Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 118
Filter
Add more filters











Publication year range
1.
Microb Pathog ; 196: 106947, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39293726

ABSTRACT

With the alarming rise of antibiotic-resistant bacteria, novel antibacterial substances are urgently needed for controlling and treating multidrug-resistant bacterial infections. Edwardsiella piscicida is an important zoonotic enteric pathogen, that can cause systemic hemorrhagic septicemia in fish. Carvacrol, a major terpene of oregano essential oil, has a wide range of antibacterial activities. This study aimed to analyze the effect of carvacrol on the growth and virulence of E. piscicida in vitro. The minimum inhibitory concentration (MIC) of carvacrol against E. piscicida was 125 µg/mL. The sub-inhibitory concentrations of carvacrol significantly decreased the biofilm formation of E. piscicida in a dose dependent manner, whereas increased the hemolytic activity with a negative correlation. The quantitative real-time PCR results showed that carvacrol at sub-MICs downregulated the expression of related virulence genes, including flagellum (fimA, fliC, flgN), hemolysins (ethA, ethB), quorum sensing systems (luxR, qseB), T3SS (esrB, esrC) and T6SS (evpB, evpC). Moreover, carvacrol (≤1/8 MIC) reduced the cytotoxicity, adherence and internalization activities of E. piscicida to the EPC cells. In vivo trial, the diet mixed with carvacrol increased the survival of zebrafish infected with E. piscicida. Overall, these findings suggested that carvacrol might be a promising therapeutic agent against E. piscicida infection in aquaculture.

2.
J Fish Dis ; : e14017, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39304982

ABSTRACT

Edwardsiella piscicida is an emerging bacterial pathogen and the aetiological agent of edwardsiellosis among cultured and wild fish species globally. The increased frequency of outbreaks of this Gram-negative, facultative intracellular pathogen pose not only a threat to the aquaculture industry but also a possible foodborne/waterborne public health risk due to the ill-defined zoonotic potential. Thus, understanding the role of temperature on the virulence of this emerging pathogen is essential for comprehending the pathogenesis of piscine edwardsiellosis in the context of current warming trends associated with climate change, as well as providing insight into its zoonotic potential. In this study, significant temperature-dependent alterations in bacterial growth patterns were observed, with bacterial isolates grown at 17°C displaying higher peak growth sizes, extended lag times, and slower maximal growth rates than isolates grown at 27or 37°C. When E. piscicida isolates were grown at 37°C compared to 27 and 17°C, mass spectrometry analysis of the E. piscicida proteome revealed significant downregulation of crucial virulence proteins, such as Type VI secretion system proteins and flagellar proteins. Although in vivo models of infection are warranted, this in vitro data suggests possible temperature-associated alterations in the virulence and pathogenic potential of E. piscicida in poikilotherms and homeotherms.

3.
Microbiol Res ; 289: 127912, 2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39326350

ABSTRACT

Mucosal immunity typically involves innate and adaptive immune cells, while the cellular mechanism of teleost's intestinal immune cells that engages gut homeostasis against bacterial infection remains largely unknown. Taking advantage of the enteric fish pathogen (Edwardsiella piscicida) infection-induced intestinal inflammation in turbot (Scophthalmus maximus), we find that ß-glucan training could mitigate the bacterial infection-induced intestinal inflammation. Through single-cell transcriptome profiling and cellular function analysis, we identify that E. piscicida infection could tune down the activation of intestinal Th17 cells, while ß-glucan-training could preserve the potential to amplify and restore the function of intestinal Th17 cells. Moreover, through pharmacological inhibitor treatment, we identify that Th17 cells are essential for ameliorating bacterial infection-induced intestinal inflammation in teleost. Taken together, these results suggest a new concept of trained immunity activation to regulate the intestinal Th17 cells' function, which might contribute to better developing strategies for maintaining gut homeostasis against bacterial infection.

