Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 250
Filter
1.
Curr Res Food Sci ; 8: 100773, 2024.
Article in English | MEDLINE | ID: mdl-38840806

ABSTRACT

Food adulteration is a global concern, drawing attention from safety authorities due to its potential health risks. Detecting and categorizing oil adulteration is crucial for consumer safety and food industry integrity. This research explores hyperspectral imaging (HSI) analysis to identify substandard oil adulteration at different stages. Using the non-destructive HSI Specim Fx 10 system, a method for precise and easy imaging-based fraud detection and classification was proposed. The 670 oil samples, including pure (Almond, Mustard, Coconut, Olive) and adulterated (Sunflower, Castor, Liquid Paraffin), were analyzed. The Savitzky-Golay filter preprocessed the images to remove noise and smooth spectral signatures. The oils were identified using various machine learning approaches, including Support Vector Machines, Logistic Regression, Linear Discriminant Analysis, Random Forests, Decision Trees, K-Nearest Neighbors, and Naïve Bayes with Linear Discriminant Analysis excelling in identification. Performance parameters, including precision, recall, F1-score, and overall accuracy, were calculated. The proposed method achieved a validation accuracy of 100%, outperforming numerous state-of-the-art approaches. This study introduces a robust pipeline for effective oil adulteration detection, offering a significant advancement in food safety and quality control.

2.
World J Microbiol Biotechnol ; 40(7): 211, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38777956

ABSTRACT

Human nutrition and health rely on edible oils. Global demand for edible oils is expanding, necessitating the discovery of new natural oil sources subjected to adequate quality and safety evaluation. However, in contrast to other agricultural products, India's edible oil supply is surprisingly dependent on imports. The microbial oil is generated by fermentation of oleaginous yeast Rhodotorula mucilaginosa IIPL32 MTCC 25056 using biodiesel plant byproduct crude glycerol as a fermentable carbon source. Enriched with monounsaturated fatty acid, nutritional indices mapping based on the fatty acid composition of the yeast SCO, suggested its plausible use as an edible oil blend. In the present study, acute toxicity evaluation of the yeast SCO in C57BL/6 mice has been performed by randomly dividing the animals into 5 groups with 50, 300, 2000, and 5000 mg/Kg yeast SCO dosage, respectively, and predicted the median lethal dose (LD50). Detailed blood biochemistry and kidney and liver histopathology analyses were also reported. The functions of the liver enzymes were also evaluated to check and confirm the anticipated toxicity. To determine cell viability and in vitro biocompatibility, the 3T3-L1 cell line and haemolysis tests were performed. The results suggested the plausible use of yeast SCO as an edible oil blend due to its non-toxic nature in mice models.


Subject(s)
Liver , Mice, Inbred C57BL , Rhodotorula , Animals , Mice , Liver/metabolism , Liver/drug effects , Rhodotorula/metabolism , Fermentation , Lethal Dose 50 , Cell Survival/drug effects , Plant Oils/toxicity , Plant Oils/metabolism , Fatty Acids/metabolism , Glycerol/metabolism , Biofuels , Kidney/drug effects , Toxicity Tests, Acute , Male , Administration, Oral , India
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124419, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38733916

ABSTRACT

The utilization of UV-Vis spectroscopy with amino-functionalized carbon quantum dots (NCQD) as a positive fluorophore reagent for chloride sensing in oil marks a notable advancement in analytical spectroscopy chemistry. This approach streamlines the detection process by eliminating the need for lengthy procedures and pretreatment steps typically associated with chloride detection in edible oil. By incorporating NCQD in chloride detection within the oil matrix, the wavelength analysis transitions from the UV to the visible region. This shift eliminates interference from oil matrix interactions, ensuring more accurate results. Molecular analysis of NCQD reveals significant shifts in its Fourier Transformation Infrared and photoluminescence spectroscopy peaks due to interaction with chloride in edible oil. It has two impressive sensitivity ranges spanning from 0.1-1.0 to 1.0-8.0 ppm, with a value of -0.4656 au. ppm-1 (R2 = 0.998) and -0.0361 au. ppm-1 (R2 = 0.931), respectively, the technique meets regulatory standards while achieving a low limit of detection (LOD) of 0.1 ppm. This places it on par with conventional methods and commercial sensors. The NCQD-UV-Vis spectroscopy method not only enhances the efficiency and accuracy of chloride detection but also holds promise for various industrial applications requiring simple and precise monitoring of chloride levels in oil samples.

