Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24.252
Filter
1.
Molecules ; 29(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38930987

ABSTRACT

Peanut shells' adsorption performance in caffeine and triclosan removal was studied. Peanut shells were analyzed for their chemical composition, morphology, and surface functional groups. Batch adsorption and fixed-bed column experiments were carried out with solutions containing 30 mg/L of caffeine and triclosan. The parameters examined included peanut shell particle size (120-150, 300-600, and 800-2000 µm), adsorbent dose (0.02-60 g/L), contact time (up to 180 min), bed height (4-8 cm), and hydraulic loading rate (2.0 and 4.0 m3/m2-day). After determining the optimal adsorption conditions, kinetics, isotherm, and breakthrough curve models were applied to analyze the experimental data. Peanut shells showed an irregular surface and consisted mainly of polysaccharides (around 70% lignin, cellulose, and hemicellulose), with a specific surface area of 1.7 m2/g and a pore volume of 0.005 cm3/g. The highest removal efficiencies for caffeine (85.6 ± 1.4%) and triclosan (89.3 ± 1.5%) were achieved using the smallest particles and 10.0 and 0.1 g/L doses over 180 and 45 min, respectively. Triclosan showed easier removal compared to caffeine due to its higher lipophilic character. The pseudo-second-order kinetics model provided the best fit with the experimental data, suggesting a chemisorption process between caffeine/triclosan and the adsorbent. Equilibrium data were well-described by the Sips model, with maximum adsorption capacities of 3.3 mg/g and 289.3 mg/g for caffeine and triclosan, respectively. In fixed-bed column adsorption tests, particle size significantly influenced efficiency and hydraulic behavior, with 120-150 µm particles exhibiting the highest adsorption capacity for caffeine (0.72 mg/g) and triclosan (143.44 mg/g), albeit with clogging issues. The experimental data also showed good agreement with the Bohart-Adams, Thomas, and Yoon-Nelson models. Therefore, the findings of this study highlight not only the effective capability of peanut shells to remove caffeine and triclosan but also their versatility as a promising option for water treatment and sanitation applications in different contexts.


Subject(s)
Arachis , Caffeine , Triclosan , Caffeine/chemistry , Caffeine/isolation & purification , Triclosan/chemistry , Triclosan/isolation & purification , Arachis/chemistry , Adsorption , Kinetics , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification , Particle Size , Water Purification/methods
2.
Molecules ; 29(12)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38930994

ABSTRACT

The tetradentate ligand, merging a carbazole unit with high triplet energy and dimethoxy bipyridine, renowned for its exceptional quantum efficiency in coordination with metals like Pt, is expected to demonstrate remarkable luminescent properties. However, instances of tetradentate ligands such as bipyridine-based pyridylcarbazole derivatives remain exceptionally scarce in the current literature. In this study, we developed a tetradentate ligand based on carbazole and 2,3'-bipyridine and successfully complexed it with Pt(II) ions. This novel compound (1) serves as a sky-blue phosphorescent material for use in light-emitting diodes. Based on single-crystal X-ray analysis, compound 1 has a distorted square-planar geometry with a 5/6/6 backbone around the Pt(II) core. Bright sky-blue emissions were observed at 488 and 516 nm with photoluminescent quantum yields of 34% and a luminescent lifetime of 2.6 µs. TD-DFT calculations for 1 revealed that the electronic transition was mostly attributed to the ligand-centered (LC) charge transfer transition with a small contribution from the metal-to-ligand charge transfer transition (MLCT, ~14%). A phosphorescent organic light-emitting device was successfully fabricated using this material as a dopant, along with 3'-di(9H-carbazol-9-yl)-1,1'-biphenyl (mCBP) and 9-(3'-carbazol-9-yl-5-cyano-biphenyl-3-yl)-9H-carbazole-3-carbonitrile (CNmCBPCN) as mixed hosts. A maximum quantum efficiency of 5.2% and a current efficiency of 15.5 cd/A were obtained at a doping level of 5%.

