ABSTRACT
The new EU regulations on maximum levels of cadmium (Cd) in cacao products sparked research on countermeasures to reduce Cd concentrations in cacao beans. This study was set up to test the effects of soil amendments in two established cacao orchards (soil pH 6.6 and 5.1) in Ecuador. Soil amendments included: 1) agricultural limestone at 2.0 and 4.0 Mg ha-1 y-1, 2) gypsum at 2.0 and 4.0 Mg ha-1 y-1 and 3) compost at 12.5 and 25 Mg ha-1 y-1, all amendments were applied at the surface during two subsequent years. Lime application increased the soil pH by one unit down to 20 cm depth. On the acid soil, leaf Cd concentrations decreased by lime application and the reduction factor gradually rose to 1.5 after 30 months. No effects of liming or gypsum on leaf Cd was found in the pH neutral soil. Compost application in the pH neutral soil reduced leaf Cd concentration with factor 1.2 at 22 months but that effect was absent at 30 months after application. Bean Cd concentrations were unaffected by any of the treatments at 22 months after application (acid soil) or 30 months (pH neutral soil) suggesting that any treatment effects on bean Cd might be even more delayed than in leaves. Soil columns experiments in the laboratory showed that mixing lime with compost largely enhanced the depth of lime penetration compared to lime only. Compost + lime reduced 10-3 M CaCl2 extractable Cd in soil without lowering extractable Zn. Our results suggest that soil liming has the potential to lower Cd uptake in cacao in the long term in acid soils and that the compost + lime treatment should be tested at field scale to accelerate the effects of the mitigation.
Subject(s)
Cacao , Soil Pollutants , Soil , Ecuador , Cadmium/analysis , Calcium Sulfate , Soil Pollutants/analysisABSTRACT
Many decades of improvement in cacao have aided to obtain cultivars with characteristics of tolerance to diseases, adaptability to different edaphoclimatic conditions, and higher yields. In Ecuador, as a result of several breeding programs, the clone CCN 51 was obtained, which gradually expanded through the cacao-production regions of Ecuador, Colombia, Brazil and Peru. Recognized for its high yield and adaptability to different regions and environments, it has become one of the most popular clones for breeding programs and cultivation around the world. This review aims to summarize the current evidence on the origin, genetics, morphological, volatile compounds, and organoleptic characteristics of this clone. Physiological evidence, production dynamics, and floral biology are also included to explain the high yield of CCN 51. Thus, characteristics such as osmotic adjustment, long pollen longevity, and fruit formation are further discussed and associated with high production at the end of the dry period. Finally, the impact of this popular clone on the current and future cacao industry will be discussed highlighting the major challenges for flavor enhancement and its relevance as a platform for the identification of novel genetic markers for cultivar improvement in breeding programs.
Subject(s)
Cacao , Cacao/genetics , Plant Breeding , Ecuador , Brazil , FruitABSTRACT
Recent cadmium (Cd) regulation in chocolate threatens the sustainability of cacao production in Southwest America. Cadmium contamination in cacao beans has not been assessed at a country level. A nationwide survey was conducted in Ecuador to identify the spatial distribution of Cd in cacao beans, as well as soil and agronomic factors involved. Paired soil and plant samples (pods and leaves) were collected at 560 locations. Information on agronomic practices was obtained through a prepared questionnaire for farmers. Total soil Cd averaged 0.44â¯mgâ¯kg-1 which is typical for young and non-polluted soils. Mean Cd concentration in peeled beans was 0.90â¯mgâ¯kg-1 and 45% of samples exceeded the 0.60â¯mgâ¯kg-1 threshold. Bean Cd hotspots were identified in some areas in seven provinces. Multivariate regression analysis showed that bean Cd concentrations increased with increasing total soil Cd and with decreasing soil pH, oxalate-extractable manganese (Mnox) and organic carbon (OC) (R2â¯=â¯0.65), suggesting that Cd solubility in soil mainly affects Cd uptake. Bean Cd concentration decreased a factor of 1.4 as the age of the orchard increased from 4 to 40â¯years. Bean Cd concentration was inconsistently affected by genotype (CCN-51 vs. Nacional), pruning or application of fertilizers. It is concluded that the relatively larger bean Cd concentrations in Ecuador are related to the high Cd uptake capacity of the plants combined with their cultivation on young soils, instead of Cd depleted weathered soils. Mitigation strategies should consider the application of amendments to modify such soil properties to lower soil Cd availability. There is scope for genetic mitigation strategy to reduce bean Cd, but this needs to be properly investigated.