4.
Fish Shellfish Immunol ; 152: 109770, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39025166

ABSTRACT

Prohibitin 1 (PHB1) is ubiquitously expressed in multiple compartments within cells and is involved in the cell cycle, cell signaling, apoptosis, transcriptional regulation, and mitochondrial biogenesis at the cellular level and in the inflammation-associated and immunological functions of B and T lymphocytes. PHB1 is an important protein that performs antioxidant regulation and immune functions inside and outside cells but has not been sufficiently studied in teleost fish. Our study aimed to elucidate the functional properties and gain new insights into the biological processes and immune system of red seabream (Pagrus major), a commercially important fish cultured in South Korea and East Asia. PHB1 mRNA was most abundantly expressed in the head kidney of healthy red seabream, and significant changes in its expression were observed after artificial infection with bacteria and viruses. On analysis, reporter gene was also significantly upregulated by polyinosinic-polycytidylic acid, lipopolysaccharides, and hydrogen peroxide. Consequent to the functional characterization of PHB1 in cells via recombinant protein preparation, the activity of leukocytes was enhanced and the reactive oxygen species-induced stress in red blood cells was reduced. The results reveal the functional characteristics of PHB1 and provide new insights into the biological processes and immune system of P. major, with beneficial implications in the study of stress responses.


Subject(s)
Fish Diseases , Fish Proteins , Gene Expression Profiling , Gene Expression Regulation , Immunity, Innate , Prohibitins , Repressor Proteins , Animals , Fish Proteins/genetics , Fish Proteins/immunology , Repressor Proteins/genetics , Repressor Proteins/metabolism , Repressor Proteins/immunology , Fish Diseases/immunology , Immunity, Innate/genetics , Gene Expression Regulation/immunology , Gene Expression Profiling/veterinary , Poly I-C/pharmacology , Phylogeny , Sea Bream/immunology , Sea Bream/genetics , DNA Virus Infections/immunology , DNA Virus Infections/veterinary , Amino Acid Sequence , Sequence Alignment/veterinary , Lipopolysaccharides/pharmacology , Perciformes/immunology , Perciformes/genetics , Iridoviridae/physiology , Vibrio/physiology
5.
Mar Biotechnol (NY) ; 26(4): 658-671, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38888725

ABSTRACT

Intracellular bacteria such as those belonging to the genus Edwardsiella can survive and proliferate within macrophages. However, the detailed mechanisms underlying the host macrophage immune response and pathogen evasion strategies remain unknown. To advance the field of host macrophage research, we successfully established transgenic (Tg) Japanese medaka Oryzias latipes that possesses fluorescently visualized macrophages. As a macrophage marker, the macrophage-expressed gene 1.1 (mpeg1.1) was selected because of its predominant expression across various tissues in medaka. To validate the macrophage characteristics of the fluorescently labeled cells, May-Grünwald Giemsa staining and peroxidase staining were conducted. The labeled cells exhibited morphological features consistent with those of monocyte/macrophage-like cells and tested negative for peroxidase activity. Through co-localization studies, the fluorescently labeled cells co-localized with E. piscicida in the intestines and kidneys of infected medaka larvae, confirming the ingestion of bacteria through phagocytosis. In addition, the labeled cells expressed macrophage markers but lacked a neutrophil marker. These results suggested that the fluorescently labeled cells of Tg[mpeg1.1:mCherry/mAG] medaka were monocytes/macrophages, which will be useful for future studies aimed at understanding the mechanisms of macrophage-mediated bacterial infections.


Subject(s)
Animals, Genetically Modified , Edwardsiella , Enterobacteriaceae Infections , Fish Diseases , Macrophages , Oryzias , Phagocytosis , Animals , Oryzias/genetics , Macrophages/microbiology , Macrophages/metabolism , Macrophages/immunology , Edwardsiella/genetics , Enterobacteriaceae Infections/veterinary , Enterobacteriaceae Infections/immunology , Enterobacteriaceae Infections/microbiology , Fish Diseases/microbiology , Fish Diseases/immunology , Larva/microbiology , Larva/genetics , Larva/immunology
6.
Microbiol Res ; 285: 127770, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38788352