4.
Foods ; 13(8)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38672846

ABSTRACT

The industrial processing of mandarin fruits yields a large amount of peel waste, resulting in economic losses and environmental pollution. The peels of mandarin fruits are a good source of biomass and active substances that can be used to produce food packaging systems. In this study, active food packaging films were prepared based on sodium alginate and twelve varieties of mandarin peel powder. The structures, properties, and corn oil packaging performance of the films were compared. Results showed that the twelve varieties of mandarin peel powder differed in pectin, lipid, protein, crude fiber, and total phenol contents. The prepared films all exhibited a yellow color, 117.73-152.45 µm thickness, 16.39-23.62% moisture content, 26.03-90.75° water contact angle, 5.38-8.31 × 10-11 g m-1 s-1 Pa-1 water vapor permeability, 5.26-12.91 × 10-20 m2 s-1 Pa-1 oxygen permeability, 4.87-7.90 MPa tensile strength, and 13.37-24.62% elongation at break. Notably, the films containing mandarin peel powder with high pectin and lipid contents showed high moisture/oxygen barrier ability and mechanical properties. The films containing mandarin peel powder with high total phenol content exhibited high antioxidant- and antimicrobial-releasing abilities and good performance in delaying corn oil oxidation. Overall, the results suggested that the films have good application potential in active food packaging.

5.
Food Chem ; 449: 139190, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38579653

ABSTRACT

Linoleic acid (LA) detection and edible oils discrimination are essential for food safety. Recently, CsPbBr3@SiO2 heterostructures have been widely applied in edible oil assays, while deep insights into solvent effects on their structure and performance are often overlooked. Based on the suitable polarity and viscosity of cyclohexane, we prepared CsPbBr3@SiO2 Janus nanoparticles (JNPs) with high stability in edible oil and fast halogen-exchange (FHE) efficiency with oleylammonium iodide (OLAI). LA is selectively oxidized by lipoxidase to yield hydroxylated derivative (oxLA) capable of reacting with OLAI, thereby bridging LA content to naked-eye fluorescence color changes through the anti-FHE reaction. The established method for LA in edible oils exhibited consistent results with GC-MS analysis (p > 0.05). Since the LA content difference between edible oils, we further utilized chemometrics to accurately distinguish (100%) the species of edible oils. Overall, such elaborated CsPbBr3@SiO2 JNPs enable a refreshing strategy for edible oil discrimination.


Subject(s)
Linoleic Acid , Oxides , Plant Oils , Titanium , Oxides/chemistry , Plant Oils/chemistry , Linoleic Acid/chemistry , Calcium Compounds/chemistry , Solvents/chemistry , Nanoparticles/chemistry , Silicon Dioxide/chemistry
6.
J Texture Stud ; 55(2): e12829, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38581147

ABSTRACT

Tribology is the science of measuring friction between surfaces. While it has been widely used to investigate texture sensations of food applications, it is seldom applied in pure edible oil systems. In this research, we measured friction, viscosity, and solid fat content (SFC) of nine vegetable oils at 30 and 60°C. Polarized static microscopy was used to assess crystal formation between 60 and 30°C. Descriptive sensory analysis and quantification of oral oil coatings were performed on the oils at 60°C. Expressing the friction factor of oil over the Hersey number (calculated using high sheer-viscosity values) showed no differences in friction between 30 and 60°C, except for shea stearin. Static microscopy revealed crystallization occurred at 30°C for shea stearin, whereas no or few crystals were present for other oils. At 30°C, friction at 1 × 10-2 m/s showed an inverse correlation with SFC (R = -0.95) and with high shear rate viscosity (R = -0.84), as well as an inverse correlation (R = -0.73) with "oily mouthcoating" perception. These results suggest that friction could be a predictor of fat-related perceptions of simple oil systems. Additionally, we hypothesize that the presence of crystals in oils could lower friction via a ball-bearing lubrication mechanism.


Subject(s)
Food , Plant Oils , Lubrication , Viscosity , Perception
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124148, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38492463

ABSTRACT

Oleogel represents a promising healthier alternative to act as a substitute for conventional fat in various food products. Oil selection is a crucial factor in determining the technological properties and applications of oleogels due to their distinct fatty acid composition, molecular weight, and thermal properties, as well as the presence of antioxidants and oxidative stability. Hence, the relevance of monitoring oleogel properties by non-destructive, eco-friendly, portable, fast, and effective techniques is a relevant task and constitutes an advance in the evaluation of oleogels quality. Thus, the present study aims to classify oleogels rapidly and reliably, without the use of chemicals, comparing two handheld near infrared (NIR) spectrometers and one portable Raman device. Furthermore, two different multivariate methods are compared for oleogel classification according to oil type. Three types of oleogels were prepared, containing 95 % oil (sunflower, soy, olive) and 5 % beeswax as a structuring agent, melted at 90 °C. Polarized light microscopy (PLM) images were acquired, and fatty acid composition, peroxide index and free fatty acid content were determined using official methods. A total of 240 oleogel and 92 oil spectra were obtained for each instrument. After spectra pretreatment, Principal Component Analysis (PCA) was performed, and two classification methods were investigated. The Data Driven - Soft Independent Modelling of Class Analogy (DD-SIMCA) and Partial Least Squares Discriminant Analysis (PLS-DA) models demonstrated 95 % to 100 % of accuracy for the external test set. In conclusion, the use of vibrational spectroscopy using handheld and portable instruments in tandem with chemometrics showed to be an efficient alternative for classifying oils and oleogels and could be extended to other food samples. Although the classification of vegetable oils by NIR is widely used and known, this work proposes the classification of different types of oil in oleogel matrices, which has not yet been explored in the literature.


Subject(s)
Chemometrics , Plant Oils , Fatty Acids/chemistry , Spectrum Analysis , Organic Chemicals
8.
Front Public Health ; 12: 1303786, 2024.
Article in English | MEDLINE | ID: mdl-38450149

ABSTRACT

Introduction: Multisectoral action is a central component of the global response to the rising prevalence of non-communicable diseases (NCDs). In this paper we aimed to unpack the definition of multisectoral action and provide an overview of the historical context, challenges, and recommendations alongside three country case studies: salt reduction in the UK, tobacco legislation in Nigeria, and regulation of edible oils in Iran. Methods: We used an iterative review process to select three country case studies from a list of 20 potential cases previously identified by WHO. At our third round of review we unanimously agreed to focus on salt reduction in the UK, tobacco regulation in Nigeria, and edible oil regulation in Iran as these represented rich cases on diverse risk factors from three different world regions that we felt offered important lessons. We conducted literature reviews to identify further data for each case study. Results: Across the three studies a number of important themes emerged. We found that multisectoral approaches demand the often difficult reconciliation of competing and conflicting values and priorities. Across our three chosen cases, commercial interests and free trade agreements were the most common obstacles to successful multisectoral strategies. We found that early consultative stakeholder engagement and strong political and bureaucratic leadership were necessary for success. Discussion: The complex multi-rooted nature of NCDs requires a multisectoral approach, but the inevitable conflicts that this entails requires careful navigation.


Subject(s)
Noncommunicable Diseases , Leadership , Noncommunicable Diseases/prevention & control , Sodium Chloride, Dietary , Tobacco Products/legislation & jurisprudence
9.
Sci Rep ; 14(1): 4588, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38409412

ABSTRACT

This paper proposes a refrigerant cooling method using an inner tube in a storage tank to improve the cooling performance and thermal uniformity during the storing of edible oil. With a prototype of an oil tank in Central Grain Reserve of Zhenjiang, the experimental oil tank was built in a scale of 50:1. Both natural and manual cooling experiments were carried out for the experimental tank. The manual cooling process involved two supplying modes for the refrigerant tube (top and bottom) and four different refrigerant temperatures (10 â„ƒ, 12 â„ƒ, 14 â„ƒ, 16 â„ƒ). The experimental results show that, compared with natural cooling, manual cooling can effectively reduce the temperature difference and thermal stratification between upper and lower layers. The temperature difference is 6.79 â„ƒ, 1.93 â„ƒ, and 3.67 â„ƒ for the natural cooling, manual top supplying, and manual bottom supplying mode, respectively. Furthermore, for the two manual modes, the cooling efficiency of bottom supplying is 21.4% higher than that of the top supplying, and the average oil temperature drops by 0.8-1 â„ƒ. Based on experimental results, different working conditions (20, 40, and 60 ml/s) were simulated to determine the optimal flow rate for bottom supplying mode. The simulation results indicate that the low flow rate (20 ml/s) corresponds to the best thermal uniformity, and the maximum temperature has no obvious change under different flow rate conditions. Therefore, it is not necessary to increase the flow rate to improve cooling efficiency considering the rising energy consumption.

