Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.451
Filter
1.
Heliyon ; 10(11): e32554, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38961990

ABSTRACT

Microplastics pose significant challenges on a global scale. In Ghana, these tiny pollutants infiltrate diverse ecosystems such as coastal areas, rivers, lakes, and forests, vital to the nation's economy and social well-being. This review examines the current depth of knowledge in research and the escalating concern of microplastics, identifying significant gaps in research and understanding. The findings highlight the limited understanding of the extent and distribution of microplastic pollution across different environmental compartments, primarily focusing on coastal environments. Additionally, detection and quantification techniques for microplastics face several complexities and limitations in the Ghanaian context due to constraints such as infrastructure, resources, and expertise. Despite some research efforts, particularly along the coastline, there is still a distinct lack of attention in various regions and ecosystems within Ghana. This imbalance in research focus hinders the understanding and effective mitigation of microplastics in the country. This therefore necessitates the implementation of systematic policy frameworks, emphasizing the importance of recycling and upcycling as effective strategies to address the challenges of microplastics in Ghana with more targeted research and public engagement. This review serves as a call to action for a strategic approach to research and policy-making on microplastic research and pollution in Ghana.

2.
Front Microbiol ; 15: 1377763, 2024.
Article in English | MEDLINE | ID: mdl-38962139

ABSTRACT

Introduction: Arbuscular mycorrhizal fungi (AMF) are vital in terrestrial ecosystems. However, the community structure characteristics and influencing factors of AMF in the forest ecosystems of arid desert grassland areas require further investigation. Methods: Therefore, we employed high-throughput sequencing technology to analyze the soil AMF community characteristics at different elevations in the Helan mountains. Results: The results revealed that significant differences (P < 0.05) were observed in the soil physicochemical properties among different elevations, and these properties exhibited distinct trends with increasing elevation. Through high-throughput sequencing, we identified 986 operational taxonomic units (OTUs) belonging to 1 phylum, 4 classes, 6 orders, 12 families, 14 genera, and 114 species. The dominant genus was Glomus. Furthermore, significant differences (P < 0.05) were observed in the α-diversity of the soil AMF community across different elevations. Person correlation analysis, redundancy analysis (RDA), and Monte Carlo tests demonstrated significant correlations between the diversity and abundance of AMF communities with soil organic matter (OM) (P < 0.01) and soil water content (WC) (P < 0.05). Discussion: This study provides insights into the structural characteristics of soil AMF communities at various altitudes on the eastern slope of Helan mountain and their relationships with soil physicochemical properties. The findings contribute to our understanding of the distribution pattern of soil AMF and its associations with environmental factors in the Helan mountains, as well as the stability of forest ecosystems in arid desert grassland areas.

3.
Environ Res ; 259: 119511, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38950811

ABSTRACT

Recently, microplastics (MPs) have attracted extensive attention to their wide distribution and potential toxicity in ecosystems. However, there was a lack of research focused on MPs in seaweed bed ecosystems. This study investigated the distribution and toxicity of MPs in macrobenthos in Sargassum ecosystem. According to the in-situ investigation results, the abundance of MPs in the sediment was 0.9-2.3 items/g, the indoor microcosmic experiment was constructed. After exposure to MPs (0, 2, and 20 items/g) for 30 days, the abundance of MPs in macrobenthos exhibits a concentration-dependent increase. However, there was no significant bioaccumulation of MPs at the trophic level. The indoor toxicity test revealed that MPs induced oxidative stress and altered intestinal microflora composition in macrobenthos, even at actual environmental concentrations (2 items/g). It may result in a perturbation of the organism's homeostatic equilibrium. High-concentration (20 items/g) MPs had a greater impact on alkaline phosphatase (AKP) in Mollusks. The increase in AKP activity could be indicative of an adaptive mechanism in some macrobenthos while the decline in AKP activity might signal a decrease in their survival. These results elucidated the fate of MPs in ecosystem and the ecological risks of MPs to large benthic animals on model environmental conditions.