ABSTRACT

Edwardsiella piscicida is an acute marine pathogen that causes severe damage to the aquaculture industry worldwide. The pathogenesis of E. piscicida is dependent mainly on the type III secretion system (T3SS) and type VI secretion system (T6SS), both of which are critically regulated by EsrB and EsrC. In this study, we revealed that fatty acids influence T3SS expression. Unsaturated fatty acids (UFAs), but not saturated fatty acids (SFAs), directly interact with EsrC, which abolishes the function of EsrC and results in the turn-off of T3/T6SS. Moreover, during the in vivo colonization of E. piscicida, host fatty acids were observed to be transported into E. piscicida through FadL and to modulate the expression of T3/T6SS. Furthermore, the esrCR38G mutant blocked the interaction between EsrC and UFAs, leading to dramatic growth defects in DMEM and impaired colonization in HeLa cells and zebrafish. In conclusion, this study revealed that the interaction between UFAs and EsrC to turn off T3/T6SS expression is essential for E. piscicida infection.


Subject(s)
Bacterial Proteins , Edwardsiella , Enterobacteriaceae Infections , Fatty Acids, Unsaturated , Fish Diseases , Type III Secretion Systems , Type VI Secretion Systems , Zebrafish , Animals , Edwardsiella/genetics , Edwardsiella/metabolism , Type III Secretion Systems/metabolism , Type III Secretion Systems/genetics , Enterobacteriaceae Infections/microbiology , Humans , HeLa Cells , Zebrafish/microbiology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Type VI Secretion Systems/metabolism , Type VI Secretion Systems/genetics , Fatty Acids, Unsaturated/metabolism , Fish Diseases/microbiology , Gene Expression Regulation, Bacterial
7.
Sci Rep ; 14(1): 9399, 2024 04 24.
Article in English | MEDLINE | ID: mdl-38658654

ABSTRACT

Edwardsiella piscicida causes significant economic losses to the aquaculture industry worldwide. Phage-based biocontrol methods are experiencing a renaissance because of the spread of drug-resistant genes and bacteria resulting from the heavy use of antibiotics. Here, we showed that the novel Edwardsiella phage EPP-1 could achieve comparable efficacy to florfenicol using a zebrafish model of Edwardsiella piscicida infection and could reduce the content of the floR resistance gene in zebrafish excreta. Specifically, phage EPP-1 inhibited bacterial growth in vitro and significantly improved the zebrafish survival rate in vivo (P = 0.0035), achieving an efficacy comparable to that of florfenicol (P = 0.2304). Notably, integrating the results of 16S rRNA sequencing, metagenomic sequencing, and qPCR, although the effects of phage EPP-1 converged with those of florfenicol in terms of the community composition and potential function of the zebrafish gut microbiota, it reduced the floR gene content in zebrafish excreta and aquaculture water. Overall, our study highlights the feasibility and safety of phage therapy for edwardsiellosis control, which has profound implications for the development of antibiotic alternatives to address the antibiotic crisis.


Subject(s)
Anti-Bacterial Agents , Bacteriophages , Edwardsiella , Enterobacteriaceae Infections , Thiamphenicol/analogs & derivatives , Zebrafish , Animals , Zebrafish/microbiology , Edwardsiella/genetics , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/veterinary , Enterobacteriaceae Infections/therapy , Bacteriophages/genetics , Bacteriophages/physiology , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Gastrointestinal Microbiome , Phage Therapy/methods , RNA, Ribosomal, 16S/genetics , Fish Diseases/microbiology , Fish Diseases/therapy , Fish Diseases/prevention & control , Thiamphenicol/pharmacology , Aquaculture/methods
8.
Microbiol Res ; 284: 127735, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38678681

ABSTRACT

The production of endogenous hydrogen sulfide (H2S) is an important phenotype of bacteria. H2S plays an important role in bacterial resistance to ROS and antibiotics, which significantly contributes to bacterial pathogenicity. Edwardsiella piscicida, the Gram-negative pathogen causing fish edwardsiellosis, has been documented to produce hydrogen sulfide. In the study, we revealed that Ferric uptake regulator (Fur) controlled H2S synthesis by activating the expression of phsABC operon. Besides, Fur participated in the bacterial defense against ROS and cationic antimicrobial peptides and modulated T3SS expression. Furthermore, the disruption of fur exhibited a significant in vivo colonization defect. Collectively, our study demonstrated the regulation of Fur in H2S synthesis, stress response, and virulence, providing a new perspective for better understanding the pathogenesis of Edwardsiella.


