency
17.
J Environ Manage ; 365: 121548, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38943745

ABSTRACT

Achieving net-zero greenhouse gas emissions in the construction sector is essential to sustainable development policy. Previous studies have ignored the impact of the digital economy on carbon emissions in the construction industry. Using relevant city-level data from China from 2011 to 2021 and employing ArcGIS and Stata software, this study examines the current status of carbon emissions from the construction industry and investigates the impact of the digital economy on these emissions. The findings reveal that (1) from 2011 to 2021, carbon emissions of the construction industry have a pattern of decreasing-increasing-decreasing-increasing across the country. There is an increasing concentration of areas with high and relatively high carbon discharges in Heilongjiang, Jilin, Ningxia, Inner Mongolia, Shanxi, Guangxi, and Guizhou. (2) The standard deviation ellipse indicates the core area of carbon emissions in China's construction industry is moving northeast and becoming more decentralized. (3) Through a series of robustness tests, the digital economy has been proven to effectively reduce carbon emissions from the construction sector in municipal areas. (4) In severely cold regions, mild regions, and high-population-density cities, the digital economy reduces building sector's carbon output. However, it stimulates carbon emissions in the hot summer and cold winter regions. (5) Mechanism tests show that the digital economy reduces China's urban construction carbon emissions by fostering technological progress and green innovation. Urban resilience further strengthens the contribution of the digital economy to reducing carbon discharges in the urban construction sector of China. This article presents empirical evidence demonstrating how the digital economy empowers the construction industry to curtail emissions.

18.
Sci Total Environ ; 946: 174110, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38909789

ABSTRACT

Hydrothermal carbonization (HTC) of single plastic polymers such as polyethylene terephthalate (PET) and polystyrene (PS) has not yet been explored on a large scale, particularly their thermal behavior, chemical transformations under subcritical conditions, and the energy properties of the resultant hydrochar. This study investigated these aspects by employing techniques, such as thermogravimetric analysis (TGA), Fourier transformed infrared spectroscopy (FTIR), elemental and calorific analysis. The results show that PET hydrochar has a superior energy densification (1.37) and energy yield (89 %) compared to PS hydrochar (1.13, 54 %). Hydrothermal carbonization modifies the chemical structure of the polymers by increasing the number of carbonyl groups (CO) in PET and forming new ones in PS, and by enhancing hydroxyl groups (OH) in PET while retaining them in PS. Both materials preserve their aromatic and aliphatic structures, with the introduction of alkenes groups (CC) in the PET hydrochar. PET hydrochar begins to decompose at lower temperatures (150-270 °C) than PS hydrochar (242-283 °C) but reaches higher peak temperatures (420-585 °C vs. 390-470 °C), with both types achieving similar burnout temperatures (650-800 °C). PET hydrochar recorded a higher activation energy (121-126 kJ/mol) than PS hydrochar (67-74 kJ/mol) with the Mampel first-order reaction model as the best fit.

19.
Sci Total Environ ; 946: 174242, 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38917896

ABSTRACT

This paper discusses the influence of the digital economy (DE) on carbon emissions based on evidence at the global level. Specifically, based on the panel data from 80 countries from 2010 to 2020, this paper creates a DE measurement index and uses the System-GMM model to assess the influence of DE on carbon emissions. The results show that: (1) The development of DE significantly promotes carbon emissions reduction. (2) The development of DE significantly promotes carbon emissions reduction through technological advancement, structural optimization, and educational enhancement; (3) Regulatory quality and financial development play a positively moderating role in DE's promoting effect on carbon emissions reduction; (4) DE of European and North American nations have stronger promoting effect on carbon emissions reduction than DE of other countries. Compared to DE of developing countries, DE of developed countries has a stronger promoting effect on carbon emissions reduction. Additionally, this paper also finds that institutional differences can impact the carbon emission reduction effects of DE. Based on the results, this paper suggests that governments globally should promote the development of DE and foster international cooperation to enhance DE's driving role in promoting carbon emissions reduction.

20.
Behav Sci (Basel) ; 14(6)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38920830

ABSTRACT

Algorithmic technological progress presents both opportunities and challenges for organizational management. The success of online labor platforms hinges on algorithmic control, making it imperative to explore how this control affects gig workers' prosocial service behaviors. Drawing from affective event theory, our study delves into the factors influencing gig workers' prosocial service behaviors in the online labor platform setting. We utilize the challenge-hindrance appraisal framework to highlight the pivotal role of algorithmic control. To rigorously test our hypotheses, we gathered empirical data from an online questionnaire survey of 660 gig workers. Our results indicate that challenge appraisals and hindrance appraisals in regard to platform algorithm control have a nuanced dual impact on gig workers' prosocial service behaviors. This relationship is clarified by the mediating function of work engagement. A challenge appraisal of platform algorithmic control can positively influence gig workers' prosocial service behaviors. However, hindrance appraisal of platform algorithmic control can negatively influence gig workers' prosocial service behaviors. Interestingly, workplace interpersonal capitalization boosts the effect of challenge appraisal on employees' prosocial service behaviors. However, it does not mitigate the adverse effects of hindrance appraisal on such behaviors. This study has multiple theoretical implications, and it also provides valuable practical insights into organizational management.

SELECTION OF CITATIONS
SEARCH DETAIL
...