4.
mSystems ; : e0030724, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980055

ABSTRACT

Microbial immigration is an ecological process in natural environments; however, the ecological trade-off mechanisms that govern the balance between species extinction and migration are still lacking. In this study, we investigated the mechanisms underlying the migration of diazotrophic communities from soil to leaves across six natural mangrove habitats in southern China. The results showed that the diazotrophic alpha and beta diversity exhibited significant regional and locational variations. The diazotrophic species pool gradually increased from the leaves to nonrhizosphere soil at each site, exhibiting a vertical distribution pattern. Mantel test analyses suggested that climate factors, particularly mean annual temperature, significantly influenced the structure of the diazotrophic community. The diazotrophic community assembly was mainly governed by dispersal limitation in soil and root samples, whereas dispersal limitation and ecological drift were dominant in leaves. Partial least squares path modeling revealed that the species pool and soil properties, particularly the oxidation-reduction potential and pH, were closely linked to the species-immigration ratio of diazotrophic communities. Our study provides novel insights for understanding the ecological trait diversity patterns and spread pathways of functional microbial communities between below- and aboveground habitats in natural ecosystems.IMPORTANCEEnvironmental selection plays key roles in microbial transmission. In this study, we have provided a comprehensive framework to elucidate the driving patterns of the ecological trade-offs in diazotrophic communities across large-scale mangrove habitats. Our research revealed that Bradyrhizobium japonicum, Marinobacterium lutimaris, and Agrobacterium tumefaciens were more abundant in root-associated soil than in leaves by internal and external pathways. The nonrhizospheric and rhizospheric soil samples harbored the most core amplicon sequence variants, indicating that these dominant diazotrophs could adapt to broader ecological niches. Correlation analysis indicated that the diversities of the diazotrophic community were regulated by biotic and abiotic factors. Furthermore, this study found a lower species immigration ratio in the soil than in the leaves. Both species pool and soil properties regulate the species-immigration mechanisms of the diazotrophic community. These results suggest that substantial species immigration is a widespread ecological process, leading to alterations in local community diversity across diverse host environments.

5.
Environ Monit Assess ; 196(7): 681, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954029

ABSTRACT

This study explored whether wildfire alters the soil properties and arbuscular mycorrhizal fungi (AMF) community composition when compared with burnt rangeland, non-burnt rangeland and adjacent tilled in mesothermal ecosystems. The study was carried out in August 2020, 1 year later after wildfire. The results of this study showed that the wildfire played a key role in altering soil characteristics and AMF community composition in Bartin Province located in the Western Black Sea Region. Soil samples were made according to standard methods. AMF spores were isolated according to the wet sieving method, and the spores of AMF were identified according to their morphological characteristics. Analysis of variance was performed to determine the differences between the parameters, and correlation analysis was performed to determine the relationships between the parameters. The highest values of soil organic carbon (2.20%), total nitrogen (0.18%), K2O (74.68 kg/da), root colonization (87.5%) and the frequency of occurrence of Funneliformis geosporum (20%), Claroideoglomus claroideum (16%) and Claroideoglomus etunicatum (11%) were found in burnt rangeland. Sporulation of Acaulospora dilatata, Acaulospora morrowiae, Acaulospora tuberculata, Scutellospora castanea, Scutellospora coralloidea, Scutellospora scutata, Glomus coremioides and Glomus multicaule was either decreased or completely inhibited in the burnt rangeland. While species diversity of AMF (12) decreased, the number of AMF spores (325.6 (number/50 gr soil)) increased in burnt areas. In conclusion, the number of spores and root colonization of AMF increased but species diversity of AMF reduced after the wildfire. In ecosystems with high fire risk where AMF transfer is planned, it is suggested that it would be more appropriate to select species with an increase in spore number after fire.


Subject(s)
Mycorrhizae , Soil Microbiology , Soil , Wildfires , Mycorrhizae/physiology , Soil/chemistry , Environmental Monitoring , Nitrogen/analysis , Ecosystem , Carbon/analysis
6.
Environ Int ; 190: 108877, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38981413

