Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Chemosphere ; 358: 142119, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697567

ABSTRACT

The CO2 bioelectromethanosynthesis via two-chamber microbial electrolysis cell (MEC) holds tremendous potential to solve the energy crisis and mitigate the greenhouse gas emissions. However, the membrane fouling is still a big challenge for CO2 bioelectromethanosynthesis owing to the poor proton diffusion across membrane and high inter-resistance. In this study, a new MEC bioreactor with biogas recirculation unit was designed in the cathode chamber to enhance secondary-dissolution of CO2 while mitigating the contaminant adhesion on membrane surface. Biogas recirculation improved CO2 re-dissolution, reduced concentration polarization, and facilitated the proton transmembrane diffusion. This resulted in a remarkable increase in the cathodic methane production rate from 0.4 mL/L·d to 8.5 mL/L·d. A robust syntrophic relationship between anodic organic-degrading bacteria (Firmicutes 5.29%, Bacteroidetes 25.90%, and Proteobacteria 6.08%) and cathodic methane-producing archaea (Methanobacterium 65.58%) enabled simultaneous organic degradation, high CO2 bioelectromethanosynthesis, and renewable energy storage.


Subject(s)
Biofuels , Bioreactors , Carbon Dioxide , Methane , Carbon Dioxide/analysis , Electrolysis , Electrodes , Bioelectric Energy Sources , Methanobacterium/metabolism , Membranes, Artificial , Proteobacteria/metabolism
2.
Chemosphere ; 350: 141109, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38176592

ABSTRACT

Immobilizing electro-active microbes within polymer matrices (thereby forming biohybrids) is a promising approach to accelerate microbial attachment to electrodes and increase the biofilm robustness. However, little is known on the fine scale chemical environment that develops within the electro-active biohybrids. Herein, we develop a biohybrid by immobilizing a culture of Shewanella oneidensis MR1 in agar matrix on the surface of a graphite electrode poised at +0.25 V. The resulting bioanode (3-6 mm thick) was grown under anoxic conditions and produced a steady current of 40 µA. Oxygen and pH distribution within the biohybrid were characterized in-situ using microsensors. As Shewanella is a facultative aerobe, it will halt the current production in the presence of oxygen. Thus, in addition, we investigated the alteration of the microenvironment during and after aeration of the medium to evaluate the oxygen tolerance of the system. During aeration, oxygen was effectively consumed in the top layers of the biofilm, leaving a 400-900 µm thick anoxic zone on the anode surface, that sustained >60% of the initial current. Current production recovered to pre-oxic condition within 5 h after the aeration was stopped, showing that immobilization can promote both high resistance and resilience of the system. Despite the absence of strong buffering conditions, pH profiles indicated a maximum drop of 0.2 units across the biohybrid. Characterizing the chemical microenvironment helps to elucidate the mechanistic functioning of artificial biofilms and hold a great potential for the designing of future, more effective biohybrid electrodes.


Subject(s)
Bioelectric Energy Sources , Resilience, Psychological , Shewanella , Electron Transport , Electrodes , Biofilms , Oxygen
3.
Environ Sci Technol ; 57(20): 7743-7752, 2023 05 23.
Article in English | MEDLINE | ID: mdl-37171176

ABSTRACT

Electroactive microbes can conduct extracellular electron transfer and have the potential to be applied as a bioresource to regulate soil geochemical properties and microbial communities. In this study, we incubated Fe-limited and Fe-enriched farmland soil together with electroactive microbes for 30 days; both soils were incubated with electroactive microbes and a common iron mineral, ferrihydrite. Our results indicated that the exogenous electroactive microbes decreased soil pH, total organic carbon (TOC), and total nitrogen (TN) but increased soil conductivity and promoted Fe(III) reduction. The addition of electroactive microbes also changed the soil microbial community from Firmicutes-dominated to Proteobacteria-dominated. Moreover, the total number of detected microbial species in the soil decreased from over 700 to less than 500. Importantly, the coexistence of N-transforming bacteria, Fe(III)-reducing bacteria and methanogens was also observed with the addition of electroactive microbes in Fe-rich soil, indicating the accelerated interspecies electron transfer of functional microflora.


Subject(s)
Ferric Compounds , Microbiota , Soil/chemistry , Soil Microbiology , Minerals/chemistry , Oxidation-Reduction
4.
Bioresour Technol ; 345: 126562, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34910968

ABSTRACT

The extracellular electron transfer (EET) efficiency between electroactive microbes (EAMs) and electrode is a key factor determining the development of microbial electrochemical technology (MET). Currently, the low EET efficiency of EAMs limits the application of MET in the fields of organic matter degradation, electric energy production, seawater desalination, bioremediation and biosensing. Enhancement of the interaction between EAMs and electrode by interfacial engineering methods brings bright prospects for the improvement of the EET efficiency of EAMs. In view of the research in recent years, this mini-review systematically summarizes various interfacial engineering strategies ranging from electrode surface modification to hybrid biofilm formation, then to single cell interfacial engineering and intracellular reformation for promoting the electron transfer between EAMs and electrode, focusing on the applicability and limitations of these methodologies. Finally, the possible key directions, challenges and opportunities for future interfacial engineering to strengthen the microbial EET are proposed in this mini-review.