10.
Food Res Int ; 180: 114069, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38395558

ABSTRACT

While brown rice (BR) has numerous nutritional properties, the consumption potential of which is seriously restricted since the poor cooking quality and undesirable flavor. Here, edible oils (pork lard and corn oil, 1-5 wt%) were incorporated during the cooking of BR following heat moisture treatment. Incorporating corn oil rather than lard significantly ameliorated the texture properties (e.g. hardness, cohesiveness, and chewiness) and sensory properties of cooked BR. Both lard- and corn oil-incorporated cooked BR showed obvious structural changes accompanied by the formation of amylose-lipid complexes during cooking. It was confirmed that the incorporation of lard and corn oil allowed a higher degree of short-range molecular order, more V-type starch crystallites, and elevated nano-structural arrangements. Additionally, a decreased hardness (from 559.04 g to 424.18 g and 385.91 g, respectively) and enriched resistant starch (RS) were also observed, the highest RS content (15.95 % and 16.32 %, respectively) was observed when 1 wt% of lard and corn oil were incorporated.


Subject(s)
Oryza , Oryza/chemistry , Corn Oil , Hot Temperature , Cooking , Starch/chemistry
11.
Heliyon ; 10(3): e25489, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38356593

ABSTRACT

Food fortification has always been an effective and proven practice for eradicating various nutrient deficiencies in Bangladesh. This study investigated different quality parameters of three types (soybean, sunflower, and palm) of extensively consumed fortified edible oils in Bangladesh. Vitamin A analysis has shown that the vitamin A fortification level of most of the oil brands (73 %) did not comply with the Bangladesh Standard and Testing Institution (BSTI) standards (1.5-3.0 mg/100 g). Vitamin A contents of soybean, sunflower, and palm oil brands ranged from 0.13 to 2.06, 0.92-1.34, and 0.99-1.31 mg/100 g, respectively. Inter-brand values of vitamin A were also significantly different (p < 0.05). The majority of the samples were found to be within the acceptable ranges of Codex and BSTI, taking into account the significant chemical quality parameters for soybean, sunflower, and palm oil, such as acid value (0.31-0.93, 0.31-0.56, 0.39-0.81 mg KOH/g), free fatty acid (0.15-0.46, 0.15-0.28, 0.2-0.41 %), saponification (188.64-196.35, 186.53-188, 197.05-199.86 mg KOH/g), and peroxide values (0.06-2.9, 0.65-1.58, 1.35-1.75 meq O2/kg) respectively. All the brands' physical quality parameters (density, specific gravity, pH, viscosity, smoke point, color, and RI) complied with Codex standards. Various physical and chemical quality parameters were analyzed for significant correlations at 0.01 and 0.05 levels of significance. Remarkably, significant correlations were found between vitamin A and peroxide value (p < 0.01), iodine value and viscosity (p < 0.01), saponification value and viscosity (p < 0.01), pH and viscosity (p < 0.01), and saponification value and pH (p < 0.05). In conclusion, although the vitamin A status of most of the fortified edible oil brands was poor, the key quality indicators (except iodine value) of most of the oils were within the Codex and BSTI standard limits and were acceptable for human consumption.

12.
Food Chem ; 443: 138555, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38281417

ABSTRACT

The standard method used to quantify free acidity (FA) in vegetable oil is neutralization titration, which requires many toxic chemicals and depends on an analyst's experience in detecting endpoints. Here, a digital image colorimetry (DIC) method using a smartphone camera was developed to measure FA in vegetable oils. A cupric acetate solution was used to produce the colorimetric reaction. The coloured solutions were imaged, and R values (from the RGB colour system) were calibrated against the respective FAs in the standards. The FA values of the samples were determined by standard addition calibration. These results were compared to measurements of FA obtained by the standard titrimetric method. An excellent correlation was obtained, with an R2 of 0.98 and a mean absolute error of 0.06%. The chemicals needed for analysis were reduced by approximately 90%. Thus, DIC is a less subjective and more economical method for determining FA in vegetable oils.