ABSTRACT

Heavy metal contamination in the environment is an increasingly pervasive threat to the long-term persistence of wildlife. As high trophic level consumers, crocodylians are at substantial risk from bioaccumulation of mercury (Hg). Despite that they are generally well-studied and the focal species of many conservation efforts around the world, little is known about Hg contamination levels in most crocodylians. Here we preliminarily evaluate blood Hg contamination in four African species - Central African slender-snouted crocodile (Mecistops leptorhynchus), African dwarf crocodile (Osteolaemus tetraspis), West African crocodile (Crocodylus suchus), and Nile crocodile (Crocodylus niloticus) - from a diversity of sites and habitats across 5 different countries representing varying degrees of environmental pollution. All of our sampled crocodiles were Hg contaminated and, worryingly, these African crocodiles generally showed the highest levels of Hg contamination of any crocodylian species examined to date. Of most concern was that Hg concentrations were not only highest in M. leptorhynchus, the most threatened amongst our study species, but also in individuals sampled in what are believed to be some of the most remote and pristine natural areas left in Africa - Gabon's national parks. Our results underscore the need to better understand the impact of longstanding petroleum, mining, forestry, and agricultural industries on the entire aquatic food chain throughout much of Africa, including on the threatened species in these habitats and the human populations that depend on them for their subsistence and livelihoods.

7.
Glob Chang Biol ; 30(7): e17397, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38984852

ABSTRACT

Restoring biodiversity-based resilience and ecosystem multi-functionality needs to be informed by more accurate predictions of animal biodiversity responses to environmental change. Ecological models make a substantial contribution to this understanding, especially when they encode the biological mechanisms and processes that give rise to emergent patterns (population, community, ecosystem properties and dynamics). Here, a distinction between 'mechanistic' and 'process-based' ecological models is established to review existing approaches. Mechanistic and process-based ecological models have made key advances to understanding the structure, function and dynamics of animal biodiversity, but are typically designed to account for specific levels of biological organisation and spatiotemporal scales. Cross-scale ecological models, which predict emergent co-occurring biodiversity patterns at interacting scales of space, time and biological organisation, is a critical next step in predictive ecology. A way forward is to first capitalise on existing models to systematically evaluate the ability of scale-explicit mechanisms and processes to predict emergent patterns at alternative scales. Such model intercomparisons will reveal mechanism to process transitions across fine to broad scales, overcome approach-specific barriers to model realism or tractability and identify gaps which necessitate the development of new fundamental principles. Key challenges surrounding model complexity and uncertainty would need to be addressed, and while opportunities from big data can streamline the integration of multiple scale-explicit biodiversity patterns, ambitious cross-scale field studies are also needed. Crucially, overcoming cross-scale ecological modelling challenges would unite disparate fields of ecology with the common goal of improving the evidence-base to safeguard biodiversity and ecosystems under novel environmental change.


Subject(s)
Biodiversity , Animals , Models, Biological , Ecosystem , Models, Theoretical
8.
J Manag Inf Syst ; 41(2): 394-421, 2024.
Article in English | MEDLINE | ID: mdl-38974483

ABSTRACT

After digital platforms have become successful in the information technology (IT) industry, incumbents from traditional industries increasingly implement digital platform strategies. However, there is mixed evidence on whether these incumbents benefit from digital platform strategies. To provide systematic insights, we focus on the banking industry. With the emergence of open banking, banks have begun implementing digital platforms to unlock the innovative power of third-party developers. We conducted an event study based on the announcement of digital platform strategies in a global sample of 165 banks. We show that, on average, investors react positively to the announcements. Contrary to our expectations, this effect is more substantial for banks from emerging markets than those from developed markets. Prior artificial intelligence (AI) orientation only partly contributes to investors' favorable perception of a digital platform strategy. These results point to the complex interplay of AI orientation and digital platform strategies, yielding questions for future research.

9.
Sci Total Environ ; : 174666, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992378

ABSTRACT

Planktonic communities in aquatic ecosystems are crucial water quality indicators, with their growth dependent on runoff chemical and hydraulic characteristics (e.g., nutrient availability and turbidity). Previous studies have indicated that runoff components (i.e., proportions of precipitation, groundwater, snowmelt, etc.) play a vital role in regulating runoff characteristics, potentially affecting planktonic communities. However, the response of these communities to runoff components, particularly in mountainous regions, remains underexplored. In this study, we conducted four sampling campaigns from 2017 to 2020 in a watershed on the Qinghai-Tibet Plateau. Combined with laboratory incubation experiments, we examined the impact of various runoff components on the diversity and abundance of phytoplankton and zooplankton. We found that a higher proportion of precipitation in runoff contributed to an increase in the diversity of plankton communities. Laboratory experiments with unified water samples incubated with different runoff components demonstrated that the significant influence of precipitation on planktonic diversity primarily stems from the influx of abundant exogenous particulate material into rivers. Using a path analysis, we further confirmed that the impact of precipitation on diversity is primarily through chemical pathways, notably by increasing nutrient concentrations. Our study enhances our understanding of the interactions between the hydrological cycle and aquatic ecosystems, offering valuable insights for effectively maintaining and managing these natural environments.