Subject(s)
Bioelectric Energy Sources , Electricity , Electrodes , Electron Transport , Electrons
5.
Sci Total Environ ; 809: 151113, 2022 Feb 25.
Article in English | MEDLINE | ID: mdl-34688743

ABSTRACT

This study explored the performances, and associated mechanisms of biochar promoting volatile fatty acids (VFA) oxidation via extracellular electron transfer (EET) pathway. It was found that in a bioelectrochemical system, adding biochar suspension remarkably enhanced electricity generation whatever acetate or propionate used as an electron donor. The maximum current density in biochar-assisted groups reached 1.6-2.2 A/m2, which were 69.2-220.0% higher than that of control groups. The lower electrical resistance of anode in biochar-assisted groups was potentially attributed to the formed biofilm dominated by electro-active Geobacteraceae, and the electron donor type depending on dominant genus. In specific, with biochar assistance, Desulfuromonas enriched from 1.1% to 25.0% when acetate as an electron donor, and the relative abundance of Geobacter increased from 4.6% to 31.7% as dominant genus in propionate-added group. Electrochemical analysis uncovered that biochar hardly elevated sludge electrical conductivity, while the excellent redox-based electron exchange transfer capacity likely made biochar as a transient electron acceptor, which was more accessible than anode to support the metabolism of electroactive bacteria in the initial stage. Meanwhile, the porous surface area of biochar particle likely provided a "bridge" between suspended sludge and anode, to support a more directional evolution of electroactive bacteria on anode. This dual-function of biochar achieved a sustainable VFA oxidation via EET-based pathway.


Subject(s)
Electrons , Fatty Acids, Volatile , Charcoal , Electric Conductivity , Electrodes , Oxidation-Reduction
6.
Bioresour Technol ; 329: 124887, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33647603

ABSTRACT

Rechargeable microbial electrochemical systems can be used as renewable energy storage systems or as potable bioelectronics devices. In this study, a bioelectrode capable of bidirectional extracellular electron transfer was firstly introduced to construct the rechargeable microbial fuel cell (MFC). The performance of rechargeable MFC was enhanced with the increase of charge/discharge cycles, and a maximum energy efficiency of 4.5 ± 0.2% and Coulombic efficiency of 29.4 ± 4.1% were obtained. H2 was the main charge carrier, while the accumulated acetate was only about 10 mg L-1. The charge time under constant current mode largely affected the energy recovery. A decreased abundance of Mycobacteria, Geobacter, and Azospirillum, accompanied by an increase of Azonexus and Rhodococcus was observed in the rechargeable MFC, compared to control tests fueled with acetate. This study demonstrates the potential of bioelectrode for energy storage and recovery.


Subject(s)
Bioelectric Energy Sources , Geobacter , Electrodes , Electron Transport , Electrons
7.
Environ Pollut ; 249: 794-800, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30951963

ABSTRACT

Bioelectrochemical systems (BESs) have been widely investigated for recalcitrant waste treatment mainly because of their waste removal effectiveness. Electroactive microbes (EMs) have long been thought to contribute to the high effectiveness by interacting with electrodes via electron chains. However, this work demonstrated the dispensable role of EMs for enhanced recalcitrant contamination degradation in BESs. We revealed enhanced p-fluoronitrobenzene (p-FNB) degradation in a BES by observing a defluorination efficiency that was three times higher than that in biodegradation or electrochemical processes. Such an improvement was achieved by the collaborative roles of electrode biofilms and planktonic microbes, as their individual contributions to p-FNB degradation were found to be similarly stimulated by electricity. However, no bioelectrochemical activity was found in either the electrode biofilms or the planktonic microbes during stimulated p-FNB degradation; because no biocatalytically reductive or oxidative turnovers were observed on cyclic voltammetry curves. The non-involvement of EMs was further proven by the similar microbial community evolution for biofilms and planktonic microbes. In summary, we proposed a mechanism for indirect electrical stimulation of microbial metabolism by electrochemically generating the active mediator p-fluoroaniline (p-FA) and further degradation by a sequential combination of electrochemical p-FNB reduction and biological p-FA oxidation by non-EMs.


Subject(s)
Bacteria/metabolism , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/metabolism , Bacteria/classification , Bacteria/growth & development , Biocatalysis , Biodegradation, Environmental , Biofilms/growth & development , Bioreactors , Electricity , Electrodes/microbiology , Nitrobenzenes/metabolism , Oxidation-Reduction , Waste Disposal, Fluid/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL