Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 967
Filter
1.
Rev Environ Health ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38981511

ABSTRACT

We examined one of the first published of the several systematic reviews being part of WHO's renewed initiative to assess the evidence of associations between man-made radiofrequency electromagnetic radiation (RF-EMF) and adverse health effects in humans. The examined review addresses experimental studies of pregnancy and birth outcomes in non-human mammals. The review claims that the analyzed data did not provide conclusions certain enough to inform decisions at a regulatory level. Our objective was to assess the quality of this systematic review and evaluate the relevance of its conclusions to pregnant women and their offspring. The quality and relevance were checked on the review's own premises: e.g., we did not question the selection of papers, nor the chosen statistical methods. While the WHO systematic review presents itself as thorough, scientific, and relevant to human health, we identified numerous issues rendering the WHO review irrelevant and severely flawed. All flaws found skew the results in support of the review's conclusion that there is no conclusive evidence for nonthermal effects. We show that the underlying data, when relevant studies are cited correctly, support the opposite conclusion: There are clear indications of detrimental nonthermal effects from RF-EMF exposure. The many identified flaws uncover a pattern of systematic skewedness aiming for uncertainty hidden behind complex scientific rigor. The skewed methodology and low quality of this review is highly concerning, as it threatens to undermine the trustworthiness and professionalism of the WHO in the area of human health hazards from man-made RF-EMF.

2.
J Cell Physiol ; : e31365, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38946084

ABSTRACT

Schwannomas are benign tumors of the peripheral nervous system arising from the transformation of Schwann cells (SCs). On the whole, these tumors are related to alterations of the neurofibromin type 2 gene, coding for the oncosuppressor merlin, a cytoskeleton-associated protein belonging to the ezrin-radixin-moesin family. However, the underlying mechanisms of schwannoma onset and progression are not fully elucidated, whereas one of the challenges might be the environment. In this light, the exposure to electromagnetic field (EMF), generated by the use of common electrical devices, has been defiantly suggested as the cause of SCs transformation even if the evidence was mostly epidemiologic. Indeed, insubstantial mechanisms have been so far identified to explain SCs oncotransformation. Recently, some in vitro evidence pointed out alterations in proliferation and migration abilities in SCs exposed to EMF (0.1 T, 50 Hz, 10 min). Here, we used the same experimental paradigma to discuss the involvement of putative epigenetic mechanisms in SCs adaptation to EMF and to explain the occurrence of hypoxic alterations after the exposure. Our findings indicate a set of environmental-induced changes in SCs, toward a less-physiological state, which may be pathologically relevant for the SCs differentiation and the schwannoma development.

3.
Acta Vet Hung ; 72(2): 57-65, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38888962

ABSTRACT

Dissection of the matter into its constituents leads us to the smallest particles that we know. These particles form a material structure that is determined by the electromagnetic field generated and carried by those particles. Changes in any of the two major constituents leads to changes in that material system, be it a living organism or a lifeless object. The latter statement carries the mystery of life that is born from a continuous and programmed series of system changes fuelled by an energy source with a yet unknown functioning mechanism. The present work is a theoretical approach towards the understanding and potential discovery of the aforementioned, not-yet-known cellular energetic mechanism. Understanding the energetic basis of intracellular biochemistry is equally important in human and animal therapeutics. Additionally, as all such discoveries offer novel solutions in various fields of the global industry, the final outcome of this theoretical work also brings about the idea of a new discovery in electronics industry.


Subject(s)
Electromagnetic Fields , Models, Theoretical , Animals , Models, Biological
4.
Anticancer Res ; 44(7): 2837-2846, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38925852