10.
Ecology ; : e4369, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38955486

ABSTRACT

Within communities, species are wrapped in a set of feedbacks with each other and with their environment. When such feedbacks are strong enough they can generate alternative stable states. So far, research on alternative stable states has mostly focused on systems with a small number of species and a limited diversity of interaction types. Here, we analyze a spatial model of plant community dynamics in stressed ecosystems such as drylands, where each species is characterized by a strategy, and the different species interact through facilitation and competition for space and resources, such as water. We identify three different types of multistability emerging from the interplay of competition and facilitation. Under low-stress levels, plant communities organize in small groups of coexisting species, maintained by space, competition and facilitation ("cliques"). Under higher stress levels, positive feedback from facilitation lead to the dominance of a single facilitating species ("mutual exclusion states"). At the highest stress levels, the single facilitating species left in the system coexists with the desert state. By linking community ecology and alternative stable states theory using a spatial plant community model for stressed ecosystems, our study contributes to highlight the importance of positive feedback loops for the stability of ecological communities.

11.
Environ Geochem Health ; 46(8): 278, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958772

ABSTRACT

Miyun Reservoir plays a vital role as a source of drinking water for Beijing, however it grapples with nitrogen contamination issues that have been poorly understood in terms of their distribution, source, and associated health risks. This study addresses this knowledge gap by employing data on nitrate nitrogen (NO3--N), chloride (Cl-), dual isotopic compositions of NO3- (δ15N-NO3- and δ18O-NO3-) data in water ecosystems, systematically exploring the distribution, source and health risk of nitrogen contaminants in Miyun reservoir watersheds. The results showed that over the past 30 years, surface water runoff has exhibited a notable decrease and periodic fluctuations due to the combined influence of climate and anthropogenic activities, while the total nitrogen (TN) concentration in aquatic ecosystems presented an annual fluctuating upward trend. The TN concentration in the wet season was predominantly elevated because a large amount of nitrogen contaminants migrated into water ecosystems through heavy rainfall or river erosion. The concentration of NO3--N, the main contaminant of the water ecosystems, showed distinct variations across different watersheds, followed as rivers over the Miyun reservoir. Moreover, NO3--N levels gradually increased from upstream to downstream in different basins. NO3--N in surface water was mainly derived from the mixture of agricultural ammonia fertilizer and sewage and manure, with a minority of samples potentially undergoing denitrification. Comparatively, the main sources of NO3--N in groundwater were soil N and sewage and manure, while the denitrification process was inactive. The carcinogenic risks caused by NO3--N in groundwater were deemed either nonexistent or minimal, while the focus should predominantly be on potential non-carcinogenic risks, particularly for infants and children. Therefore, it is crucial to perform proactive measures aimed at safeguarding water ecosystems, guided by an understanding of the distribution, sources, and associated risks of nitrogen contamination.


Subject(s)
Ecosystem , Environmental Monitoring , Nitrogen , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Risk Assessment , China , Nitrogen/analysis , Water Supply , Nitrates/analysis , Humans
12.
Tree Physiol ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38952005

ABSTRACT

Forest ecosystems face increasing drought exposure due to climate change, necessitating accurate measurements of vegetation water content to assess drought stress and tree mortality risks. While Frequency Domain Reflectometry offers a viable method for monitoring stem water content by measuring dielectric permittivity, challenges arise from uncertainties in sensor calibration linked to wood properties and species variability, impeding its wider usage. We sampled tropical forest trees and palms in eastern Amazônia, to evaluate how sensor output differences are controlled by wood density, temperature and taxonomic identity. Three individuals per species were felled and cut into segments (total n = 262), within a diverse dataset comprising five dicotyledonous tree-and three monocotyledonous palm species on a wide range of wood densities. Water content was estimated gravimetrically for each segment using a temporally explicit wet-up/dry-down approach, and the relationship with the dielectric permittivity was examined. Woody tissue density had no significant impact on the calibration, but species identity and temperature significantly affected sensor readings. The temperature artefact was quantitatively important at large temperature differences which may have led to significant bias of daily and seasonal water content dynamics in previous studies. We established the first tropical tree and palm calibration equation that performed well for estimating water content. Notably, we demonstrated that the sensitivity remained consistent across species, enabling the creation of a simplified one-slope calibration for accurate, species-independent measurements of relative water content. Our one-slope calibration serves as a general, and species-independent standard calibration for assessing relative water content in woody tissue, offering a valuable tool for quantifying drought responses and stress in trees and forest ecosystems.