Subject(s)
Colorimetry , Plant Oils , Plant Oils/analysis , Colorimetry/methods , Vegetables , Smartphone
13.
Antonie Van Leeuwenhoek ; 117(1): 7, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38170394

ABSTRACT

Edible oil is used in humans' daily lives, and the degradation of edible oil is a key process in sewage water treatment and in compost production from food wastes. In this study, a mixed microbial strain EN00, which showed high edible plant oil (EPO)-consumption activity, was obtained from soil via enrichment cultivation. A fungal strain EN01 was isolated from EN00 and relegated to Fusarium keratoplasticum, based on the nucleotide sequences of the TEF1-α gene. Strain EN01 eliminated more than 90% of hydrophobic compounds from the medium containing 1.0% (w/v) EPO within 10 days at 30 °C. The rate of consumption of EPO by EN01 was comparable with that of EN00, suggesting that EN01 was the main microorganism involved in the EPO-consumption ability of EN00. Strain EN01 efficiently utilized EPO as a sole carbon source. The EPO-consumption rate of EN01 was highest among six tested strains of Fusarium solani species complex (FSSC), while two FSSC strains of F. mori and F. cuneirostrum, whose phylogenetic relationships were relatively distant from EN01, had little EPO-eliminating activity. This data implies that the potent EPO-eliminating activity is not general in FSSC strains but is restricted to selected members of this complex. EN01 showed good growth at 25-30 °C, in media with an initial pH of 4-10, and in the presence of 0-3% (w/v) sodium chloride. Although the safety including pathogenicity must be strictly evaluated, some FSSC strains including EN01 have potentials for use in the degradation and elimination of edible oil.


Subject(s)
Fusarium , Humans , Plants, Edible , Phylogeny , Food
14.
Spectrochim Acta A Mol Biomol Spectrosc ; 310: 123900, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38262292

ABSTRACT

This study aims to address the challenge of matrix interference of various types of edible oils on intrinsic fluorescence of aflatoxin B1 (AFB1) by developing a novel solution. Considering the fluorescence internal filtering effect, the absorption (µa) and reduced scattering (µ's) coefficients at dual wavelengths (excitation: 375 nm, emission: 450 nm) were obtained by using integrating sphere technique, and were used to improve the quantitative prediction results for AFB1 contents in six different kinds of edible oils. A research process of "Monte Carlo (MC) simulation - phantom verification - actual sample validation" was conducted. The MC simulation was used to determine interference rule and correction parameters for fluorescence, the results indicated that the escaped fluorescence flux nonlinearly decreased with the µa, µ's at emission wavelength (µa,em, µ's,em) and µa at excitation wavelength (µa,ex), however increased with the µ's at excitation wavelength (µ's,ex). And the required optical parameters to eliminate the interference of matrix on fluorescence intensity are: effective attenuation coefficients at excitation and emission wavelengths (µeff,ex, µeff,em) and µ's,ex. Phantom verification was conducted to explore the feasibility of fluorescence correction based on the identified parameters by MC simulation, and determine the optimal machine learning method. The modelling results showed that least squares support vector regression (LSSVR) model could reach the best performance. Three kinds of edible oil (peanut, rapeseed, corn), each with two brands were used to prepare oil samples with different AFB1 contamination. The LSSVR model for AFB1 based on µeff,ex, µeff,em, µ's,ex and fluorescence intensity at 450 nm was calibrated, both correlation coefficients for calibration (Rc) and the validation (Rv) sets could reach 1.000, root mean square errors for calibration (RMSEC) and the validation (RMSEV) sets were as low as 0.038 and 0.099 respectively. This study proposed a novel method which is based solely on the absorption, scattering, and fluorescence characteristics at excitation and emission wavelengths to achieve accurate prediction of AFB1 content in different types of vegetable oils.


Subject(s)
Algorithms , Oils , Computer Simulation , Phantoms, Imaging , Monte Carlo Method
15.
Int J Biol Macromol ; 254(Pt 3): 127897, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37956815

ABSTRACT

Due to the high heat and chemical stability of aflatoxin B1 (AFB1) with significant impacts on humans/animals and thus it needs to develop a practical and efficient approach for its removal. Herein, we fabricated a magnetic Pd-chitosan/glutaraldehyde/rice husk/hercynite (Pd@CRH-x) composite for efficient detoxification of AFB1. The Pd@CRH-x was obtained by a simple wet-impregnation procedure of CRH complexes followed by pyrolysis. The results confirmed that the unique structure of Pd@CRH-400 effectively improves dispersity, and mass transfer subsequently enhancing removal efficiency in batch conditions. Results indicate 94.30 % of AFB1 was efficiently degraded by 0.1 mg mL-1 Pd@CRH-400 with 4.0 mM H2O2 at wide pH ranges (3.0-10) at 60 min with a decomposition rate constant of 0.0467 min-1. Besides, by comparing the quality factors of edible oil (i.e., acid value, peroxide value, iodine value, moisture, volatile matters, anisidine value, and fatty acid composition), it was confirmed that there was no obvious influence on the physicochemical indicators of edible oil after removal/storage process. Subsequently, the systematic kinetic study and AFB1 degradation mechanism were presented. This study provides a new strategy for the efficient construction of controllable and dispersed Pd-based catalysts using CRH-x as a spatial support for alleviating the risk of toxic pollutants.


Subject(s)
Chitosan , Oryza , Humans , Animals , Aflatoxin B1/chemistry , Hydrogen Peroxide , Oryza/chemistry , Magnetic Phenomena
16.
Molecules ; 28(24)2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38138638

ABSTRACT

With the proposal of replacing toxic solvents with non-toxic solvents in the concept of green chemistry, the development and utilization of new green extraction techniques have become a research hotspot. Phenolic compounds in edible oils have good antioxidant activity, but due to their low content and complex matrix, it is difficult to achieve a high extraction rate in a green and efficient way. This paper reviews the current research status of novel extraction materials in solid-phase extraction, including carbon nanotubes, graphene and metal-organic frameworks, as well as the application of green chemical materials in liquid-phase extraction, including deep eutectic solvents, ionic liquids, supercritical fluids and supramolecular solvents. The aim is to provide a more specific reference for realizing the green and efficient extraction of polyphenolic compounds from edible oils, as well as another possibility for the future research trend of green extraction technology.

17.
Food Res Int ; 174(Pt 1): 113628, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37986479

ABSTRACT

Protein-bound Nε-(carboxymethyl)lysine (CML), an advanced glycation end product within meat products, poses a potential health risk to humans. The objective of this study was to explore the impact of various edible oils on the formation of protein-bound CML in roasted pork patties. Eleven commercially edible oils including lard oil, corn oil, palm oil, olive oil, flaxseed oil, blended oil, camellia oil, walnut oil, soybean oil, peanut oil, and colza oil were added to pork tenderloin mince, respectively, at a proportion of 4 % to prepare raw pork patties. The protein-bound CML contents in the pork patties were determined by HPLC-MS/MS before and after roasting at 200 °C for 20 min. The results indicated that walnut oil, flaxseed oil, colza oil, olive oil, lard oil, corn oil, blended oil, and palm oil significantly reduced the accumulation of protein-bound CML in pork patties, of which the inhibition rate was in the 24.43 %-37.96 % range. Moreover, the addition of edible oil contributed to a marginal reduction in the loss of lysine. Meanwhile, glyoxal contents in pork patties were reduced by 16.72 %-43.21 % after roasting. Other than blend oil, all the other edible oils restrained protein oxidation in pork patties to varying degrees (between 20.16 % and 61.26 %). In addition, camellia oil, walnut oil, and flaxseed oil increased TBARS values of pork patties by 2.2-8.6 times when compared to the CON group. After analyzing the fatty acid compositions of eleven edible oils, five main fatty acids (palmitic acid, stearic acid, oleic acid, linoleic acid, and linolenic acid) were selected to establish Myofibrillar protein-Glucose-fatty acids systems to simulate the roasting process. The results showed that palmitic acid, oleic acid, linoleic acid, and linolenic acid obviously mitigated the formation of myofibrillar protein-bound CML, exhibiting suppression rates ranging from 10.38 % to 40.32 %. In conclusion, the addition of specific edible oil may curb protein-bound CML production in roasted pork patty by restraining protein or lipid oxidation, reducing lysine loss, and suppressing glyoxal production, which may be attributed to the fatty acid compositions of edible oils. This finding provides valuable guidance for the selection of healthy roasting oils in the thermal processing of meat products.