3.
Plants (Basel) ; 13(12)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38931147

ABSTRACT

Nitrogen (N) is an essential macronutrient for crop growth; therefore, N deficit can greatly limit crop growth and production. In the North China Plain (NCP), winter wheat (Triticum aestivum L.) is one of the main food crops, and its yield has increased from approximately 4000 kg ha-1 to 6000 kg ha-1 in the last two decades. Determining the proper N application rates at different growth stages and in all seasons is very important for the sustainable and high production of wheat in the NCP. A field experiment with five N application rates (250, 200, 150, 100, and 40 kgN·ha-1, designated as N250, N200, N150, N100, and N40, respectively) was conducted during the 2017-2018 and 2018-2019 winter wheat seasons to investigate the effects of the N application rate on water- and fertilizer-utilization efficiency and on the crop growth and yield of winter wheat under sprinkler fertigation conditions. The results showed that in the N application range of 40-200 kg ha-1, crop yield and water- and fertilizer-use efficiencies increased as the N application rate increased; however, further increases in the N application rate (from N200 to N250) did not have additional benefits. The N uptake after regreening of winter wheat linearly increased with crop growth. Considering the wheat yield and N-use efficiency, the recommended optimal N application rate was 200 kg ha-1, and the best topdressing strategy was equal amounts of N applied at the regreening, jointing, and grain-filling stages. The results of this study will be useful for optimizing field N management to achieve high wheat yield production in the NCP and in regions with similar climatic and soil environment conditions.

4.
Sensors (Basel) ; 24(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38931496

ABSTRACT

This paper proposes a cognitive radio network (CRN)-based hybrid wideband precoding for maximizing spectral efficiency in millimeter-wave relay-assisted multi-user (MU) multiple-input multiple-output (MIMO) systems. The underlying problem is NP-hard and non-convex due to the joint optimization of hybrid processing components and the constant amplitude constraint imposed by the analog beamformer in the radio frequency (RF) domain. Furthermore, the analog beamforming solution common to all sub-carriers adds another layer of design complexity. Two hybrid beamforming architectures, i.e., mixed and fully connected ones, are taken into account to tackle this problem, considering the decode-and-forward (DF) relay node. To reduce the complexity of the original optimization problem, an attempt is made to decompose it into sub-problems. Leveraging this, each sub-problem is addressed by following a decoupled design methodology. The phase-only beamforming solution is derived to maximize the sum of spectral efficiency, while digital baseband processing components are designed to keep interference within a predefined limit. Computer simulations are conducted by changing system parameters under different accuracy levels of channel-state information (CSI), and the obtained results demonstrate the effectiveness of the proposed technique. Additionally, the mixed structure shows better energy efficiency performance compared to its counterparts and outperforms benchmarks.

5.
Sensors (Basel) ; 24(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38931727

ABSTRACT

In recent years, underwater wireless ultrasonic energy transmission technology (UWUET) has attracted much attention because it utilizes the propagation characteristics of ultrasound in water. Effectively evaluating the performance of underwater ultrasonic wireless energy transmission is a key issue in engineering design. The current approach to performance evaluation is usually based on the system energy transfer efficiency as the main criterion, but this criterion mainly considers the overall energy conversion efficiency between the transmitting end and the receiving end, without an in-depth analysis of the characteristics of the distribution of the underwater acoustic field and the energy loss that occurs during the propagation of acoustic waves. In addition, existing methods focusing on acoustic field analysis tend to concentrate on a single parameter, ignoring the dynamic distribution of acoustic energy in complex aquatic environments, as well as the effects of changes in the underwater environment on acoustic propagation, such as spatial variability in temperature and salinity. These limitations reduce the usefulness and accuracy of models in complex marine environments, which in turn reduces the efficiency of acoustic energy management and optimization. To solve these problems, this study proposes a method to evaluate the performance of underwater ultrasonic energy radiation based on the spatial distribution characteristics of acoustic power. By establishing an acoustic power distribution model in a complex impedance-density aqueous medium and combining numerical simulation and experimental validation, this paper explores the spatial variation of acoustic power and its impact on the energy transfer efficiency in depth. Using high-resolution spatial distribution data and actual environmental parameters, the method significantly improves the accuracy of the assessment and the adaptability of the model in complex underwater environments. The results show that, compared with the traditional method, this method performs better in terms of the accuracy of the acoustic energy radiation calculation results, and is able to reflect the energy distribution and spatial heterogeneity of the acoustic source more comprehensively, which provides an important theoretical basis and practical guidance for the optimal design and performance enhancement of the underwater ultrasonic wireless energy transmission system.

6.
Polymers (Basel) ; 16(12)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38932006

ABSTRACT

Considering the high demand for air quality, the development of biomass-based air filtration membranes with high air filtration efficiency and good stability is an urgent task. In this work, polyvinyl alcohol (PVA), gelatin (GA), and cellulose nanocrystals (CNC) were mixed and prepared into a membrane through an electrospinning method for air filtration. After a hydrophobic modification, the modified PVA/GA/CNC composite membrane showed excellent filtration efficiency for PM2.5 (97.65%) through the internal three-dimensional structure barrier and the electrostatic capture effect of the CNC with a negative charge, as well as a low-pressure drop (only 50 Pa). In addition, the modified PVA/GA/CNC composite membrane had good mechanical properties (maximum tensile fracture rate of 78.3%) and high stability (air filtration efficiency of above 90% after five wash-filter cycles and a high-temperature treatment at 200 °C). It is worth noting that the whole preparation process is completed without organic solvents, putting forward a new strategy for the construction of green air filtration membranes.

7.
Polymers (Basel) ; 16(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38932079

ABSTRACT

This study addresses the need for enhanced antimicrobial properties of electrospun membranes, either through surface modifications or the incorporation of antimicrobial agents, which are crucial for improved clinical outcomes. In this context, chitosan-a biopolymer lauded for its biocompatibility and extracellular matrix-mimicking properties-emerges as an excellent candidate for tissue regeneration. However, fabricating chitosan nanofibers via electrospinning often challenges the preservation of their structural integrity. This research innovatively develops a chitosan/polycaprolactone (CH/PCL) composite nanofibrous membrane by employing a layer-by-layer electrospinning technique, enhanced with silver nanoparticles (AgNPs) synthesized through a wet chemical process. The antibacterial efficacy, adhesive properties, and cytotoxicity of electrospun chitosan membranes were evaluated, while also analyzing their hydrophilicity and nanofibrous structure using SEM. The resulting CH/PCL-AgNPs composite membranes retain a porous framework, achieve balanced hydrophilicity, display commendable biocompatibility, and exert broad-spectrum antibacterial activity against both Gram-negative and Gram-positive bacteria, with their efficacy correlating to the AgNP concentration. Furthermore, our data suggest that the antimicrobial efficiency of these membranes is influenced by the timed release of silver ions during the incubation period. Membranes incorporated starting with AgNPs at a concentration of 50 µg/mL effectively suppressed the growth of both microorganisms during the early stages up to 8 h of incubation. These insights underscore the potential of the developed electrospun composite membranes, with their superior antibacterial qualities, to serve as innovative solutions in the field of tissue engineering.