13.
Microb Ecol ; 87(1): 90, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958675

ABSTRACT

Endophytes play an important role in plant development, survival, and establishment, but their temporal dynamics in young conifer plants are still largely unknown. In this study, the bacterial community was determined by metabarcoding of the 16S rRNA gene in the rhizoplane, roots, and aerial parts of 1- and 5-month-old seedlings of natural populations of Abies religiosa (Kunth) Schltdl. & Cham. In 1-month-old seedlings, Pseudomonas dominated aerial parts (relative abundance 71.6%) and roots (37.9%). However, the roots exhibited significantly higher bacterial species richness than the aerial parts, with the dissimilarity between these plant sections mostly explained by the loss of bacterial amplification sequence variants. After 5 months, Mucilaginibacter dominated in the rhizoplane (9.0%), Streptomyces in the roots (12.2%), and Pseudomonas in the aerial parts (18.1%). The bacterial richness and community structure differed significantly between the plant sections, and these variations were explained mostly by 1-for-1 substitution. The relative abundance of putative metabolic pathways significantly differed between the plant sections at both 1 and 5 months. All the dominant bacterial genera (e.g., Pseudomonas and Burkholderia-Caballeronia-Paraburkholderia) have been reported to have plant growth-promoting capacities and/or antagonism against pathogens, but what defines their role for plant development has still to be determined. This investigation improves our understanding of the early plant-bacteria interactions essential for natural regeneration of A. religiosa forest.


Subject(s)
Abies , Bacteria , Endophytes , Plant Roots , RNA, Ribosomal, 16S , Seedlings , Seedlings/microbiology , Seedlings/growth & development , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Endophytes/classification , Endophytes/isolation & purification , Endophytes/physiology , Endophytes/genetics , RNA, Ribosomal, 16S/genetics , Abies/microbiology , Plant Roots/microbiology , Soil Microbiology , Biodiversity , Microbiota , DNA, Bacterial/genetics
14.
Glob Chang Biol ; 30(7): e17387, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38971982

ABSTRACT

Climate change is anticipated to cause species to shift their ranges upward and poleward, yet space for tracking suitable habitat conditions may be limited for range-restricted species at the highest elevations and latitudes of the globe. Consequently, range-restricted species inhabiting Arctic freshwater ecosystems, where global warming is most pronounced, face the challenge of coping with changing abiotic and biotic conditions or risk extinction. Here, we use an extensive fish community and environmental dataset for 1762 lakes sampled across Scandinavia (mid-1990s) to evaluate the climate vulnerability of Arctic char (Salvelinus alpinus), the world's most cold-adapted and northernly distributed freshwater fish. Machine learning models show that abiotic and biotic factors strongly predict the occurrence of Arctic char across the region with an overall accuracy of 89 percent. Arctic char is less likely to occur in lakes with warm summer temperatures, high dissolved organic carbon levels (i.e., browning), and presence of northern pike (Esox lucius). Importantly, climate warming impacts are moderated by habitat (i.e., lake area) and amplified by the presence of competitors and/or predators (i.e., northern pike). Climate warming projections under the RCP8.5 emission scenario indicate that 81% of extant populations are at high risk of extirpation by 2080. Highly vulnerable populations occur across their range, particularly near the southern range limit and at lower elevations, with potential refugia found in some mountainous and coastal regions. Our findings highlight that range shifts may give way to range contractions for this cold-water specialist, indicating the need for pro-active conservation and mitigation efforts to avoid the loss of Arctic freshwater biodiversity.


Subject(s)
Climate Change , Ecosystem , Lakes , Trout , Scandinavian and Nordic Countries , Animals , Trout/physiology , Arctic Regions , Esocidae/physiology
15.
Sci Total Environ ; 946: 174444, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964394

ABSTRACT

The rhizosphere microbiome plays a crucial role in the ability of plants to colonize and thrive in stressful conditions such as drought, which could be decisive for the success of exotic plant invasion in the context of global climate change. The aim of this investigation was to examine differences in the composition, structure, and functional traits of the microbial community of the invader Nicotiana glauca R.C. Graham and native species growing at seven different Mediterranean semiarid locations under two distinct levels of water availability, corresponding to the wet and dry seasons. The results show that the phylum Actinobacteriota was an indicator phylum of the dry season as well as for the community of N. glauca. The dominant indicator bacterial families of the dry season were 67-14 (unclassified family), Pseudonocardiaceae, and Sphingomonadaceae, being relatively more abundant in the invasive rhizosphere. The relative abundances of the indicator fungal families Aspergillaceae (particularly the indicator genus Aspergillus), Glomeraceae, and Claroideoglomeraceae were higher in the invasive rhizosphere. The relative abundance of mycorrhizal fungi was higher in the invasive rhizosphere in the dry season (by about 40 % in comparison to that of native plants), without significant differences between invasive and native plants in the wet season. Bacterial potential functional traits related to energy and precursor metabolites production and also biosynthesis of cell wall, cofactors, vitamins, and amino acids as well as catabolic enzymes involved in the P cycle prevailed in the invasive rhizosphere under drought conditions. This study shows that the pronounced and beneficial shifts in the microbiome assembly and functions in the rhizosphere of N. glauca under conditions of low soil water availability can represent a clear advantage for its establishment.

16.
Water Res ; 260: 121958, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38896886

ABSTRACT

The characteristics and dynamics of micro-plastisphere biofilm on the surface of microplastics (MPs) within artificial ecosystems, such as constructed wetlands (CWs), remain unclear, despite these ecosystems' potential to serve as sinks for MPs. This study investigates the dynamic evolution of micro-plastisphere biofilm in CWs, utilizing simulated wastewater containing sulfamethoxazole and humic acid, through physicochemical characterization and metagenomic analysis. Two different types of commercial plastics, including non-degradable polyethylene and degradable polylactic acid, were shredded into MPs and studied. The findings reveal that the types, shape and incubation time of MPs, along with humic acid content in wastewater, affected the quantity and quality of biofilms, such as the biofilm composition, spatial structure and microbial communities. After just 15 days into incubation, numerous microbials were observed on MP samples, with increases in biofilms content and enhanced humification of extracellular polymeric substances over time. Additionally, microbial communities on polylactic acid MPs, or those incubated for longer time, exhibit higher diversity, connectivity and stability, along with reduced vulnerability. Conversely, biofilms on polyethylene MPs were thicker, with higher potential for greenhouse gas emission and increased risk of antibiotic resistance genes. The addition of humic acid demonstrated opposite effects on biofilms across environmental interfaces, possibly due to its dual potential to produce light-induced free radicals and serve as a carbon source. Binning analysis further uncovered a unique assembly pattern of nutrients cycle genes and antibiotic resistance genes, significantly correlated within micro-plastisphere microbial communities, under the combined stress of nutrition and sulfamethoxazole. These results emphasize the shaping of micro-plastisphere biofilm characteristics by unique environmental conditions in artificial ecosystems, and the need to understand how DOM and other pollutants covary with MP pollution.

17.
G3 (Bethesda) ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888171

ABSTRACT

Vaccinium floribundum Kunth, known as "mortiño, " is an endemic shrub species of the Andean region adapted to harsh conditions in high-altitude ecosystems. It plays an important ecological role as a pioneer species in the aftermath of deforestation and human-induced fires within paramo ecosystems, emphasizing its conservation value. While previous studies have offered insights into the genetic diversity of mortiño, comprehensive genomic studies are still missing to fully understand the unique adaptations of this species and its population status, highlighting the importance of generating a reference genome for this plant. ONT and Illumina sequencing were used to establish a reference genome for this species. Three different de novo genome assemblies were generated and compared for quality, continuity and completeness. The Flye assembly was selected as the best and refined by filtering out short ONT reads, screening for contaminants and genome scaffolding. The final assembly has a genome size of 529 MB, containing 1,317 contigs and 97% complete BUSCOs, indicating a high level of integrity of the genome. Additionally, the LAI Index of 12.93, further categorizes this assembly as a reference genome. The genome of V. floribundum reported in this study is the first reference genome generated for this species, providing a valuable tool for further studies. This high-quality genome, based on the quality and completeness parameters obtained, will not only help uncover the genetic mechanisms responsible for its unique traits and adaptations to high-altitude ecosystems, but will also contribute to conservation strategies for a species endemic to the Andes.