ABSTRACT

BACKGROUND/AIM: Pulsed electromagnetic field (PEMF) stimulation enhances the efficacy of several anticancer drugs. Doxorubicin is an anticancer drug used to treat various types of cancer, including breast cancer. However, the effect of PEMF stimulation on the efficacy of doxorubicin and the underlying mechanisms remain unclear. Thus, this study aimed to investigate the effect of PEMF stimulation on the anticancer activity of doxorubicin in MDA-MB-231 human breast cancer cells. MATERIALS AND METHODS: MDA-MB-231 cells were seeded and allowed to incubate for 48 h. The cells were treated with doxorubicin, cisplatin, 5-fluorouracil, or paclitaxel for 48 h. Subsequently, the cells were stimulated with a 60-min PEMF session thrice a day (with an interval of 4 h between each session) for 24 or 48 h. Cell viability was assessed by trypan blue dye exclusion assay and cell-cycle analysis was analyzed by flow cytometry. Molecular mechanisms involved in late G2 arrest were confirmed by a western blot assay and confocal microscopy. RESULTS: MDA-MB-231 cells treated with a combination of doxorubicin and PEMF had remarkably lower viability than those treated with doxorubicin alone. PEMF stimulation increased doxorubicin-induced cell-cycle arrest in the late G2 phase by suppressing cyclin-dependent kinase 1 (CDK1) activity through the enhancement of myelin transcription factor 1 (MYT1) expression, cell division cycle 25C (CDC25C) phosphorylation, and stratifin (14-3-3σ) expression. PEMF also increased doxorubicin-induced DNA damage by inhibiting DNA topoisomerase II alpha (TOP2A). CONCLUSION: These findings support the use of PEMF stimulation as an adjuvant to strengthen the antiproliferative effect of doxorubicin on breast cancer cells.


Subject(s)
Breast Neoplasms , Doxorubicin , Humans , Doxorubicin/pharmacology , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Female , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/radiation effects , G2 Phase Cell Cycle Checkpoints/drug effects , G2 Phase Cell Cycle Checkpoints/radiation effects , Electromagnetic Fields , DNA Topoisomerases, Type II/metabolism , Cell Proliferation/drug effects , Paclitaxel/pharmacology , Fluorouracil/pharmacology , Poly-ADP-Ribose Binding Proteins/metabolism , cdc25 Phosphatases/metabolism , Cyclin-Dependent Kinase 2/metabolism
5.
Materials (Basel) ; 17(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38930380

ABSTRACT

In order to optimize the application effect of induction heating (IH) tundishes, a four-channel IH tundish is taken as the research object. Based on numerical simulation methods, the influence of different relative placement angles of induction heaters and channels on the electromagnetic field, flow field and temperature field of the tundish is investigated. We focus on comparing the magnetic flux density (B) and electromagnetic force (EMF) distribution of the channel. The results show that regardless of the relative placement angle between the heater and the channel, the distribution of B in the central circular cross-section of the channel is eccentric. When the heater rotates around channel 1 towards the bottom of the tundish, the distribution of B in the central circular cross-section of the channel changes from a horizontal eccentricity to a vertical one. Through the analysis of the B contour in the longitudinal section of the channel, the difference in effective magnetic flux density area (ΔAB) between the upper and lower parts of the channel can be obtained, thereby quantitatively analyzing the distribution of B in this section. The distribution pattern of ΔAB is consistent with the distribution pattern of the electromagnetic force in the vertical direction (FZ) of the channel centerline. The ΔAB and FZ of channel 1 gradually increase as the heater rotates downwards, while those of channel 2 reach their maximum value at a rotation angle of 60°. Compared to the conventional placement, when the heater rotation angle is 60°, the outlet flow velocities at channel 1 and channel 2 decrease by 15% and 12%, respectively. However, the outlet temperature at channel 2 increases by 1.96 K, and the molten steel flow at the outlet of channel 1 and channel 2 no longer exhibits significant downward flow. This shows that when the heater rotation angle is 60°, it has a dual advantage. On the one hand, it is helpful to reduce the erosion of the molten steel on the channel and the bottom of the discharging chamber, and on the other hand, it can more effectively exert the heating effect of the induction heater on the molten steel in the channel. This presents a new approach to enhance the application effectiveness of IH tundish.

