Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 164
Filter
1.
J Mol Cell Cardiol ; 196: 84-93, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39270930

ABSTRACT

Atrial fibrillation (AF) is the most common sustained arrhythmia in adults. Current limitations of pharmacological and ablative therapies motivate the development of novel therapies as next generation treatments for AF. The arrhythmia mechanisms creating and sustaining AF are key elements in the development of this novel treatment. Gene therapy provides a useful platform that allows us to regulate the mechanisms of interest using a suitable transgene(s), vector, and delivery method. Effective gene therapy strategies in the literature have targeted maladaptive electrical or structural remodeling that increase vulnerability to AF. In this review, we will summarize key elements of gene therapy for AF, including molecular targets, gene transfer vectors, atrial gene delivery and preclinical efficacy and toxicity testing. Recent advances and challenges in the field will be also discussed.

2.
Heart Rhythm ; 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39278611

ABSTRACT

BACKGROUND: Enhanced characterization of the atrial electrical substrate may lead to better comprehension of atrial fibrillation (AF) pathophysiology. OBJECTIVE: With the use of high-density substrate mapping, we sought to investigate the occurrence of functional electrophysiologic phenomena in the left atrium and to assess potential association with arrhythmia recurrences after catheter ablation. METHODS: Sixty-three consecutive patients with AF referred for ablation were enrolled. Analysis of conduction abnormalities relied on 2 acquired left atrial electroanatomic maps (sinus and atrial paced rhythm). We classified conduction abnormalities as fixed (if these were present in both rhythms) or functional rhythm dependent (if unmasked in 1 of the 2 rhythms). Esophagus and aorta locations were recorded to check the correspondence with abnormal conduction sites. RESULTS: There were 234 conduction abnormalities detected, of which 125 (53.4%) were functional rhythm dependent. The most frequent anatomic site of functional phenomena was the anterior wall, followed by the posterior wall, in sinus rhythm and the pulmonary venous antra in paced rhythm. Sites of functional phenomena in 82.6% of cases corresponded with extracardiac structures, such as sinus of Valsalva of ascending aorta anteriorly and the esophagus posteriorly. Most (88%) areas with functional phenomena had normal bipolar voltage. After pulmonary vein ablation, the number of residual functional phenomena is an independent predictor of AF recurrence (hazard ratio, 2.539 [1.458-4.420]; P = .001) with a risk of recurrences at multivariable Cox analysis. CONCLUSION: Dual high-density mapping (during sinus and paced rhythms) is able to unmask functional, rhythm-dependent phenomena that are predictive of AF recurrences during follow-up.

3.
J Mol Cell Cardiol ; 196: 141-151, 2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39307416

ABSTRACT

Atrial fibrillation (AF) is the most common sustained arrhythmia in clinical practice. Though the pathogenesis of AF is complex and is not completely understood, many studies suggest that oxidative stress is a major mechanism in pathophysiology of AF. Through multiple mechanisms, reactive oxygen species (ROS) lead to the formation of an AF substrate that facilitates the development and maintenance of AF. In this review article, we provide an update on the different mechanisms by which oxidative stress promotes atrial remodeling. We then discuss several therapeutic strategies targeting oxidative stress for the prevention or treatment of AF. Considering the complex biology of ROS induced remodeling, and the evolution of ROS sources and compartmentalization during AF progression, there is a definite need for improvement in timing, targeting and reduction of off-target effects of therapeutic strategies targeting oxidative injury in AF.

4.
Sci Rep ; 14(1): 19839, 2024 08 27.
Article in English | MEDLINE | ID: mdl-39191928

ABSTRACT

The compound NS5806 is a Kv4 channel modulator. This study investigated the chronic effects of NS5806 on cardiac hypertrophy induced by transverse aortic constriction (TAC) in mice in vivo and on neonatal rat ventricular cardiomyocyte hypertrophy induced by endothelin-1 (ET-1) in vitro. Four weeks after TAC, NS5806 was administered by gavage for 4 weeks. Echocardiograms revealed pronounced left ventricular (LV) hypertrophy in TAC-treated mice compared with sham mice. NS5806 attenuated LV hypertrophy, as manifested by the restoration of LV wall thickness and weight and the reversal of contractile dysfunction in TAC-treated mice. NS5806 also blunted the TAC-induced increases in the expression of cardiac hypertrophic and fibrotic genes, including ANP, BNP and TGF-ß. Electrophysiological recordings revealed a significant prolongation of action potential duration and QT intervals, accompanied by an increase in susceptibility to ventricular arrhythmias in mice with cardiac hypertrophy. However, NS5806 restored these alterations in electrical parameters and thus reduced the incidence of mouse sudden death. Furthermore, NS5806 abrogated the downregulation of the Kv4 protein in the hypertrophic myocardium but did not influence the reduction in Kv4 mRNA expression. In addition, NS5806 suppressed in vitro cardiomyocyte hypertrophy. The results provide novel insight for further ion channel modulator development as a potential treatment option for cardiac hypertrophy.


Subject(s)
Cardiomegaly , Myocytes, Cardiac , Shal Potassium Channels , Animals , Mice , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Shal Potassium Channels/metabolism , Shal Potassium Channels/genetics , Cardiomegaly/metabolism , Cardiomegaly/pathology , Cardiomegaly/drug therapy , Male , Rats , Mice, Inbred C57BL , Hypertrophy, Left Ventricular/metabolism , Hypertrophy, Left Ventricular/pathology , Disease Models, Animal , Phenylurea Compounds , Tetrazoles
5.
Biomed Pharmacother ; 177: 117121, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39002443

ABSTRACT

OBJECTIVES: Celastrol has widespread therapeutic applications in various pathological conditions, including chronic inflammation. Previous studies have demonstrated the potent cardioprotective effects of celastrol. Nevertheless, limited attention has been given to its potential in reducing ventricular arrhythmias (VAs) following myocardial infarction (MI). Hence, this study aimed to elucidate the potential mechanisms underlying the regulatory effects of celastrol on VAs and cardiac electrophysiological parameters in rats after MI. METHODS: Sprague-Dawley rats were divided at random: the sham, MI, and MI + celastrol groups. The left coronary artery was occluded in the MI and MI + Cel groups. Electrocardiogram, heart rate variability (HRV), ventricular electrophysiological parameters analysis, histology staining of ventricles, Enzyme-linked immunosorbent assay (ELISA), western blotting and Quantitative real-time polymerase chain reaction (qRT-PCR) were performed to elucidate the underlying mechanism of celastrol. Besides, H9c2 cells were subjected to hypoxic conditions to create an in vitro model of MI and then treated with celastrol for 24 hours. Nigericin was used to activate the NLRP3 inflammasome. RESULTS: Compared with that MI group, cardiac electrophysiology instability was significantly alleviated in the MI + celastrol group. Additionally, celastrol improved HRV, upregulated the levels of Cx43, Kv.4.2, Kv4.3 and Cav1.2, mitigated myocardial fibrosis, and inhibited the NLRP3 inflammasome pathway. In vitro conditions also supported the regulatory effects of celastrol on the NLRP3 inflammasome pathway. CONCLUSIONS: Celastrol could alleviate the adverse effects of VAs after MI partially by promoting autonomic nerve remodeling, ventricular electrical reconstruction and ion channel remodeling, and alleviating ventricular fibrosis and inflammatory responses partly by through inhibiting the NLRP3/Caspase-1/IL-1ß pathway.


Subject(s)
Anti-Arrhythmia Agents , Arrhythmias, Cardiac , Caspase 1 , Heart Failure , Interleukin-1beta , Myocardial Infarction , NLR Family, Pyrin Domain-Containing 3 Protein , Pentacyclic Triterpenes , Rats, Sprague-Dawley , Signal Transduction , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pentacyclic Triterpenes/pharmacology , Caspase 1/metabolism , Anti-Arrhythmia Agents/pharmacology , Signal Transduction/drug effects , Male , Rats , Interleukin-1beta/metabolism , Arrhythmias, Cardiac/drug therapy , Heart Failure/drug therapy , Heart Failure/metabolism , Heart Failure/physiopathology , Myocardial Infarction/drug therapy , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Triterpenes/pharmacology , Chronic Disease , Inflammasomes/metabolism , Inflammasomes/drug effects , Cell Line , Heart Rate/drug effects , Disease Models, Animal
6.
Mol Med ; 30(1): 97, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937697

ABSTRACT

BACKGROUND: Ubiquitin-specific protease 38 (USP38), belonging to the USP family, is recognized for its role in controlling protein degradation and diverse biological processes. Ventricular arrhythmias (VAs) following heart failure (HF) are closely linked to ventricular electrical remodeling, yet the specific mechanisms underlying VAs in HF remain inadequately explored. In this study, we examined the impact of USP38 on VAs in pressure overload-induced HF. METHODS: Cardiac-specific USP38 knockout mice, cardiac-specific USP38 transgenic mice and their matched control littermates developed HF induced by aortic banding (AB) surgery. After subjecting the mice to AB surgery for a duration of four weeks, comprehensive investigations were conducted, including pathological analysis and electrophysiological assessments, along with molecular analyses. RESULTS: We observed increased USP38 expression in the left ventricle of mice with HF. Electrocardiogram showed that the USP38 knockout shortened the QRS interval and QTc, while USP38 overexpression prolonged these parameters. USP38 knockout decreased the susceptibility of VAs by shortening action potential duration (APD) and prolonging effective refractory period (ERP). In addition, USP38 knockout increased ion channel and Cx43 expression in ventricle. On the contrary, the increased susceptibility of VAs and the decreased expression of ventricular ion channels and Cx43 were observed with USP38 overexpression. In both in vivo and in vitro experiments, USP38 knockout inhibited TBK1/AKT/CAMKII signaling, whereas USP38 overexpression activated this pathway. CONCLUSION: Our data indicates that USP38 increases susceptibility to VAs after HF through TBK1/AKT/CAMKII signaling pathway, Consequently, USP38 may emerge as a promising therapeutic target for managing VAs following HF.