Subject(s)
Bacterial Proteins , Edwardsiella , Enterobacteriaceae Infections , Fish Diseases , Gene Expression Regulation, Bacterial , Hydrogen Sulfide , Stress, Physiological , Edwardsiella/genetics , Edwardsiella/pathogenicity , Hydrogen Sulfide/metabolism , Animals , Virulence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Enterobacteriaceae Infections/microbiology , Fish Diseases/microbiology , Repressor Proteins/metabolism , Repressor Proteins/genetics , Reactive Oxygen Species/metabolism , Operon , Antimicrobial Cationic Peptides/pharmacology , Type III Secretion Systems/metabolism , Type III Secretion Systems/genetics , Zebrafish/microbiology
9.
Fish Shellfish Immunol ; 146: 109417, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38301814

ABSTRACT

Edwardsiella piscicida (E. piscicida) is a gram-negative pathogen that survives in intracellular environment. Currently, the interplay between E. piscicida and host cells has not been completely explored. In this study, we found that E. piscicida disturbed iron homeostasis in grass carp monocytes/macrophages to maintain its own growth. Further investigation revealed the bacteria induced an increase of intracellular iron, which was subjected to the degradation of ferritin. Moreover, the autophagy inhibitor impeded the degradation of ferritin and increase of intracellular iron in E. piscicida-infected monocytes/macrophages, implying possible involvement of autophagy response in the process of E. piscicida-broken iron homeostasis. Along this line, confocal microscopy observed that E. piscicida elicited the colocalization of ferritin with LC3-positive autophagosome in the monocytes/macrophages, indicating that E. piscicida mediated the degradation of ferritin possibly through the autophagic pathway. These results deepened our understanding of the interaction between E. piscicida and fish cells, hinting that the disruption of iron homeostasis was an important factor for pathogenicity of E. piscicida. They also indicated that autophagy was a possible mechanism governing intracellular iron metabolism in response to E. piscicida infection and might offer a new avenue for anti-E. piscicida strategies in the future.


Subject(s)
Edwardsiella , Enterobacteriaceae Infections , Fish Diseases , Hemochromatosis , Animals , Monocytes/metabolism , Fishes/metabolism , Edwardsiella/physiology , Macrophages/metabolism , Autophagy , Iron/metabolism , Ferritins/genetics , Fish Diseases/microbiology , Enterobacteriaceae Infections/veterinary , Enterobacteriaceae Infections/microbiology , Bacterial Proteins/metabolism
10.
Ecotoxicol Environ Saf ; 272: 116057, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38335574

ABSTRACT

A surge in the number of anthropogenic pollutants has been caused by increasing industrial activities. Nanoplastics are spotlighted as a new aquatic pollutant that are a threat to microbes and larger organisms. Our previous study showed that the subinhibitory concentrations of aquatic pollutants such as phenol and formalin act as signaling molecules and modulate global gene expression and metabolism. In this study, we aimed to investigate the impact of a new type of anthropogenic contaminant, polystyrene (PS) nanoplastics, on the expression of key virulence factors in zoonotic pathogen Edwardsiella piscicida and the assessment of potential changes in the susceptibility of zebrafish as a model host. The TEM data indicated a noticeable change in the cell membrane indicating that PS particles were possibly entering the bacterial cells. Transcriptome analyses performed to identify the differentially expressed genes upon PS exposure revealed that the genes involved in major virulence factor type VI secretion system (T6SS) were down-regulated. However, the expression of T6SS-related genes was recovered from the PS adapted E. piscicida when nanoplastics are free. This demonstrated the hypervirulence of pathogen in infection assays with both cell lines and in vivo zebrafish model. Therefore, this study provides experimental evidence elucidating the direct regulatory impact of nanoplastics influx into aquatic ecosystems on fish pathogenic bacteria, notably influencing the expression of virulence factors.


Subject(s)
Edwardsiella , Environmental Pollutants , Fish Diseases , Animals , Virulence/genetics , Zebrafish/genetics , Zebrafish/metabolism , Microplastics/toxicity , Polystyrenes/toxicity , Ecosystem , Virulence Factors/genetics , Gene Expression , Bacterial Proteins/metabolism
11.
Microb Pathog ; 188: 106545, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38244636

ABSTRACT

Edwardsiella piscicida is a severe fish pathogen with wide host range, causing the huge economic losses in the aquaculture industry. Cyclic adenosine monophosphate (cAMP) as an important second messenger regulates the physiological and behavioral responses to environmental cues in eukaryotic and prokaryotic. The intracellular level of cAMP for effective activity is tightly controlled by the synthesis of adenylate cyclase, excretion and degradation of phosphodiesterase. In this study, we identified and characterized a class III cAMP phosphodiesterase, named as CpdA, in the E. piscicida. To investigate the role of CpdA in the physiology and pathogenicity, we constructed the in-frame deletion mutant of cpdA of E. piscicida, TX01ΔcpdA. The results showed that TX01ΔcpdA accumulated the higher intracellular cAMP concentration than TX01, indicating that CpdA exerted the hydrolysis of cAMP. In addition, compared to the TX01, the TX01ΔcpdA slowed growth rate, diminished biofilm formation and lost motility. More importantly, pathogenicity analysis confirmed that TX01ΔcpdA significantly impaired the ability of invading the epithelial cells, reproduction in macrophages, tissues dissemination and lethality for healthy tilapias. The most of lost properties of TX01ΔcpdA were restored partially or fully by the introduction of cpdA gene. These results suggest that cpdA is required for regulation of the physiology and virulence of E. piscicida.


Subject(s)
Edwardsiella , Enterobacteriaceae Infections , Fish Diseases , Animals , Virulence , Phosphoric Diester Hydrolases/genetics , Cyclic AMP/metabolism , Biofilms , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
12.
Microbiol Res ; 279: 127561, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38056174

ABSTRACT

Edwardsiella piscicida is a widespread pathogen that infects various fish species and causes massive hemorrhagic septicemia, resulting in significant property damage to the global aquaculture industry. Type III and VI secretion systems (T3/T6SS), controlled by the master regulator EsrB, are important virulence factors of E. piscicida that enable bacterial colonization and evasion from host immune clearance. In this study, we demonstrate that the QseE-QseF two-component system negatively regulated esrB expression by reanalysis of Tn-seq data. Moreover, the response regulator QseF directly bound to esrB promoter and inhibited the expression of T3/T6SS genes, especially in the presence of epinephrine. Furthermore, in response to the prompt increasing of epinephrine level, the host immune genes were delayed repressed and QseE-QseF timely inhibited the expression of T3/T6SS genes to evade immune clearance. In summary, this study enhances our understanding and knowledge of the conditional pathogenesis mechanism and virulence regulation network of E. piscicida.


Subject(s)
Edwardsiella , Fish Diseases , Animals , Virulence/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Epinephrine/metabolism , Fish Diseases/microbiology
13.
J Fish Dis ; 47(1): e13863, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37743602

ABSTRACT

Edwardsiella piscicida, an infectious bacterium, causes great economic losses to the aquaculture industry. Immersion bath which is the closest way to how the fish infect bacterial pathogens in the natural environment is an effective route of artificial infection. In this study, the dynamic process of E. piscicida infection, in the spotted sea bass (Lateolabrax maculatus) was evaluated via the immersion bath. The results showed that soaking the spotted sea bass with 3 × 106 CFU mL-1 E. piscicida for 30 min could artificially induce edwardsiellosis. The higher culture temperature (28.5 ± 0.5°C) or the longer bath time (30 min) would lead to higher mortality of fish. E.piscicida first invaded the gill, then entered the blood circulation to infect the spleen and kidney, where it is colonized, and gradually multiplied in the liver and brain. Meanwhile, the fluorescence in situ hybridization showed that the localization of E. piscicida in the gill and foregut after the immersion challenge proceeded from the exterior to the interior. The invasion of pathogens triggers the immune response of fish and causes tissue damage to the host. The quantitative real-time PCR results displayed an increase in the relative expression level of immune genes (NK-lysin, LZM, IgM and IgD). Otherwise, the most notable histopathological changes of the infected spotted sea bass were multifocal necrosis. Findings in this study broaden our understanding of the infection conditions of E. piscicida and its pathogenicity to the spotted sea bass.


Subject(s)
Bass , Edwardsiella , Enterobacteriaceae Infections , Fish Diseases , Animals , Immersion , In Situ Hybridization, Fluorescence , Fish Diseases/microbiology , Edwardsiella/genetics , Enterobacteriaceae Infections/microbiology
14.
Fish Shellfish Immunol ; 142: 109178, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37863126

ABSTRACT

The enzyme nitric oxide synthase 2 or inducible NOS (NOS2), reactive oxygen species (ROS) and nitric oxide (NO) are important participants in various inflammatory and immune responses. However, the functional significances of the correlations among piscine NOS2, ROS and NO during pathogen infection remain unclear. In teleost, there are two nos2 genes (nos2a and nos2b). It has been previously reported that zebrafish nos2a behaves as a classical inducible NOS, and nos2b exerts some functions similar to mammalian NOS3. In the present study, we reported the functional characterization of zebrafish nos2a during bacterial infection. We found that zebrafish nos2a promoted bacterial proliferation, accompanied by an increased susceptibility to Edwardsiella piscicida infection. The nagative regulation of zebrafish nos2a during E. piscicida infection was characterized by the impaired ROS levels, the induced NO production and the decreased expressions of proinflammatory cytokines, antibacterial genes and oxidant factors. Furthermore, although both inducing ROS and inhibiting NO production significantly inhibited bacterial proliferation, only inhibiting NO production but not inducing ROS significantly increased resistance to E. piscicida infection. More importantly, ROS supplementation and inhibition of NO completely abolished this detrimental consequence mediated by zebrafish nos2a during E. piscicida infection. All together, these results firstly demonstrate that the innate response mediated by zebrafish nos2a in promoting bacterial proliferation is dependent on the lower ROS level and higher NO production. The present study also reveals that inhibition of NO can be effective in the protection against E. piscicida infection.


Subject(s)
Edwardsiella , Enterobacteriaceae Infections , Animals , Cytokines , Zebrafish , Nitric Oxide/metabolism , Reactive Oxygen Species/metabolism , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Cell Proliferation , Edwardsiella/physiology , Mammals/metabolism
15.
Appl Environ Microbiol ; 89(10): e0089923, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37732742

ABSTRACT

Copper plays a vital role in the host-pathogen interface, potentially making components of the bacterial copper response suitable targets for the development of innovative antimicrobial strategies. The anti-copper arsenal of intracellular pathogens has expanded as an adaptation to survive copper toxicity in order to escape intracellular killing by the host immune system. Herein, we employed transposon insertion sequencing to investigate the genetic mechanisms underlying the survival of Edwardsiella piscicida under copper stress. A novel transcriptional regulator, ETAE_2324 (named CorR), was identified to participate in the response to copper ions by controlling the expression of copA, the core component of cytoplasmic copper homeostasis. Furthermore, CorR regulated the expression of virulent determinant eseB, influencing the in vivo colonization of E. piscicida. Collectively, our results contribute to the comprehension of the underlying mechanism of the adaption of intracellular pathogens to copper stress during bacterial infections.IMPORTANCECopper ions play a pivotal role in the interaction between bacteria and the host during infection. The host's innate immune system employs copper ions for their bactericidal properties, thereby making bacterial copper tolerance a crucial determinant of virulence. Edwardsiella piscicida, a significant marine pathogen, has caused substantial losses in the global aquaculture industry. To comprehensively investigate how E. piscicida responds to copper stress, we utilized transposon insertion sequencing to explore genes associated with copper tolerance in culture media containing different concentrations of copper ions. A novel transcriptional regulator, CorR, was identified to respond to copper ions and regulates the expression of crucial components of copper homeostasis CopA, along with the essential virulence factor EseB. These findings offer valuable insights into the underlying mechanisms that govern bacterial copper tolerance and present novel perspectives for the development of vaccines and therapeutic strategies targeting E. piscicida.


Subject(s)
Enterobacteriaceae Infections , Fish Diseases , Animals , Copper/toxicity , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Enterobacteriaceae Infections/veterinary , Enterobacteriaceae Infections/microbiology , Ions , Fish Diseases/microbiology
16.
mSphere ; 8(5): e0034623, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37642418

ABSTRACT

Type III secretion system (T3SS) facilitates survival and replication of Edwardsiella piscicida in vivo. Identifying novel T3SS effectors and elucidating their functions are critical in understanding the pathogenesis of E. piscicida. E. piscicida T3SS effector EseG and EseJ was highly secreted when T3SS gatekeeper-containing protein complex EsaB-EsaL-EsaM was disrupted by EsaB deficiency. Based on this observation, concentrated secretomes of ΔesaB strain and ΔesaBΔesaN strain were purified by loading them into SDS-PAGE gel for a short electrophoresis to remove impurities prior to the in-the gel digestion and mass spectrometry. Four reported T3SS effectors and two novel T3SS effector candidates EseQ (ETAE_2009) and Trx2 (ETAE_0559) were unraveled by quantitative comparison of the identified peptides. EseQ and Trx2 were revealed to be secreted and translocated in a T3SS-dependent manner through CyaA-based translocation assay and immunofluorescent staining, demonstrating that EseQ and Trx2 are the novel T3SS effectors of E. piscicida. Trx2 was found to suppress macrophage apoptosis as revealed by TUNEL staining and cleaved caspase-3 of infected J774A.1 monolayers. Moreover, Trx2 has been shown to inhibit the p65 phosphorylation and p65 translocation into the nucleus, thus blocking the NF-κB pathway. Furthermore, depletion of Trx2 slightly but significantly attenuates E. piscicida virulence in a fish infection model. Taken together, an efficient method was established in unraveling T3SS effectors in E. piscicida, and Trx2, one of the novel T3SS effectors identified in this study, was demonstrated to suppress apoptosis and block NF- κB pathway during E. piscicida infection. IMPORTANCE Edwardsiella piscicida is an intracellular bacterial pathogen that causes intestinal inflammation and hemorrhagic sepsis in fish and human. Virulence depends on the Edwardsiella type III secretion system (T3SS). Identifying the bacterial effector proteins secreted by T3SS and defining their role is key to understanding Edwardsiella pathogenesis. EsaB depletion disrupts the T3SS gatekeeper-containing protein complex, resulting in increased secretion of T3SS effectors EseG and EseJ. EseQ and Trx2 were shown to be the novel T3SS effectors of E. piscicida by a secretome comparison between ∆esaB strain and ∆esaB∆esaN strain (T3SS mutant), together with CyaA-based translocation assay. In addition, Trx2 has been shown to suppress macrophage apoptosis and block the NF-κB pathway. Together, this work expands the known repertoire of T3SS effectors and sheds light on the pathogenic mechanism of E. piscicida.


Subject(s)
Edwardsiella , Type III Secretion Systems , Animals , Humans , Type III Secretion Systems/metabolism , Virulence Factors/metabolism , NF-kappa B , Edwardsiella/metabolism , Fishes
18.
Front Immunol ; 14: 1135588, 2023.
Article in English | MEDLINE | ID: mdl-37215132

ABSTRACT

Uncovering the mechanism underlying the pathogenesis of Edwardsiella piscicida-induced enteritis is essential for global aquaculture. In the present study, we identified E. piscicida as a lethal pathogen of the big-belly seahorse (Hippocampus abdominalis) and revealed its pathogenic pattern and characteristics by updating our established bacterial enteritis model and evaluation system. Conjoint analysis of metagenomic and metabolomic data showed that 15 core virulence factors could mutually coordinate the remodeling of intestinal microorganisms and host metabolism and induce enteritis in the big-belly seahorse. Specifically, the Flagella, Type IV pili, and Lap could significantly increase the activities of the representative functional pathways of both flagella assembly and bacterial chemotaxis in the intestinal microbiota (P < 0.01) to promote pathogen motility, adherence, and invasion. Legiobactin, IraAB, and Hpt could increase ABC transporter activity (P < 0.01) to compete for host nutrition and promote self-replication. Capsule1, HP-NAP, and FarAB could help the pathogen to avoid phagocytosis. Upon entering epithelial cells and phagocytes, Bsa T3SS and Dot/Icm could significantly increase bacterial secretion system activity (P < 0.01) to promote the intracellular survival and replication of the pathogen and the subsequent invasion of the neighboring tissues. Finally, LPS3 could significantly increase lipopolysaccharide biosynthesis (P < 0.01) to release toxins and kill the host. Throughout the pathogenic process, BopD, PhoP, and BfmRS significantly activated the two-component system (P < 0.01) to coordinate with other VFs to promote deep invasion. In addition, the levels of seven key metabolic biomarkers, Taurine, L-Proline, Uridine, L-Glutamate, Glutathione, Xanthosine, and L-Malic acid, significantly decreased (P < 0.01), and they can be used for characterizing E. piscicida infection. Overall, the present study systematically revealed how a combination of virulence factors mediate E. piscicida-induced enteritis in fish for the first time, providing a theoretical reference for preventing and controlling this disease in the aquaculture of seahorses and other fishes.