6.
Article in English, Chinese | MEDLINE | ID: mdl-38832464

ABSTRACT

OBJECTIVES: To investigate the effect of sinusoidal alternating electromagnetic field (SEMF) on fracture healing and its mechanism. METHODS: Femoral fracture model was established using SPF male Wistar rats, 30 model rats were randomly divided into model control (MC) and SEMF groups with 15 rats in each group. The SEMF group was given 50 Hz 1.8 mT for 90 min every day, and the MC group was not treated. X-ray examinations were performed every two weeks to determine the formation of bone scabs in each group of rats. Three rats were sacrificed after 2 and 4 weeks of treatment in both groups. Protein was extracted from the fractured femurs, and the expression of type Ⅰ collagen (COL-1), Osterix (OSX), Runt-related transcription factor 2 (RUNX2), and vascular endothelial growth factor (VEGF) protein level was detected by immunoblotting. After 8 weeks, the femur on the operated side was taken for micro-CT scanning to observe fracture healing, angiography to observe blood vessel growth, and organs such as hearts, livers, spleens, lungs, and kidneys were taken for safety evaluation by hematoxylin-eosin staining (HE staining). RESULTS: The bone scab scores of the SEMF group were significantly higher than those of the MC group after 2, 4, 6, and 8 weeks of treatment (all P<0.01); the fracture healing of the SEMF group was better than that of the MC group after 8 weeks, and the bone volume scores of the two groups were 0.243±0.012 and 0.186±0.008, respectively, with statistically significant differences (P<0.01); and the number of blood vessels in the SEMF group was also more than that of the MC group after 8 weeks. The results of protein blotting method showed that the protein expression of VEGF, COL-1, RUNX2, and OSX was higher in the SEMF group than in the MC group after 2 and 4 weeks of treatment (all P<0.05), and the HE staining showed that there was no abnormality in histopathological observation of examined organs in both groups. CONCLUSIONS: SEMF can accelerate fracture healing by promoting the expression of osteogenic factors and vascular proliferation without significant adverse effects.

7.
Oral Maxillofac Surg ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38698248

ABSTRACT

PURPOSE: PEMF (pulsed electromagnetic fields) founds application in several medical fields to accelerate bone wounds healing and to reduce inflammation. The aim of our study was to evaluate the effectiveness of PEMF in reducing postoperative swelling and pain in patients undergoing orthognathic surgery. METHODS: A prospective observational monocentric study was conducted on a sample of 30 patients undergone to orthognathic surgery in Maxillofacial Surgery Unit of University of Naples Federico II. The patients who followed these inclusion criteria were enrolled in the study: age ≥ 18 years, Class III malocclusion, Surgical procedure of Le Fort I osteotomy + Bilateral Sagittal Split Osteotomy (BSSO), Written informed consent. Patients were divided into two groups: Group SD) postoperative standard treatment with medical therapy and cryotherapy, Group SD + PEMF) postoperative standard therapy + PEMF. Each patient underwent a 3D facial scan, at one (1d) and four (4d) days after surgery to compare the swelling reduction. The pain score was assessed through VAS score and analgesics administration amount. RESULTS: In SD + PEMF group, the facial volume reduction between 1d and 4d scan was on average 56.2 ml (6.23%), while in SD group, it was 23.6 ml (2.63%). The difference between the two groups was 3.6% (p = 0.0168). VAS pain values were significantly higher in SD group compared to SD + PEMF group in the second day after surgery (P = 0.021) and in the total 4 days (P = 0.008). CONCLUSIONS: Our data suggest that PEMF is valid tool to promote faster postoperative swelling and pain reduction in patients undergoing orthognathic surgery.

8.
J Bioinform Syst Biol ; 7(1): 81-91, 2024.
Article in English | MEDLINE | ID: mdl-38818113

ABSTRACT

Traumatic brain injury (TBI) is a leading cause of morbidity, disability, and mortality worldwide. Motor and cognitive deficits and emotional disturbances are long-term consequences of TBI. A lack of effective treatment for TBI-induced neural damage, functional impairments, and cognitive deficits makes it challenging in the recovery following TBI. One of the reasons may be the lack of knowledge underlying the complex pathophysiology of TBI and the regulatory factors involved in the cellular and molecular mechanisms of inflammation, neural regeneration, and injury repair. These mechanisms involve a change in the expression of various proteins encoded by genes whose expression is regulated by transcription factors (TFs) at the transcriptional level and microRNA (miRs) at the mRNA level. In this pilot study, we performed the RNA sequencing of injured tissues and non-injured tissues from the brain of Yucatan miniswine and analyzed the sequencing data for differentially expressed genes (DEGs) and the TFs and miRs regulating the expression of DEGs using in-silico analysis. We also compared the effect of the electromagnetic field (EMF) applied to the injured miniswine on the expression profile of various DEGs. The results of this pilot study revealed a few DEGs that were significantly upregulated in the injured brain tissue and the EMF stimulation showed effect on their expression profile.