8.
Adv Clin Exp Med ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38934336

ABSTRACT

BACKGROUND: Melasma is a chronic, acquired hypermelanosis that primarily affects the face. Platelet-rich plasma (PRP) and tranexamic acid (TXA) are promising treatments for melasma. However, only a few randomized clinical trials have examined the efficacy and safety of combining these therapies for melasma. OBJECTIVES: We aimed to compare the efficacy and safety of combining PRP and oral TXA with those of PRP alone in the treatment of facial melasma. MATERIAL AND METHODS: A randomized controlled trial was conducted at Walailak University Hospital, Nakhon Si Thammarat, Thailand, between March and September 2023. Participants with mixed-type melasma were randomly allocated in a 1:1 ratio to either group A (PRP injection alone without placebo) or group B (PRP injection with oral TXA). Therapeutic efficacy and safety assessments were performed over a 12-week follow-up period. RESULTS: The study included 26 participants (mean age: 45.9 years, standard deviation (±SD): 5.0) who were predominantly female (84.6%). In group A, the modified Melasma Area and Severity Index (mMASI) scores significantly decreased from a median of 4.30 interquartile range (IQR): 4.10) to 3.60 (IQR: 3.10) between week 0 and week 12, respectively. In group B, the median mMASI decreased from 6.40 (IQR: 7.80) to 3.60 (IQR: 3.70) over the same period. The median change in mMASI scores in group B (2.90, IQR: 2.40) was significantly larger than in group A (0.90, IQR: 0.60) (p < 0.001, U = 160.50). However, there were no significant differences in the physicians' global assessment (PGA), melasma quality of life scale (MelasQoL) or patient satisfaction during follow-up. Four patients (15.4%) experienced transient erythema and swelling. In group B, 1 participant (7.7%) experienced transient mild gastrointestinal discomfort after receiving oral TXA. CONCLUSIONS: The combination of intradermal PRP injection and oral TXA is effective for melasma, even in patients with poor prognostic treatment response factors. No serious adverse reactions were observed in either group.

9.
Adv Mater ; : e2405751, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38934354

ABSTRACT

To meet the ever-increasing demand for high-energy lithium-ion batteries (LIBs), it is imperative to develop next-generation anode materials. Compared to conventional carbon-based anodes, Si-based materials are promising due to their high theoretical capacity and reasonable cost. SiOx, as a Si-derivative anode candidate, is particularly encouraging for its durable cycling life, the practical application of which is, however, severely hindered by low initial Coulombic efficiency (ICE) that leads to continuous lithium consumption. What is worse, low ICE also easily triggers a terrible chain reaction causing bad cycling stability. To further develop SiOx anode, researchers have obtained in-depth understandings regarding its working/failing mechanisms so as to further propose effective remedies for low ICE mitigation. In this sense, herein recent studies investigating the possible causes that fundamentally result in low ICE of SiOx, based on which a variety of solutions addressing the low ICE issue are discussed and summarized, are timely summarized. This perspective provides valuable insights into the rational design of high ICE SiOx anodes and paves the way toward industrial application of SiOx as the next generation LIB anode.

10.
FASEB J ; 38(13): e23782, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38934375

ABSTRACT

N-glycosylation is the most common protein modification in the eukaryotic secretory pathway. It involves the attachment a high mannose glycan to Asn residues in the context of Asn-X-Ser/Thr/Cys, a motif known as N-glycosylation sequon. This process is mediated by STT3A and STT3B, the catalytic subunits of the oligosaccharyltransferase complexes. STT3A forms part of complexes associated with the SEC61 translocon and functions co-translationally. Vacant sequons have another opportunity for glycosylation by complexes carrying STT3B. Local sequence information plays an important role in determining N-glycosylation efficiency, but non-local factors can also have a significant impact. For instance, certain proteins associated with human genetic diseases exhibit abnormal N-glycosylation levels despite having wild-type acceptor sites. Here, we investigated the effect of protein stability on this process. To this end, we generated a family of 40 N-glycan acceptors based on superfolder GFP, and we measured their efficiency in HEK293 cells and in two derived cell lines lacking STT3B or STT3A. Sequon occupancy was highly dependent on protein stability, improving as the thermodynamic stability of the acceptor proteins decreases. This effect is mainly due to the activity of the STT3B-based OST complex. These findings can be integrated into a simple kinetic model that distinguishes local information within sequons from global information of the acceptor proteins.


Subject(s)
Hexosyltransferases , Membrane Proteins , Protein Processing, Post-Translational , Humans , Glycosylation , HEK293 Cells , Hexosyltransferases/metabolism , Hexosyltransferases/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Protein Stability , Polysaccharides/metabolism
11.
Int Urol Nephrol ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38935322

ABSTRACT

PURPOSE: Following transurethral resection of the prostate (TURP), there is no clear recommendation for the catheter duration, and objective criteria are needed to determine appropriate time for trial off catheter. Current study is aimed to identify the high-risk patients for failed trial off catheter and the association with preoperative voiding efficiency with postoperative failed trial without catheter. METHODOLOGY: This is cross-sectional single institutional study. All eligible patients who underwent TURP were followed preoperatively for symptoms and workup, including voiding efficiency based on ultrasound findings, intraoperatively for resection parameters, and postoperatively for a trial off a catheter. All the findings were documented, and the data were analyzed on SPSS(TM) 22. Demographic variables were calculated in the form of frequency and percentages. The association of voiding efficiency with failed trials off catheters was checked through Chi-square and binary logistic regression analysis. RESULTS: 132 patients were included in the study. The mean voiding efficiency was 57.5%. Based on voiding efficiency cut off, of 50%, patients were divided into two groups. The association between voiding efficiency and failed trials off catheters was not found to be statistically significant, with a p value of 0.79. Only prevoid volume, postvoid volume, duration of symptoms, and upper tract damage were found to be statistically significant predictors of failed trial off catheter, with a p value of < 0.05.

12.
Front Chem ; 12: 1441517, 2024.
Article in English | MEDLINE | ID: mdl-38939164
13.
Health Care Sci ; 3(1): 3-18, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38939167

ABSTRACT

Background: Given the strikingly high diagnostic error rate in hospitals, and the recent development of Large Language Models (LLMs), we set out to measure the diagnostic sensitivity of two popular LLMs: GPT-4 and PaLM2. Small-scale studies to evaluate the diagnostic ability of LLMs have shown promising results, with GPT-4 demonstrating high accuracy in diagnosing test cases. However, larger evaluations on real electronic patient data are needed to provide more reliable estimates. Methods: To fill this gap in the literature, we used a deidentified Electronic Health Record (EHR) data set of about 300,000 patients admitted to the Beth Israel Deaconess Medical Center in Boston. This data set contained blood, imaging, microbiology and vital sign information as well as the patients' medical diagnostic codes. Based on the available EHR data, doctors curated a set of diagnoses for each patient, which we will refer to as ground truth diagnoses. We then designed carefully-written prompts to get patient diagnostic predictions from the LLMs and compared this to the ground truth diagnoses in a random sample of 1000 patients. Results: Based on the proportion of correctly predicted ground truth diagnoses, we estimated the diagnostic hit rate of GPT-4 to be 93.9%. PaLM2 achieved 84.7% on the same data set. On these 1000 randomly selected EHRs, GPT-4 correctly identified 1116 unique diagnoses. Conclusion: The results suggest that artificial intelligence (AI) has the potential when working alongside clinicians to reduce cognitive errors which lead to hundreds of thousands of misdiagnoses every year. However, human oversight of AI remains essential: LLMs cannot replace clinicians, especially when it comes to human understanding and empathy. Furthermore, a significant number of challenges in incorporating AI into health care exist, including ethical, liability and regulatory barriers.

14.
Cureus ; 16(5): e61203, 2024 May.
Article in English | MEDLINE | ID: mdl-38939244

ABSTRACT

Midwifery centers are places where midwives not only provide antenatal checkups and delivery care but also offer a wide range of health guidance to pregnant women, postpartum mothers, newborns, and older women. In recent years, midwives have also provided onsite and online health guidance. However, diagnosis and prescribing medication are impossible in midwifery centers because no doctor is present. If the midwife determines that the patient should consult doctors, the patient may have to go to a hospital and see doctors in person, which can be burdensome. Online telemedicine facilitates midwife-doctor collaboration and may solve this problem. We report a case of headache management by telemedicine that minimized the patient's travel burden by collaborating with a midwifery center that provides onsite, visiting, and online health guidance for patients who have difficulty visiting a hospital due to postpartum period, childcare, and breastfeeding. A 29-year-old woman and her husband were raising an infant in Sado City (a remote island across the sea), Niigata Prefecture. She developed acute back pain and was bedridden for several days due to immobility. She consulted a midwife because of stress and anxiety caused by childcare and acute back pain, as well as newly occurring headaches. The midwife visited her and provided on-site health guidance. The midwife decided that a doctor's diagnosis and treatment with painkillers were desirable for the headache and back pain, so she contacted a doctor based on the patient's request. The doctor provided online telemedicine across the sea, diagnosed her headache as a tension-type headache, and prescribed acetaminophen 500 mg as an abortive prescription. The prescription was faxed to a pharmacy on the island, and the original was sent by post. The midwife picked up the medication and delivered it to the patient. After taking the medication, the patient's back pain and headache went into remission. Collaboration between midwifery centers that provide onsite, visiting, and online health guidance and medical institutions that offer online telemedicine can potentially improve accessibility to medical care. It differs from conventional online telemedicine in the midwife's coordination practice by monitoring the patient's condition and requesting the physician based on the patient's request.

15.
Front Oncol ; 14: 1333642, 2024.
Article in English | MEDLINE | ID: mdl-38939330

ABSTRACT

Purpose/Objectives: ZAP-X, a novel and dedicated radiosurgery (SRS) system, has recently emerged, while CyberKnife has solidified its position as a versatile solution for SRS and stereotactic body radiation therapy over the past two decades. This study aims to compare the dosimetric performance and delivery efficiency of ZAP-X and CyberKnife in treating brain metastases of varying target sizes, employing circular collimation. Methods and materials: Twenty-three patients, encompassing a total of 47 brain metastases, were included in the creation of comparative plans of ZAP-X and CyberKnife for analysis. The comparative plans were generated to achieve identical prescription doses for the targets, while adhering to the same dose constraints for organs at risk (OAR). The prescription isodose percentage was optimized within the range of 97-100% for each plan to ensure effective target-volume coverage. To assess plan quality, indices such as conformity, homogeneity, and gradient (CI, HI, and GI) were computed, along with the reporting of total brain volumes receiving 12Gy and 10Gy. Estimated treatment time and monitor units (MUs) were compared between the two modalities in evaluating delivery efficiency. Results: Overall, CyberKnife achieved better CI and HI, while ZAP-X exhibited better GI and a smaller irradiated volume for the normal brain. The superiority of CyberKnife's plan conformity was more pronounced for target size less than 1 cc and greater than 10 cc. Conversely, the advantage of ZAP-X's plan dose gradient was more notable for target sizes under 10 cc. The homogeneity of ZAP-X plans, employing multiple isocenters, displayed a strong correlation with the target's shape and the planner's experience in placing isocenters. Generally, the estimated treatment time was similar between the two modalities, and the delivery efficiency was significantly impacted by the chosen collimation sizes for both modalities. Conclusion: This study demonstrates that, within the range of target sizes within the patient cohort, plans generated by ZAP-X and CyberKnife exhibit comparable plan quality and delivery efficiency. At present, with the current platform of the two modalities, CyberKnife outperforms ZAP-X in terms of conformity and homogeneity, while ZAP-X tends to produce plans with a more rapid dose falloff.

16.
Exploration (Beijing) ; 4(3): 20230085, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38939859

ABSTRACT

To overcome the overheating phenomena of electronic devices and energy components, developing advanced energy-free cooling coatings with promising radiative property seem an effective and energy-saving way. However, the further application of these coatings is greatly limited by their sustainability because of their fragile and easy contamination. Herein, it is reported that a bioinspired radiative cooling coating (BRCC) displayed sustainably efficient heat dissipation by the combination of high emittance and robust self-cleaning property. With the hierarchical porous structure constructed by multiwalled carbon nanotubes (MWCNTs), modified SiO2 and fluorosilicone (FSi) resin, the involvement of the BRCC improves the cooling performance by increasing ≈25% total heat transfer coefficient. During the abrasion and soiling tests, the BRCC-coated Al alloy heat sink always displays stable radiative cooling performance. Moreover, the simulation and experimental results both revealed that reducing surface coverage of BRCC (≈80.9%) can still keep highly cooling efficiency, leading to a cost-effective avenue. Therefore, this study may guide the design and fabrication of advanced radiative cooling coating.