Subject(s)
Pork Meat , Red Meat , Animals , Humans , Swine , Olive Oil , Linseed Oil , Lysine , Corn Oil , Tandem Mass Spectrometry , Plant Oils , Linoleic Acid , Palmitic Acid , Oleic Acid , Glyoxal , Linolenic Acids
18.
J Agric Food Chem ; 71(39): 14342-14350, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37729664

ABSTRACT

The ubiquity of micro-/nanoplastics poses a visible threat to the environment, aquatic organisms, and human beings and has become a global concern. Here, we proposed a liquid interface-based strategy using surface-enhanced Raman spectroscopy to coassemble nanoplastics and gold nanoparticles into a dense and homogeneous plasmonic array, thereby enabling the rapid and sensitive detection of trace nanoplastics. In addition, due to the uniqueness of the oil-water immiscible two-phase interface, we achieved ideal results for the detection of nanoplastics in a complex matrix (e.g., aqueous environment and edible oil) with a detection limit of µg/mL. With the aid of the principal component analysis algorithm, the differentiation and identification of multiple nanoplastic components (e.g., polystyrene, polyethylene, and polyethylene terephthalate) in aqueous environments and common hazards (e.g., Bap and Phe) in edible oil were achieved. Therefore, our self-assembled plasmonic arrays are expected to be used for monitoring environmental pollution and food safety.


Subject(s)
Metal Nanoparticles , Microplastics , Humans , Metal Nanoparticles/chemistry , Spectrum Analysis, Raman/methods , Gold/chemistry , Water/chemistry , Oils
19.
Article in English | MEDLINE | ID: mdl-37768112

ABSTRACT

Methods for determining MOSH and MOAH in edible oils showed major problems with interlaboratory comparability of analytical results, especially in the lower concentration range below 10 mg/kg. However, a method with improved sensitivity and reproducibility is urgently needed to obtain a valid data basis for minimization efforts. To cope this problem a new method was created in 2020. The method was established as the standard method DGF C-VI 22 (20) of the German Society for Fat Science e.V. (DGF). For the development of this method different sample epoxidation approaches have been performed, evaluated and improved. Additionally, a saponification, a decision tree for sample preparation, an upstream clean-up column and a system suitability test were introduced. The focus was on reliability and interlaboratory comparability over all edible oil matrices up to a LOQ of 1 mg/kg. The optimized method was validated in terms of trueness and precision in a collaborative trail with 11 laboratories. The achieved recovery rates of 89-105% MOSH and 70-105% MOAH met the JRC requirements. Method and validation results were obtained with HorRat values between 1.3 and 1.8 for MOSH and MOAH.


Subject(s)
Hydrocarbons, Aromatic , Hydrocarbons, Aromatic/analysis , Mineral Oil/analysis , Chromatography, Gas/methods , Reproducibility of Results , Food Contamination/analysis , Oils
20.
Front Nutr ; 10: 1203932, 2023.
Article in English | MEDLINE | ID: mdl-37545586

ABSTRACT

The dietary intervention has demonstrated effectiveness in improving hyperlipidemia and obesity. Woody edible oils are rich in unsaturated fatty acids (UFAs) that could positively affect lipid metabolism. In this study, the blended oil (BLO), a balanced UFA supplement, constituted by Zanthoxylum bungeanum (Chinese Red Pepper) seed oil, walnut (Juglans regia) oil, camellia (Camema oleifera) seed oil and perilla (Perilla frutescens) seed oil was established referring to the Chinese dietary reference intakes, in which the ratios of monounsaturated/polyunsaturated fatty acids and ω-6/ω-3 polyunsaturated fatty acids were 1:1 and 4:1, respectively. The BLO was administrated to KM mice fed a high-fat diet (HFD) by gavage every day at a dose of 3.0 mL/kg·bw for 10 weeks to assess its effects on serum lipid levels, liver antioxidant activities and gut microbial composition. The results showed that the BLO improved hepatic steatosis, liver oxidative stress, and serum lipid levels. Additionally, there was an increased abundance of Lactobacillus, Allobaculum, and Blautia, along with a decreased abundance of Staphylococcus in cecal contents. These changes were found to be positively correlated with the metabolic improvements, as indicated by Spearman's correlation analysis. These findings implied the practicality of the balanced unsaturated fatty acid consumption in preventing hyperlipidemia and obesity.

SELECTION OF CITATIONS
SEARCH DETAIL
...