9.
Metabolomics ; 20(3): 55, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762651

ABSTRACT

INTRODUCTION: The world is experiencing exponential growth in communication, especially wireless communication. Wireless connectivity has recently become a part of everyone's daily life. Recent developments in low-cost, low-power, and miniature devices contribute to a significant rise in radiofrequency-electromagnetic field (RF-EM) radiation exposure in our environment, raising concern over its effect on biological systems. The inconsistent and conflicting research results make it difficult to draw definite conclusions about how RF-EM radiation affects living things. OBJECTIVES: This study identified two micro-environments based on their level of exposure to cellular RF-EM radiation, one with significantly less exposure and another with very high exposure to RF-EM radiation. Emphasis is given to studying the metabolites in the urine samples of humans naturally exposed to these two different microenvironments to understand short-term metabolic dysregulations. METHODS: Untargeted 1H NMR spectroscopy was employed for metabolomics analyses to identify dysregulated metabolites. A total of 60 subjects were recruited with 5 ml urine samples each. These subjects were divided into two groups: one highly exposed to RF-EM (n = 30) and the other consisting of low-exposure populations (n = 30). RESULTS: The study found that the twenty-nine metabolites were dysregulated. Among them, 19 were downregulated, and 10 were upregulated. In particular, Glyoxylate and dicarboxylate and the TCA cycle metabolism pathway have been perturbed. The dysregulated metabolites were validated using the ROC curve analysis. CONCLUSION: Untargeted urine metabolomics was conducted to identify dysregulated metabolites linked to RF-EM radiation exposure. Preliminary findings suggest a connection between oxidative stress and gut microbiota imbalance. However, further research is needed to validate these biomarkers and understand the effects of RF-EM radiation on human health. Further research is needed with a diverse population.


Subject(s)
Metabolome , Metabolomics , Radio Waves , Humans , Male , Adult , Metabolomics/methods , Female , Radio Waves/adverse effects , Metabolome/radiation effects , Middle Aged , Electromagnetic Fields/adverse effects , Young Adult
10.
Electromagn Biol Med ; 43(3): 135-144, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38708861

ABSTRACT

This paper presents the findings of a comprehensive study exploring the synergistic effects arising from the combination of microwave ablation and pulsed electromagnetic field (PEMF) therapy on prostate cancer cells. The research encompassed five distinct experimental groups, with continuous electric field measurements conducted during the entire treatment process. Group 1 and Group 2, subjected to microwave power below 350 W, exhibited specific electric field values of 72,800 V/m and 56,600 V/m, respectively. In contrast, Group 3 and Group 4, exposed to 80 W microwave power, displayed electric field levels of approximately 1450 V/m, while remaining free from any observable electrical discharges. The migratory and invasive capacities of PC3 cells were assessed through a scratch test in all groups. Notably, cells in Group 3 and Group 4, subjected to the combined treatment of microwave ablation and PEMF, demonstrated significantly accelerated migration in comparison to those in Groups 1 and 2. Additionally, Group 5 cells, receiving PEMF treatment in isolation, exhibited decreased migratory ability. These results strongly suggest that the combined approach of microwave ablation and PEMF holds promise as a potential therapeutic intervention for prostate cancer, as it effectively reduced cell viability, induced apoptosis, and impeded migration ability in PC3 cells. Moreover, the isolated use of PEMF demonstrated potential in limiting migratory capacity, which could hold critical implications in the fight against cancer metastasis.


In this study, a new approach to treat prostate cancer by combining microwave ablation (MWA) and pulsed electromagnetic field (PEMF) therapy is explored. We used specific devices like rectangular waveguides for MWA and circular coils for PEMF. The energy sources utilized in the study comprised a magnetron tube system, similar to the microwave source found in a microwave oven, for generating microwaves, and a signal generator for producing PEMF. We used specialized equipment for MWA and PEMF to maintain controlled conditions, ensuring precise and reliable results. The research included testing various groups of prostate cancer cells exposed to different intensities of microwave power and magnetic flux density. The movement of cancer cells in different groups was examined through a wound healing assay, where cancer cells were placed on a flat surface, and we observed whether they filled the gap created by their movement. Interestingly, cells treated with both MWA and PEMF demonstrated faster movement compared to cells treated with MWA alone or PEMF alone. This combined treatment not only effectively decreased cell movement but also showed the potential cell death. The results showed that the combination of MWA and PEMF suggest a promising therapeutic strategy. The findings contribute to the development of precise and effective therapies that could enhance patient outcomes and quality of life. However, further research and validation are essential before translating these findings into clinical applications.


Subject(s)
Cell Movement , Cell Survival , Electromagnetic Fields , Microwaves , Prostatic Neoplasms , Male , Microwaves/therapeutic use , Humans , Prostatic Neoplasms/pathology , Prostatic Neoplasms/therapy , Prostatic Neoplasms/radiotherapy , Cell Survival/radiation effects , Apoptosis/radiation effects , Ablation Techniques , PC-3 Cells , Cell Line, Tumor
11.
Environ Monit Assess ; 196(6): 565, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773047

ABSTRACT

The aim of this review is to assess the impact of cell phone radiation effects on green plants. Rapid progress in networking and communication systems has introduced frequency- and amplitude-modulated technologies to the world with higher allowed bands and greater speed by using high-powered radio generators, which facilitate high definition connectivity, rapid transfer of larger data files, and quick multiple accesses. These cause frequent exposure of cellular radiation to the biological world from a number of sources. Key factors like a range of frequencies, time durations, power densities, and electric fields were found to have differential impacts on the growth and development of green plants. As far as the effects on green plants are concerned in this review, alterations in their morphological characteristics like overall growth, canopy density, and pigmentation to physiological variations like chlorophyll fluorescence and change in membrane potential etc. have been found to be affected by cellular radiation. On the other hand, elevated oxidative status of the cell, macromolecular damage, and lipid peroxidation have been found frequently. On the chromosomal level, micronuclei formation, spindle detachments, and increased mitotic indexes etc. have been noticed. Transcription factors were found to be overexpressed in many cases due to the cellular radiation impact, which shows effects at the molecular level.


Subject(s)
Cell Phone , Plants/radiation effects , Radio Waves
12.
Brain Sci ; 14(5)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38790409

ABSTRACT

BACKGROUND: The aim of this study was to review the current state of scientific evidence on the effect of extremely low-frequency magnetic fields stimulation (ELF-MFs) on stroke patients. METHODS: A systematic review of PubMed, ScienceDirect, PeDro and Embase databases was conducted. Only articles published in English, involving adult participants and focusing on individuals who had experienced a stroke, specifically examining the impact of ELF-MFs on post-stroke patients and had well-defined criteria for inclusion and exclusion of participants, were included. The methodological quality of the included studies was assessed using the Quality Assessment Tool for Quantitative Studies (QATQS). RESULTS: A total of 71 studies were identified through database and reference lists' search, from which 9 were included in the final synthesis. All included studies showed a beneficial effect of ELF-MFs on stroke patients, however seven of the included studies were carried by the same research group. Improvements were observed in domains such as oxidative stress, inflammation, ischemic lesion size, functional status, depressive symptoms and cognitive abilities. CONCLUSIONS: The available literature suggests a beneficial effect of ELF-MFs on post-stroke patients; however, the current data are too limited to broadly recommend the use of this method. Further research with improved methodological quality is necessary.

13.
Med Pr ; 75(2): 133-141, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38717134

ABSTRACT

BACKGROUND: The study aimed to investigate the influence of extremely low-frequency electromagnetic fields (ELF-EMF) on clear cell renal cell carcinoma (ccRCC) by assessing alterations in gene expression and the secretion of cytokines and chemokines. MATERIAL AND METHODS: Three ccRCC cell lines (786-O, 769-P, and CAKI-1) and a healthy HEK293 cell line were subjected to ELF-EMF exposure (frequency 50 Hz, magnetic field strength 4.5 mT) for 30 min daily for 5 days. The study examined the expression of ADAM28, NCAM1, and VEGFC genes, along with the secretion of 30 cytokines and chemokines. RESULTS: Notably, primary tumor-derived cell lines, but not those from metastatic sites, exhibited ADAM28 gene expression, which increased following ELF-EMF exposure. A statistically significant reduction in VEGFC gene expression was observed in 769-P cells after ELF-EMF exposure. Additionally, NCAM1 gene expression was upregulated in HEK293, 769-P, and 786-O cells, representing normal embryonic kidney cells and primary tumor cells, but not in CAKI-1 cells, which model metastatic sites. After EMF exposure, there was a statistically significant decrease in transforming growth factor ß1 (TGF-ß1) concentration in the cell culture supernatants of HEK293 and CAKI-1 cell lines, with no other significant changes in the secretion of tested cytokines. CONCLUSIONS: Given the study's findings and available research, caution is warranted when drawing conclusions about the potential inhibitory effect of ELF-EMF on ccRCC progression. Standardization of experimental models is imperative when assessing the effects of EMF in a human context. Med Pr Work Health Saf. 2024;75(2):133-141.


Subject(s)
Carcinoma, Renal Cell , Cytokines , Electromagnetic Fields , Kidney Neoplasms , Humans , Cytokines/metabolism , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Carcinoma, Renal Cell/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Gene Expression/radiation effects
14.
Sci Rep ; 14(1): 11060, 2024 05 14.
Article in English | MEDLINE | ID: mdl-38744931

ABSTRACT

In this paper the photobiomodulation on isolated mitochondria of bovine liver is studied as a thermodynamic process of conversion of energy. This analysis is conducted by considering a particular set-up for the photobiomodulation experiments of interest. It allows, in particular, the computation of the electromagnetic field and the related energetic quantities in the stimulated organelles. The measurements of the excess of biochemical power density produced by the illuminated mitochondria are performed at regular time intervals after the experiments. The calculations and the measurements finally allow us to obtain the first results on the efficiency of the process of conversion of electromagnetic energy into excess of biochemical energy released by the isolated organelles.


Subject(s)
Mitochondria, Liver , Animals , Cattle , Mitochondria, Liver/metabolism , Mitochondria, Liver/radiation effects , Low-Level Light Therapy/methods , Energy Metabolism , Thermodynamics , Electromagnetic Fields , Mitochondria/metabolism , Mitochondria/radiation effects
15.
Bioelectromagnetics ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778514

ABSTRACT

Fifth generation (5G) wireless communication is being rolled out around the world. In this work, the latest radio frequency electromagnetic field (EMF) exposure measurement results on commercial 28-GHz band 5G base stations (BSs) deployed in the urban area of Tokyo, Japan, are presented. The measurements were conducted under realistic traffic conditions with a 5G smartphone and using both omnidirectional and horn antennas. First and foremost, in all cases, the electric-field (E-field) intensity is much lower (<-38 dB) than the exposure limits. The E-field intensities for traffic-off cases do not show any significant difference between the two antennas with the maximum being 3.6 dB. For traffic-on cases, the omnidirectional antenna can undesirably capture the radio wave from the smartphone in some cases, resulting in a 7-13 dB higher E-field intensity than that using the horn antenna. We also present comparative results between 4G long term evolution BSs and sub-6-GHz band and 28-GHz band 5G BSs and provide recommendations on acquiring meaningful EMF exposure data. This work is a further step toward the standardization of the measurement method regarding quasi-millimeter/millimeter wave 5G BSs.

16.
Turk J Med Sci ; 54(1): 291-300, 2024.
Article in English | MEDLINE | ID: mdl-38812630

ABSTRACT

Background/aim: Congenital anomalies of the kidney and urinary tract(CAKUT) are the leading causes of childhood chronic kidney disease (CKD). The etiology of most of the cases is thought to be multifactorial. In this study, risk factors for CAKUT and the effect of mobile phone-related electromagnetic field (EMF) exposure during pregnancy were investigated. Materials and methods: Fifty-seven cases and 57 healthy controls under 2 years of age were included and their mothers were subjected to a questionnaire. Groups were compared for parents' demographics, pregestational (chronic disease, body mass index, use of the folic acid supplements) and antenatal variables (gestational disease, weight gain during pregnancy,) and exposures during pregnancy. To assess mobile phone-related radiation exposure, all participants were asked about their daily call time, the proximity of the phone when not in use, and the models of their mobile phones. The specific absorption rate (SAR) of the mobile phones and the effective SAR value (SAR × call time) as an indicator of EMF exposure were recorded. Results: Excess weight gain according to BMI during pregnancy was related to an increased risk of CAKUT (p=0.012). Folic acid use before pregnancy was protective for CAKUT (p = 0.028). The call time of mothers of the CAKUT group was significantly longer than the control (p = 0.001). An association was observed between higher effective SAR values and increased risk of CAKUT (p = 0.03). However the proximity of the mobile phone to the mother's body when not in use was not found as a risk factor. Conclusion: The etiology of CAKUT is multifactorial. Our results suggest that prolonged phone call and higher EMF exposure during pregnancy increases the risk of CAKUT in the offspring.


Subject(s)
Cell Phone , Electromagnetic Fields , Humans , Female , Pregnancy , Risk Factors , Electromagnetic Fields/adverse effects , Adult , Case-Control Studies , Urogenital Abnormalities/epidemiology , Urogenital Abnormalities/etiology , Maternal Exposure/adverse effects , Prenatal Exposure Delayed Effects/epidemiology , Vesico-Ureteral Reflux
17.
J Clin Med ; 13(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38731168

ABSTRACT

(1) Background: This study investigated the effects of sequenced electromagnetic fields, modulated at extremely low frequencies and intensities, in the treatment of drug-resistant Escherichia coli (E. coli)-induced chronic bacterial cystitis. (2) Methods: A total of 148 female participants, aged 18 to 80 years diagnosed with chronic bacterial cystitis caused by drug-resistant E. coli, were recruited for this study. Participants were randomly assigned to two groups: an experimental group (n = 74) with osteopathic palpation and assessment treated with a sequence of electromagnetic fields, and a control group (n = 74) receiving a placebo treatment. Both groups were assessed at this study's outset, 4 weeks after eight applications, and at 12 weeks for symptomatic presentation and laboratory parameters. (3) Results: After 4 weeks of treatment, a significant difference was observed between the two groups regarding D-DIMER levels, IL-6 levels, erythrocyte levels, leukocyte levels, and E. coli levels (p < 0.001). By the 12th week, the experimental group continued to exhibit a significant reduction in the examined parameters compared to the control group (p < 0.001). Additionally, the treatment did not induce any side effects in the patients in the experimental group. (4) Conclusions: Treatment with coherently sequenced electromagnetic fields, modulated at an extremely low frequency and intensity, not only appears to provide an effective alternative for the symptoms of chronic bacterial cystitis caused by drug-resistant E. coli but also demonstrates a potent antibacterial effect.

18.
Fortune J Health Sci ; 7(2): 197-215, 2024.
Article in English | MEDLINE | ID: mdl-38708028

ABSTRACT

A concussion is a particular manifestation of a traumatic brain injury, which is the leading cause of mortality and disabilities across the globe. The global prevalence of traumatic brain injury is estimated to be 939 instances per 100,000 individuals, with approximately 5.48 million people per year experiencing severe traumatic brain injury. Epidemiology varies amongst different countries by socioeconomic status with diverse clinical manifestations. Additionally, classifying concussions is an ambiguous process as clinical diagnoses are the only current classification method, and morbidity rates differ by demographic location as well as populations examined. In this article, we critically reviewed the pathophysiology of concussions, classification methods, treatment options available including both pharmacologic and nonpharmacologic intervention methods, etiologies as well as global etiologic differences associated with them, and clinical manifestations along with their associated morbidities. Furthermore, analysis of the current research regarding the incidence of concussion based traumatic brain injuries and future directions are discussed. Investigation on the efficacy of new therapeutic-related interventions such as exosome therapy and electromagnetic field stimulation are warranted to properly manage and treat concussion-induced traumatic brain injury.

19.
Anticancer Res ; 44(6): 2407-2415, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38821617

ABSTRACT

BACKGROUND/AIM: Caffeic acid phenethyl ester (CAPE) exerts anticancer effects against several cancer types, including breast cancer. Pulsed electromagnetic field (PEMF) improves the efficiency of some chemotherapeutic drugs. In this study, we examined the effects of PEMF stimulation on the anticancer activity of CAPE in MCF-7 breast cancer cells and the underlying signal transduction pathways. MATERIALS AND METHODS: MCF-7 cells were seeded and incubated for 24 h. Each of the drugs (5-fluorouracil, paclitaxel, gefitinib, or CAPE) was added to the cells on day 0. Then, cells were immediately stimulated with a 60-min PEMF session thrice a day (with 4-h interval between sessions) for 1-3 days. Cell death and viability were assessed by flow cytometry and trypan blue dye exclusion assay. Molecular mechanisms involved in cell death were confirmed by western blot assay. RESULTS: Compared with treatment with CAPE alone, co-treatment with CAPE and PEMF more strongly reduced the viability of MCF-7 cells, further increased the percentage of the sub-G1 population, poly (ADP-ribose) polymerase (PARP) cleavage, activation of apoptotic caspases, up-regulation of pro-apoptotic proteins, such as Fas cell surface death receptor (FAS) and BCL2 associated X, apoptosis regulator (BAX), and reduced the expression of anti-apoptotic proteins, such as BCL-2 apoptosis regulator (BCL-2), MCL-1 apoptosis regulator, BCL-2 family member (MCL-1), and survivin. PEMF stimulation also increased CAPE-induced phosphorylation of p53, and inhibition of p53 partially restored the PEMF-reduced viability of CAPE-treated MCF-7 cells. CONCLUSION: PEMF stimulation enhanced CAPE-induced cell death by activating p53, which regulates the expression of apoptosis-related molecules, subsequently activating the caspase-dependent apoptotic pathway in MCF-7 cells, suggesting that PEMF can be utilized as an adjuvant to enhance the effect of CAPE on breast cancer cells.


Subject(s)
Apoptosis , Breast Neoplasms , Caffeic Acids , Electromagnetic Fields , Phenylethyl Alcohol , Humans , Caffeic Acids/pharmacology , Phenylethyl Alcohol/analogs & derivatives , Phenylethyl Alcohol/pharmacology , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , MCF-7 Cells , Female , Apoptosis/drug effects , Apoptosis/radiation effects , Cell Survival/drug effects , Cell Survival/radiation effects , Signal Transduction/drug effects
20.
Sensors (Basel) ; 24(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38793913

ABSTRACT

The purpose of this paper is to demonstrate a new discovery regarding the interaction between materials and very low radio frequencies. Specifically, we observed a feedback response on an inertia active sensor when specific frequencies (around 2-4 kHz) are used to irradiate targeted pharmaceutical samples like aspirin or paracetamol drugs. The characteristics of this phenomenon, such as excitation and relaxation time, the relation between deceleration and a material's quantity, and signal amplitude, are presented and analyzed. Although the underlying physics of this phenomenon is not yet known, we have shown that it has potential applications in remote identification of compounds, detection, and location sensing, as well as identifying substances that exist in plants without the need for any processing. This method is fast, accurate, low-cost, non-destructive, and non-invasive, making it a valuable area for further research that could yield spectacular results in the future.


Subject(s)
Acetaminophen , Acetaminophen/analysis , Acetaminophen/chemistry , Electromagnetic Phenomena , Aspirin/chemistry , Aspirin/analysis , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/analysis , Radio Waves
SELECTION OF CITATIONS
SEARCH DETAIL
...