17.
Front Biosci (Elite Ed) ; 16(2): 15, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38939914

ABSTRACT

BACKGROUND: Fall armyworm (Spodoptera frugiperda) is a highly destructive maize pest that significantly threatens agricultural productivity. Existing control methods, such as chemical insecticides and entomopathogens, lack effectiveness, necessitating alternative approaches. METHODS: Gut-associated bacteria were isolated from the gut samples of fall armyworm and screened based on their chitinase and protease-producing ability before characterization through 16S rRNA gene sequence analysis. The efficient chitinase-producing Bacillus licheniformis FGE4 and Enterobacter cloacae FGE18 were chosen to test the biocontrol efficacy. As their respective cell suspensions and extracted crude chitinase enzyme, these two isolates were applied topically on the larvae, supplemented with their feed, and analyzed for their quantitative food use efficiency and survivability. RESULTS: Twenty-one high chitinase and protease-producing bacterial isolates were chosen. Five genera were identified by 16S rRNA gene sequencing: Enterobacter, Enterococcus, Bacillus, Pantoea, and Kocuria. In the biocontrol efficacy test, the consumption index and relative growth rate were lowered in larvae treated with Enterobacter cloacae FGE18 by topical application and feed supplementation. Similarly, topical treatment of Bacillus licheniformis FGE4 to larvae decreased consumption index, relative growth rate, conversion efficiency of ingested food, and digested food values. CONCLUSION: The presence of gut bacteria with high chitinase activity negatively affects insect health. Utilizing gut-derived bacterial isolates with specific insecticidal traits offers a promising avenue to control fall armyworms. This research suggests a potential strategy for future pest management.


Subject(s)
Chitinases , Spodoptera , Animals , Spodoptera/microbiology , Chitinases/metabolism , Chitinases/genetics , RNA, Ribosomal, 16S/genetics , Bacteria/enzymology , Bacillus licheniformis/genetics , Bacillus licheniformis/enzymology , Enterobacter cloacae/genetics , Enterobacter cloacae/enzymology , Larva/microbiology , Pest Control, Biological/methods , Gastrointestinal Tract/microbiology
18.
Br Poult Sci ; : 1-10, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940321

ABSTRACT

1. This study investigated the effects of incorporating yellow mealworm (Tenebrio molitor) larval meal as a partial and/or complete substitute for soybean meal on carcass and meat quality in slow-growing chickens.2. A total of 256 one-day-old male broilers were randomly allocated to 1 of 32 experimental units distributed among four treatments (n = 8): the control treatment (C), where soybean (SB) meal was the protein source, and three experimental treatments, in which SB meal was replaced by Tenebrio molitor (TM) larval meal at levels of 50% (T1), 75% (T2) and 100% (T3), respectively. Three different feed phases (1-29; 29-57 and 57-92 d of age) were used for each treatment. All chickens were slaughtered at 92 d of age, with eight animals per treatment randomly selected to assess carcass and meat quality. Near-infrared reflectance spectroscopy (NIR) was used to classify meat quality.3. Carcass traits were not significantly different between treatments, except for head and thigh weight, which were higher in the control group (p < 0.01). In terms of physicochemical characteristics, treatment T2 showed less yellowness (p < 0.05), while water and cooking losses were lower in treatments T1 and T2 (p < 0.01). Meat from both T1 and T2 groups had lower shear forces (p < 0.01), higher moisture content (p < 0.01) and less protein (p < 0.05) compared to treatments C andT3. Birds fed T3 had the highest meat ash content (p < 0.01). Chickens consuming TM had higher monounsaturated fatty acid (MUFA) levels and lower polyunsaturated fatty acid (PUFA) and n-6 acidsPUFA (p < 0.01).4. Substitution of SB with TM is a protein alternative for slow-growing chickens that supports carcass and meat quality comparable to those fed a conventional diet.