Subject(s)
Heart Failure , Mice, Knockout , Ubiquitin-Specific Proteases , Ventricular Remodeling , Animals , Male , Mice , Arrhythmias, Cardiac/etiology , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/genetics , Disease Models, Animal , Electrocardiography , Heart Failure/metabolism , Heart Failure/etiology , Heart Failure/genetics , Heart Failure/physiopathology , Heart Ventricles/metabolism , Heart Ventricles/physiopathology , Mice, Transgenic , Signal Transduction , Ubiquitin-Specific Proteases/metabolism , Ubiquitin-Specific Proteases/genetics , Ventricular Remodeling/genetics
7.
Int J Mol Sci ; 25(11)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38892396

ABSTRACT

Cardiac arrhythmias remain a significant concern with Ibrutinib (IBR), a first-generation Bruton's tyrosine kinase inhibitor (BTKi). Acalabrutinib (ABR), a next-generation BTKi, is associated with reduced atrial arrhythmia events. However, the role of ABR in ventricular arrhythmia (VA) has not been adequately evaluated. Our study aimed to investigate VA vulnerability and ventricular electrophysiology following chronic ABR therapy in male Sprague-Dawley rats utilizing epicardial optical mapping for ventricular voltage and Ca2+ dynamics and VA induction by electrical stimulation in ex-vivo perfused hearts. Ventricular tissues were snap-frozen for protein analysis for sarcoplasmic Ca2+ and metabolic regulatory proteins. The results show that both ABR and IBR treatments increased VA vulnerability, with ABR showing higher VA regularity index (RI). IBR, but not ABR, is associated with the abbreviation of action potential duration (APD) and APD alternans. Both IBR and ABR increased diastolic Ca2+ leak and Ca2+ alternans, reduced conduction velocity (CV), and increased CV dispersion. Decreased SERCA2a expression and AMPK phosphorylation were observed with both treatments. Our results suggest that ABR treatment also increases the risk of VA by inducing proarrhythmic changes in Ca2+ signaling and membrane electrophysiology, as seen with IBR. However, the different impacts of these two BTKi on ventricular electrophysiology may contribute to differences in VA vulnerability and distinct VA characteristics.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase , Arrhythmias, Cardiac , Benzamides , Piperidines , Rats, Sprague-Dawley , Animals , Benzamides/pharmacology , Benzamides/therapeutic use , Male , Rats , Agammaglobulinaemia Tyrosine Kinase/metabolism , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/chemically induced , Piperidines/pharmacology , Piperidines/therapeutic use , Action Potentials/drug effects , Ventricular Remodeling/drug effects , Protein Kinase Inhibitors/pharmacology , Pyrazines/pharmacology , Calcium/metabolism , Adenine/analogs & derivatives , Adenine/pharmacology , Adenine/adverse effects , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Heart Ventricles/drug effects , Heart Ventricles/metabolism , Heart Ventricles/physiopathology , Pyrimidines/pharmacology , Calcium Signaling/drug effects , Pyrazoles/pharmacology
8.
Physiology (Bethesda) ; 39(5): 0, 2024 09 01.
Article in English | MEDLINE | ID: mdl-38713091

ABSTRACT

Insulin-like growth factor-1 (IGF-1) signaling has multiple physiological roles in cellular growth, metabolism, and aging. Myocardial hypertrophy, cell death, senescence, fibrosis, and electrical remodeling are hallmarks of various heart diseases and contribute to the progression of heart failure. This review highlights the critical role of IGF-1 and its cognate receptor in cardiac hypertrophy, aging, and remodeling.


Subject(s)
Insulin-Like Growth Factor I , Signal Transduction , Humans , Insulin-Like Growth Factor I/metabolism , Animals , Signal Transduction/physiology , Receptor, IGF Type 1/metabolism , Myocardium/metabolism , Aging/metabolism , Aging/physiology , Heart/physiology , Cardiomegaly/metabolism , Cardiomegaly/physiopathology
9.
J Am Heart Assoc ; 13(9): e033317, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38686869

ABSTRACT

BACKGROUND: Although moderate endurance exercise has been reported to improve cardiovascular health, its effects on cardiac structure and function are not fully characterized, especially with respect to sexual dimorphism. We aimed to assess the effects of moderate endurance exercise on cardiac physiology in male versus female mice. METHODS AND RESULTS: C57BL/6J mice of both sexes were run on a treadmill for 6 weeks. ECG and echocardiography were performed every 2 weeks. After 6 weeks of exercise, mice were euthanized, and triple parametric optical mapping was performed on Langendorff perfused hearts to assess cardiac electrophysiology. Arrhythmia inducibility was tested by programmed electrical stimulation. Left ventricular tissue was fixed, and RNA sequencing was performed to determine exercise-induced transcriptional changes. Exercise-induced left ventricular dilatation was observed in female mice alone, as evidenced by increased left ventricular diameter and reduced left ventricular wall thickness. Increased cardiac output was also observed in female exercised mice but not males. Optical mapping revealed further sexual dimorphism in exercise-induced modulation of cardiac electrophysiology. In female mice, exercise prolonged action potential duration and reduced voltage-calcium influx delay. In male mice, exercise reduced the calcium decay constant, suggesting faster calcium reuptake. Exercise increased arrhythmia inducibility in both male and female mice; however, arrhythmia duration was increased only in females. Lastly, exercise-induced transcriptional changes were sex dependent: females and males exhibited the most significant changes in contractile versus metabolism-related genes, respectively. CONCLUSIONS: Our data suggest that moderate endurance exercise can significantly alter multiple aspects of cardiac physiology in a sex-dependent manner. Although some of these effects are beneficial, like improved cardiac mechanical function, others are potentially proarrhythmic.


Subject(s)
Arrhythmias, Cardiac , Mice, Inbred C57BL , Physical Conditioning, Animal , Animals , Female , Male , Arrhythmias, Cardiac/physiopathology , Arrhythmias, Cardiac/etiology , Physical Conditioning, Animal/physiology , Mice , Sex Factors , Ventricular Function, Left/physiology , Action Potentials , Physical Endurance/physiology , Ventricular Remodeling/physiology , Heart Rate/physiology , Isolated Heart Preparation , Sex Characteristics
10.
Acta Cardiol Sin ; 40(2): 182-190, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38532812

ABSTRACT

Background: The influence of intravenous ferric carboxymaltose (FCM) on reverse electrical remodeling (RER) in patients with heart failure with reduced ejection fraction (HFrEF) post-cardiac resynchronization therapy (CRT) is unknown. This study examines the effect of iron replacement using intravenous FCM on RER in CRT-implanted HFrEF patients with iron deficiency anemia. Methods: We retrospectively analyzed 65 patients with successful CRT-defibrillator between March 2017 and January 2020, all with iron deficiency anemia at implantation. The cohort comprised 35 patients in the FCM group and 30 in the non-FCM group. Follow-up data were obtained from visits 6 months post-CRT implantation including baseline characteristics, echocardiographic left ventricular measurements, and electrocardiograms. Changes in intrinsic QRS duration (iQRS) and left ventricular ejection fraction (LVEF) from baseline to 6 months were assessed. Results: The FCM group showed a greater reduction in iQRS duration compared to the non-FCM group (-10.4 ± 2.2 ms vs. -3 ± 2.9 ms, p < 0.0001). Additionally, at the 6-month follow-up, the increase in LVEF was higher in the FCM group than in the non-FCM group (+3.6 ± 1.6% vs. -0.1 ± 1.7%, p < 0.0001). Correlations were found between changes in ferritin levels and iQRS duration (r = -0.725, p < 0.0001) and LVEF (r = 0.712, p < 0.0001). Multivariate regression analysis revealed that elevated ferritin independently influenced the increase in LVEF (p = 0.006, ß = 0.554) and the decrease in iQRS (p < 0.001, ß = -0.685). Conclusions: Intravenous iron treatment with FCM may reduce iQRS duration and improve LVEF and functional status in HFrEF patients with iron deficiency anemia following CRT.

11.
J. physiol. biochem ; 80(1): 1-9, Feb. 2024. graf, ilus
Article in English | IBECS | ID: ibc-EMG-561

ABSTRACT

Hypothyroidism is the most frequent endocrine pathology. Although clinical or overt hypothyroidism has been traditionally associated to low T3 / T4 and high thyrotropin (TSH) circulating levels, other forms exist such as subclinical hypothyroidism, characterized by normal blood T3 / T4 and high TSH. In its different forms is estimated to affect approximately 10% of the population, especially women, in a 5:1 ratio with respect to men. Among its consequences are alterations in cardiac electrical activity, especially in the repolarization phase, which is accompanied by an increased susceptibility to cardiac arrhythmias. Although these alterations have traditionally been attributed to thyroid hormone deficiency, recent studies, both clinical trials and experimental models, demonstrate a fundamental role of TSH in cardiac electrical remodeling. Thus, both metabolic thyroid hormones and TSH regulate cardiac ion channel expression in many and varied ways. This means that the different combinations of hormones that predominate in different types of hypothyroidism (overt, subclinic, primary, central) can generate different forms of cardiac electrical remodeling. These new findings are raising the relevant question of whether serum TSH reference ranges should be redefined. (AU)


Subject(s)
Hypothyroidism , Cardiac Electrophysiology , Triiodothyronine , Thyrotropin , Arrhythmias, Cardiac
12.
J. physiol. biochem ; 80(1): 1-9, Feb. 2024. graf, ilus
Article in English | IBECS | ID: ibc-229936

ABSTRACT

Hypothyroidism is the most frequent endocrine pathology. Although clinical or overt hypothyroidism has been traditionally associated to low T3 / T4 and high thyrotropin (TSH) circulating levels, other forms exist such as subclinical hypothyroidism, characterized by normal blood T3 / T4 and high TSH. In its different forms is estimated to affect approximately 10% of the population, especially women, in a 5:1 ratio with respect to men. Among its consequences are alterations in cardiac electrical activity, especially in the repolarization phase, which is accompanied by an increased susceptibility to cardiac arrhythmias. Although these alterations have traditionally been attributed to thyroid hormone deficiency, recent studies, both clinical trials and experimental models, demonstrate a fundamental role of TSH in cardiac electrical remodeling. Thus, both metabolic thyroid hormones and TSH regulate cardiac ion channel expression in many and varied ways. This means that the different combinations of hormones that predominate in different types of hypothyroidism (overt, subclinic, primary, central) can generate different forms of cardiac electrical remodeling. These new findings are raising the relevant question of whether serum TSH reference ranges should be redefined. (AU)


Subject(s)
Hypothyroidism , Cardiac Electrophysiology , Triiodothyronine , Thyrotropin , Arrhythmias, Cardiac
13.
Hypertens Res ; 47(5): 1309-1322, 2024 May.
Article in English | MEDLINE | ID: mdl-38374239

ABSTRACT

Atrial fibrillation (AF), the most common cardiac arrhythmia, is an important contributor to mortality and morbidity. Ubquitin-specific protease 7 (USP7), one of the most abundant ubiquitin-specific proteases (USP), participated in many cellular events, such as cell proliferation, apoptosis, and tumourigenesis. However, its role in AF remains unknown. Here, the mice were treated with Ang II infusion to induce the AF model. Echocardiography was used to measure the atrial diameter. Electrical stimulation was programmed to measure the induction and duration of AF. The changes in atrial remodeling were measured using routine histologic analysis. Here, a significant increase in USP7 expression was observed in Ang II-stimulated atrial cardiomyocytes and atrial tissues, as well as in atrial tissues from patients with AF. The administration of p22077, the inhibitor of USP7, attenuated Ang II-induced inducibility and duration of AF, atrial dilatation, connexin dysfunction, atrial fibrosis, atrial inflammation, and atrial oxidase stress, and then inhibited the progression of AF. Mechanistically, the administration of p22077 alleviated Ang II-induced activation of TGF-ß/Smad2, NF-κB/NLRP3, NADPH oxidases (NOX2 and NOX4) signals, the up-regulation of CX43, ox-CaMKII, CaMKII, Kir2.1, and down-regulation of SERCA2a. Together, this study, for the first time, suggests that USP7 is a critical driver of AF and revealing USP7 may present a new target for atrial fibrillation therapeutic strategies.


Subject(s)
Angiotensin II , Atrial Fibrillation , Ubiquitin-Specific Peptidase 7 , Animals , Atrial Fibrillation/metabolism , Atrial Fibrillation/chemically induced , Atrial Fibrillation/drug therapy , Atrial Fibrillation/prevention & control , Ubiquitin-Specific Peptidase 7/metabolism , Mice , Male , Mice, Inbred C57BL , Heart Atria/drug effects , Heart Atria/metabolism , Heart Atria/pathology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Humans , Atrial Remodeling/drug effects
14.
Zhen Ci Yan Jiu ; 49(2): 155-163, 2024 Feb 25.
Article in English, Chinese | MEDLINE | ID: mdl-38413036