18.
Imeta ; 3(3): e187, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38898982

ABSTRACT

The role of diverse soil microbiota in restoring erosion-induced degraded lands is well recognized. Yet, the facilitative interactions among symbiotic arbuscular mycorrhizal (AM) fungi, rhizobia, and heterotrophic bacteria, which underpin multiple functions in eroded ecosystems, remain unclear. Here, we utilized quantitative microbiota profiling and ecological network analyses to explore the interplay between the diversity and biotic associations of root-associated microbiota and multifunctionality across an eroded slope of a Robinia pseudoacacia plantation on the Loess Plateau. We found explicit variations in slope multifunctionality across different slope positions, associated with shifts in limiting resources, including soil phosphorus (P) and moisture. To cope with P limitation, AM fungi were recruited by R. pseudoacacia, assuming pivotal roles as keystones and connectors within cross-kingdom networks. Furthermore, AM fungi facilitated the assembly and composition of bacterial and rhizobial communities, collectively driving slope multifunctionality. The symbiotic association among R. pseudoacacia, AM fungi, and rhizobia promoted slope multifunctionality through enhanced decomposition of recalcitrant compounds, improved P mineralization potential, and optimized microbial metabolism. Overall, our findings highlight the crucial role of AM fungal-centered microbiota associated with R. pseudoacacia in functional delivery within eroded landscapes, providing valuable insights for the sustainable restoration of degraded ecosystems in erosion-prone regions.

19.
Heliyon ; 10(11): e31235, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38845869

ABSTRACT

Municipal solid waste management is a major concern in developing economies, requiring collective international efforts to achieve carbon neutrality by diverting waste from disposal facilities. This study aims to highlight the importance of the waste sector as it has the potential to significantly contribute to climate change and its toxicity impact on the local ecosystem. Out of the total municipal solid waste generated, only 78 % is collected, either open dumped or thrown in sanitary landfills. The waste sector's ecological impact value is calculated for the Earth's regions, and it is very high at >50 % in Africa, Asia, Latin America and the Caribbean. This sectoral impact value is mainly responsible for greenhouse gas emissions and degradation of the local ecosystem health. Current business‒as‒usual practices attribute 3.42 % of global emissions to the waste sector. Various scenarios are developed based on waste diversion and related emissions modelling, and it is found that scenarios 3 and 4 will support the policymakers of the regions in attaining zero carbon footprints in the waste sector. Our findings conclude that cost-effective nature-based solutions will help low‒income countries reduce emissions from disposal sites and significantly improve the local ecosystem's health. Developed economies have established robust waste‒handling policies and implementation frameworks, and there is a need for collaboration and knowledge sharing with developing economies at the regional level to sustain the sector globally.

20.
Heliyon ; 10(11): e31756, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38845900

ABSTRACT

Organisations deploy digital platforms to maximise value and transform their businesses. The success of most platforms is attributed to Application Programming Interfaces (APIs), the protocols enabling different software to communicate with each other. However, previous research on APIs has predominantly focused on the technical dimensions, such as design, and unintentionally neglected other social areas, such as organisational outcomes. This study seeks to advance organisational API research by adopting an agility perspective to explore the agility outcomes after API integration. Through rich qualitative data from a music digital firm, the findings revealed four primary agility outcomes: customer agility in the form of swift customer feedback, operational agility in the form of improved business process and delay reduction, partner agility in the form of embracing flexibility in processes and structures and expanding their ecosystem and decision agility in the form of fast decision making. A model showing the interplay and interdependencies of the agility outcomes was developed and provided depth and clarity to the findings. This study extends the literature by establishing how API integration influences organisational agility under conditions such as possessing capabilities and managing tensions during the integration process.

SELECTION OF CITATIONS
SEARCH DETAIL
...