Subject(s)
Enteritis , Gastrointestinal Microbiome , Smegmamorpha , Animals , Virulence Factors/metabolism , Virulence , Smegmamorpha/metabolism , Fishes/metabolism , Metabolome
19.
Microorganisms ; 11(4)2023 Mar 24.
Article in English | MEDLINE | ID: mdl-37110252

ABSTRACT

Edwardsiella piscicida is an important fish pathogen that causes substantial economic losses. In order to understand its pathogenic mechanism, additional new virulence factors need to be identified. The bacterial thioredoxin system is a major disulfide reductase system, but its function is largely unknown in E. piscicida. In this study, we investigated the roles of the thioredoxin system in E. piscicida (named TrxBEp, TrxAEp, and TrxCEp, respectively) by constructing a correspondingly markerless in-frame mutant strain: ΔtrxB, ΔtrxA, and ΔtrxC, respectively. We found that (i) TrxBEp is confirmed as an intracellular protein, which is different from the prediction made by the Protter illustration; (ii) compared to the wild-type strain, ΔtrxB exhibits resistance against H2O2 stress but high sensitivity to thiol-specific diamide stress, while ΔtrxA and ΔtrxC are moderately sensitive to both H2O2 and diamide conditions; (iii) the deletions of trxBEp, trxAEp, and trxCEp damage E. piscicida's flagella formation and motility, and trxBEp plays a decisive role; (iv) deletions of trxBEp, trxAEp, and trxCEp substantially abate bacterial resistance against host serum, especially trxBEp deletion; (v) trxAEp and trxCEp, but not trxBEp, are involved in bacterial survival and replication in phagocytes; (vi) the thioredoxin system participates in bacterial dissemination in host immune tissues. These findings indicate that the thioredoxin system of E. piscicida plays an important role in stress resistance and virulence, which provides insight into the pathogenic mechanism of E. piscicida.

20.
Open Biol ; 13(2): 220302, 2023 02.
Article in English | MEDLINE | ID: mdl-36974664

ABSTRACT

The intestine is a site of immune cell priming at birth. Therefore, spatial transcriptomes were performed to define how the transcriptomic landscape was spatially organized in the posterior intestine of Sebastes schlegelii following Edwardsiella piscicida infection. In the healthy condition, we identified a previously unappreciated molecular regionalization of the posterior intestine. Following bacterial infection, most immune-related genes were identified in mucosa layer. Moreover, investigation of immune-related genes and genes in immune-related KEGG pathways based on spatial transcriptomes shed light on which sections of these genes are in the posterior intestine. Meanwhile, the high expression of genes related to regeneration also indicated that the posterior intestine was responding to the invasion of pathogens by constantly proliferating new cells. In addition, the increasing microbiota communities indicated that these bacteria maintained posterior intestine integrity and shaped the mucosal immune system. Taken together, spatial transcriptomes and microbiota compositions have significant implications for understanding the immune mechanism that responds to E. piscicida infection in the posterior intestine of S. schlegelii, which also provides a theoretical basis for the spatial distribution of immune genes and changes in bacterial flora in other teleosts in the process of resisting pathogens.


Subject(s)
Microbiota , Perciformes , Animals , Transcriptome , Intestines , Gene Expression Profiling
SELECTION OF CITATIONS
SEARCH DETAIL