ABSTRACT

OBJECTIVES: To investigate the mechanism of electroacupuncture (EA) at "Neiguan" (PC6) in impro-ving myocardial electrical remodeling in rats with acute myocardial infarction (AMI) by enhancing transient outward potassium current. METHODS: A total of 30 male SD rats were randomly divided into control, model and EA groups, with 10 rats in each group. The AMI model was established by subcutaneous injection with isoprenaline (ISO, 85 mg/kg). EA was applied to left PC6 for 20 min, once daily for 5 days. Electrocardiogram (ECG) was recorded after treatment. TTC staining was used to observe myocardial necrosis. HE staining was used to observe the pathological morphology of myocardial tissue and measure the cross-sectional area of myocardium. Potassium ion-related genes in myocardial tissue were detected by RNA sequencing. The mRNA and protein expressions of Kchip2 and Kv4.2 in myocardial tissue were detected by real-time fluorescence quantitative PCR and Western blot, respectively. RESULTS: Compared with the control group, cardiomyocyte cross-sectional area in the model group was significantly increased (P<0.01), the ST segment was significantly elevated (P<0.01), and QT, QTc, QTd and QTcd were all significantly increased (P<0.05, P<0.01). After EA treatment, cardiomyocyte cross-sectional area was significantly decreased (P<0.01), the ST segment was significantly reduced (P<0.01), and the QT, QTc, QTcd and QTd were significantly decreased (P<0.01, P<0.05). RNA sequencing results showed that a total of 20 potassium ion-related genes co-expressed by the 3 groups were identified. Among them, Kchip2 expression was up-regulated most notablely in the EA group. Compared with the control group, the mRNA and protein expressions of Kchip2 and Kv4.2 in the myocardial tissue of the model group were significantly decreased (P<0.01, P<0.05), while those were increased in the EA group (P<0.01, P<0.05). CONCLUSIONS: EA may improve myocardial electrical remodeling in rats with myocardial infarction, which may be related to its functions in up-regulating the expressions of Kchip2 and Kv4.2.


Subject(s)
Atrial Remodeling , Electroacupuncture , Myocardial Infarction , Myocardial Ischemia , Rats , Male , Animals , Myocardial Ischemia/therapy , Rats, Sprague-Dawley , Acupuncture Points , Myocardium/metabolism , Myocardial Infarction/genetics , Myocardial Infarction/therapy , Potassium/metabolism , RNA, Messenger/metabolism
15.
J Physiol Biochem ; 80(1): 1-9, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38019451

ABSTRACT

Hypothyroidism is the most frequent endocrine pathology. Although clinical or overt hypothyroidism has been traditionally associated to low T3 / T4 and high thyrotropin (TSH) circulating levels, other forms exist such as subclinical hypothyroidism, characterized by normal blood T3 / T4 and high TSH. In its different forms is estimated to affect approximately 10% of the population, especially women, in a 5:1 ratio with respect to men. Among its consequences are alterations in cardiac electrical activity, especially in the repolarization phase, which is accompanied by an increased susceptibility to cardiac arrhythmias. Although these alterations have traditionally been attributed to thyroid hormone deficiency, recent studies, both clinical trials and experimental models, demonstrate a fundamental role of TSH in cardiac electrical remodeling. Thus, both metabolic thyroid hormones and TSH regulate cardiac ion channel expression in many and varied ways. This means that the different combinations of hormones that predominate in different types of hypothyroidism (overt, subclinic, primary, central) can generate different forms of cardiac electrical remodeling. These new findings are raising the relevant question of whether serum TSH reference ranges should be redefined.


Subject(s)
Atrial Remodeling , Hypothyroidism , Male , Female , Humans , Triiodothyronine/therapeutic use , Thyrotropin/therapeutic use , Thyroxine/therapeutic use
16.
Antioxidants (Basel) ; 12(10)2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37891912

ABSTRACT

Atrial fibrillation (AF) is the most common type of cardiac arrhythmia and its prevalence increases with age. The irregular and rapid contraction of the atria can lead to ineffective blood pumping, local blood stasis, blood clots, ischemic stroke, and heart failure. NADPH oxidases (NOX) and mitochondria are the main sources of reactive oxygen species in the heart, and dysregulated activation of NOX and mitochondrial dysfunction are associated with AF pathogenesis. NOX- and mitochondria-derived oxidative stress contribute to the onset of paroxysmal AF by inducing electrophysiological changes in atrial myocytes and structural remodeling in the atria. Because high atrial activity causes cardiac myocytes to expend extremely high energy to maintain excitation-contraction coupling during persistent AF, mitochondria, the primary energy source, undergo metabolic stress, affecting their morphology, Ca2+ handling, and ATP generation. In this review, we discuss the role of oxidative stress in activating AF-triggered activities, regulating intracellular Ca2+ handling, and functional and anatomical reentry mechanisms, all of which are associated with AF initiation, perpetuation, and progression. Changes in the extracellular matrix, inflammation, ion channel expression and function, myofibril structure, and mitochondrial function occur during the early transitional stages of AF, opening a window of opportunity to target NOX and mitochondria-derived oxidative stress using isoform-specific NOX inhibitors and mitochondrial ROS scavengers, as well as drugs that improve mitochondrial dynamics and metabolism to treat persistent AF and its transition to permanent AF.

17.
J Clin Med ; 12(19)2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37834978

ABSTRACT

BACKGROUND AND AIM: The GORE® CARDIOFORM (GCO) septal occluder is an atrial septal defect/patent foramen ovale closure device with theoretical advantages over other commercialized devices thanks to its softness and anatomical compliance. Our aim was to evaluate the short- and medium-term electrocardiographic changes after percutaneous ASD closure with GCO in a pediatric population. METHODS: We enrolled 39 patients with isolated ASD submitted to trans-catheter closure from January 2020 to June 2021. ECG was performed before, at 24 h and 6 months after the procedure. P wave dispersion, QTc and QTc dispersion were calculated. ECG Holter was recorded at 6 months after implantation. RESULTS: Patients' age and body surface area (BSA) were 8.2 ± 4.2 years and 1.0 ± 0.3 m2 respectively. At the baseline, mean P wave dispersion was 40 ± 15 msec and decreased at 24 h (p < 0.002), without any further change at 6 months. At 24 h, PR conduction and QTc dispersion significantly improved (p = 0.018 and p < 0.02 respectively), while the absolute QTc value considerably improved after 6 months. During mid-term follow-up, QTc dispersion remained stable without a significant change in PR conduction. The baseline cardiac frequency was 88.6 ± 12.6 bpm, followed by a slight reduction at 24 h, with a further amelioration at 6 months after the procedure (87.3 ± 14.2, p = 0.9 and 81.0 ± 12.7, p = 0.009, respectively). After device deployment, two patients developed transient, self-limited junctional rhythm. One of them needed a short course of Flecainide for atrial ectopic tachycardia. No tachy/brady-arrhythmias were recorded at the 6-month follow-up. ASD closure resulted in a marked decrease in right heart volumes and diameters at 6 months after percutaneous closure. CONCLUSIONS: Percutaneous ASD closure with the GCO device results in significant, sudden improvement of intra-atrial, atrio-ventricular and intraventricular electrical homogeneity. This benefit persists unaltered over a medium-term follow-up. These electrical changes are associated with a documented positive right heart volumetric remodeling at mid-term follow-up.

18.
Noncoding RNA Res ; 8(4): 542-549, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37602317

ABSTRACT

Atrial fibrillation (AF) is a common cardiac arrhythmia that often occurs in patients with structural heart disease and is a significant cause of morbidity and mortality in clinical settings. AF is typically associated with significant changes of both the structure of the atria and the cardiac conduction system. AF can result in reduced heart function, heart failure, and various other complications. Current drug therapy for AF patients is often ineffective and may have adverse effects. Radiofrequency ablation is more effective than traditional drug therapy, but this invasive procedure carries potential risks and may lead to postoperative recurrence, limiting the clinical benefits to some extent. Therefore, in-depth research into the molecular mechanisms of AF and exploration of new treatment strategies based on research findings are prerequisites for improving the treatment of AF and the associated cardiac conditions. Long noncoding RNAs (lncRNAs) are a new class of noncoding RNA (ncRNAs) with a length exceeding 200 nt, which regulate gene expression at multiple levels. Increasing evidence suggests that lncRNAs participate in many pathological processes of AF initiation, development, and maintenance, such as structural remodeling, electrical remodeling, renin-angiotensin system anomalies, and intracellular calcium deregulation s. LncRNAs that play key roles in structural and electrical remodeling may become molecular markers and targets for AF diagnosis and treatment, respectively, while lncRNAs critical to autonomic nervous system remodeling may bring new insights into the prognosis and recurrence of AF. This review article provides a synopsis on the up-to-date research findings relevant to the roles of lncRNAs in AF.

19.
Int J Mol Sci ; 24(15)2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37569470

ABSTRACT

Previous studies indicated long non-coding RNAs (lncRNAs) participated in the pathogenesis of atrial fibrillation (AF). However, little is known about the role of lncRNAs in AF-induced electrical remodeling. This study aimed to investigate the regulatory effect of lncRNA GAS5 (GAS5) on the electrical remodeling of neonatal rat cardiomyocytes (NRCMs) induced by rapid pacing (RP). RNA microarray analysis yielded reduced GAS5 level in NRCMs after RP. RT-qPCR, western blot, and immunofluorescence yielded downregulated levels of Nav1.5, Kv4.2, and Cav1.2 after RP, and whole-cell patch-clamp yielded decreased sodium, potassium, and calcium current. Overexpression of GAS5 attenuated electrical remodeling. Bioinformatics tool prediction analysis and dual luciferase reporter assay confirmed a direct negative regulatory effect for miR-27a-3p on lncRNA-GAS5 and HOXa10. Further analysis demonstrated that either miR-27a-3p overexpression or the knockdown of HOXa10 further downregulated Nav1.5, Kv4.2, and Cav1.2 expression. GAS5 overexpression antagonized such effects in Nav1.5 and Kv4.2 but not in Cav1.2. These results indicate that, in RP-treated NRCMs, GAS5 could restore Nav1.5 and Kv4.2 expression via the miR-27a-3p/HOXa10 pathway. However, the mechanism of GAS5 restoring Cav1.2 level remains unclear. Our study suggested that GAS5 regulated cardiac ion channels via the GAS5/miR-27a-3p/HOXa10 pathway and might be a potential therapeutic target for AF.

20.
Zhongguo Zhong Yao Za Zhi ; 48(13): 3565-3575, 2023 Jul.
Article in Chinese | MEDLINE | ID: mdl-37474990

ABSTRACT

This study aimed to investigate the underlying mechanism of Zhenwu Decoction in the treatment of heart failure by regulating electrical remodeling through the transient outward potassium current(I_(to))/voltage-gated potassium(Kv) channels. Five normal SD rats were intragastrically administered with Zhenwu Decoction granules to prepare drug-containing serum, and another seven normal SD rats received an equal amount of distilled water to prepare blank serum. H9c2 cardiomyocytes underwent conventional passage and were treated with angiotensin Ⅱ(AngⅡ) for 24 h. Subsequently, 2%, 4%, and 8% drug-containing serum, simvastatin(SIM), and BaCl_2 were used to interfere in H9c2 cardiomyocytes for 24 h. The cells were divided into a control group [N, 10% blank serum + 90% high-glucose DMEM(DMEM-H)], a model group(M, AngⅡ + 10% blank serum + 90% DMEM-H), a low-dose Zhenwu Decoction-containing serum group(Z1, AngⅡ + 2% drug-containing serum of Zhenwu Decoction + 8% blank serum + 90% DMEM-H), a medium-dose Zhenwu Decoction-containing serum group(Z2, AngⅡ + 4% drug-containing serum of Zhenwu Decoc-tion + 6% blank serum + 90% DMEM-H), a high-dose Zhenwu Decoction-containing serum group(Z3, AngⅡ + 8% drug-containing serum of Zhenwu Decoction + 2% blank serum + 90% DMEM-H), an inducer group(YD, AngⅡ + SIM + 10% blank serum + 90% DMEM-H), and an inhibitor group(YZ, AngⅡ + BaCl_2 + 10% blank serum + 90% DMEM-H). The content of ANP in cell extracts of each group was detected by ELISA. The relative mRNA expression levels of ANP, Kv1.4, Kv4.2, Kv4.3, DPP6, and KChIP2 were detected by real-time quantitative PCR. The protein expression of Kv1.4, Kv4.2, Kv4.3, DPP6, and KChIP2 was detected by Western blot. I_(to) was detected by the whole cell patch-clamp technique. The results showed that Zhenwu Decoction at low, medium, and high doses could effectively reduce the surface area of cardiomyocytes. Compared with the M group, the Z1, Z2, Z3, and YD groups showed decreased ANP content and mRNA level, increased protein and mRNA expression of Kv4.2, Kv4.3, DPP6, and KChIP2, and decreased protein and mRNA expression of Kv1.4, and the aforementioned changes were the most notable in the Z3 group. Compared with the N group, the Z1, Z2, and Z3 groups showed significantly increased peak current and current density of I_(to). The results indicate that Zhenwu Decoction can regulate myocardial remodeling and electrical remodeling by improving the expression trend of Kv1.4, Kv4.2, Kv4.3, KChIP2, and DPP6 proteins and inducing I_(to) to regulate Kv channels, which may be one of the mechanisms of Zhenwu Decoction in treating heart failure and related arrhythmias.


Subject(s)
Atrial Remodeling , Heart Failure , Rats , Animals , Myocytes, Cardiac , Rats, Sprague-Dawley , Heart Failure/drug therapy , Heart Failure/metabolism , RNA, Messenger/metabolism , Potassium
SELECTION OF CITATIONS
SEARCH DETAIL