19.
Int Nurs Rev ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940490

ABSTRACT

AIM: To determine the effect of nurses' perceptions of the effectiveness of nursing services management on their professional commitment. BACKGROUND: Effective healthcare management is crucial for improving patient care quality. Understanding nurses' perspectives on nursing services management and their commitment provides valuable insights for management strategies, improving well-being and healthcare outcomes. METHODS: This descriptive, cross-sectional, and correlational study involved 265 state hospital nurses. Data were collected between November 2020 and June 2021 using descriptive characteristic form, Nursing Services Management Effectiveness Scale, and Nursing Professional Commitment Scale. This study adhered to the STROBE checklist. RESULTS: Nurses' views on the effectiveness of nursing services management and their professional commitment were found to be influenced by age, professional experience, and institutional positions. The average scores for nursing services management perception and professional commitment were 2.65 ± 0.72 and 66.63 ± 12.40, respectively. A statistically significant positive and low-level correlation was observed between nurses' nursing services management perception and professional commitment scores. Nurses' positive perception of nursing services management explains 17.1% of the variance in nurses' professional commitment levels. DISCUSSION AND CONCLUSION: This study outlines how nurses' views on effective nursing services management can enhance their professional commitment. Managers should contribute to increase nursing services management efficacy by eliminating deficiencies in management practices to make their institutions successful and to increase their employees' professional commitment level. IMPLICATIONS FOR NURSING AND HEALTH POLICY: Assuming positive perceptions of nursing management increase nurses' professional commitment, developing policies to boost organizational support is vital. Managers should focus on improving nursing services management to increase organizational success, increase nurses' professional commitment, and achieve the best health outcomes by eliminating management deficiencies.

20.
J Virol ; : e0083024, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940559

ABSTRACT

Viruses have evolved a range of strategies to utilize or manipulate the host's cellular translational machinery for efficient infection, although the mechanisms by which infectious bronchitis virus (IBV) manipulates the host translation machinery remain unclear. In this study, we firstly demonstrate that IBV infection causes host shutoff, although viral protein synthesis is not affected. We then screened 23 viral proteins, and identified that more than one viral protein is responsible for IBV-induced host shutoff, the inhibitory effects of proteins Nsp15 were particularly pronounced. Ribosome profiling was used to draw the landscape of viral mRNA and cellular genes expression model, and the results showed that IBV mRNAs gradually dominated the cellular mRNA pool, the translation efficiency of the viral mRNAs was lower than the median efficiency (about 1) of cellular mRNAs. In the analysis of viral transcription and translation, higher densities of RNA sequencing (RNA-seq) and ribosome profiling (Ribo-seq) reads were observed for structural proteins and 5' untranslated regions, which conformed to the typical transcriptional characteristics of nested viruses. Translational halt events and the number of host genes increased significantly after viral infection. The translationally paused genes were enriched in translation, unfolded-protein-related response, and activation of immune response pathways. Immune- and inflammation-related mRNAs were inefficiently translated in infected cells, and IBV infection delayed the production of IFN-ß and IFN-λ. Our results describe the translational landscape of IBV-infected cells and demonstrate new strategies by which IBV induces host gene shutoff to promote its replication. IMPORTANCE: Infectious bronchitis virus (IBV) is a γ-coronavirus that causes huge economic losses to the poultry industry. Understanding how the virus manipulates cellular biological processes to facilitate its replication is critical for controlling viral infections. Here, we used Ribo-seq to determine how IBV infection remodels the host's biological processes and identified multiple viral proteins involved in host gene shutoff. Immune- and inflammation-related mRNAs were inefficiently translated, the translation halt of unfolded proteins and immune activation-related genes increased significantly, benefitting IBV replication. These data provide new insights into how IBV modulates its host's antiviral responses.

SELECTION OF CITATIONS
SEARCH DETAIL
...