Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.736
Filter
1.
ACS Appl Mater Interfaces ; 16(36): 48293-48306, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39222057

ABSTRACT

The miniaturization and widespread deployment of electronic devices across diverse environments have heightened their vulnerability to corrosion, particularly affecting copper traces within printed circuit boards (PCBs). Conventional protective methods, such as conformal coatings, face challenges including the necessity for a critical thickness to ensure effective barrier properties and the requirement for multiple steps of drying and curing to eliminate solvent entrapment within polymer coatings. This study investigates cold atmospheric plasma (CAP) as an innovative technique for directly depositing ultrathin silicon oxide (SiOx) coatings onto copper surfaces to enhance corrosion protection in PCBs. A systematic investigation was undertaken to examine how the scanning speed of the CAP deposition head impacts the film quality and corrosion resistance. The research aims to determine the optimal scanning speed of the CAP deposition head that achieves complete surface coverage while promoting effective cross-linking and minimizing unreacted precursor entrapment, resulting in superior electrical barrier and mechanical properties. The CAP coating process demonstrated the capability of depositing SiOx onto copper surfaces at various thicknesses ranging from 70 to 1110 nm through a single deposition process by simply adjusting the scanning speed of the plasma head (5-75 mm/s). Evaluation of material corrosion barrier characteristics revealed that scanning speeds of 45 mm/s of the plasma deposition head provided an effective coating thickness of 140 nm, exhibiting superior corrosion resistance (30-fold) compared to that of uncoated copper. As a proof of concept, the efficacy of CAP-deposited SiOx coatings was demonstrated by protecting an LED circuit in saltwater and by coating printed circuits for potential agricultural sensor applications. These CAP-deposited coatings offer performance comparable to or superior to traditional conformal polymeric coatings. This research presents CAP-deposited SiOx coatings as a promising approach for effective and scalable corrosion protection in miniaturized electronics.

2.
Article in English | MEDLINE | ID: mdl-39323228

ABSTRACT

Organic electrochemical transistors (OECTs) have emerged as attractive devices for bioelectronics, wearable electronics, soft robotics, and energy storage devices. The electrolyte, being a fundamental component of OECTs, plays a crucial role in their performance. Recently, it has been demonstrated that ionic liquid crystal elastomers (iLCEs) can be used as a solid electrolyte for OECTs. Their capabilities, however, have only been shown for relatively large size substrate-free OECTs. Here, we study the influence of the different alignments of iLCEs on steady state and transient behavior of OECTs using a lateral geometry with source, drain, and gate in the same plane. We achieve excellent electrical response with an ON/OFF switching ratio of >105 and minimal leakage current. The normalized maximum transconductance gm/w of the most sensitive iLCE was found to be 33 S m-1, which is one of the highest among all solid-state-based OECTs reported so far. Additionally, iLCEs show high stability and can be removed and reattached multiple times to the same OECT device without decreasing performance.

3.
Angew Chem Int Ed Engl ; : e202418062, 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39324416

ABSTRACT

The metal-electrode interface is key to unlocking emergent behaviour in all organic electrified systems, from battery technology to molecular electronics. In the latter, interfacial engineering has enabled efficient transport, higher device stability, and novel functionality. Mechanoresistivity - the change in electrical behaviour in response to a mechanical stimulus and a pathway to extremely sensitive force sensors - is amongst the most studied phenomena in molecular electronics, and the molecule-electrode interface plays a pivotal role in its emergence, reproducibility, and magnitude. In this contribution, we show that organometallic molecular wires incorporating a Pt(II) cation show mechanoresistive behaviour of exceptional magnitude, with conductance modulations of more than three orders of magnitude upon compression by as little as 1 nm. We synthesised series of cyclometalated Pt(II) molecular wires, and used scanning tunnelling microscopy - break junction techniques to characterise their electromechanical behaviour. Mechanoresistivity arises from an interaction between the Pt(II) cation and the Au electrode triggered by mechanical compression of the single-molecule device, and theoretical modelling confirms this hypothesis. Our study provides a new tool for the design of functional molecular wires by exploiting previously unreported ion-metal interactions in single-molecule devices, and develops a new framework for the development of mechanoresistive molecular junctions.

4.
ACS Appl Mater Interfaces ; 16(37): 49602-49611, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39226175

ABSTRACT

Monolayer transition metal dichalcogenides are intensely explored as active materials in 2D material-based devices due to their potential to overcome device size limitations, sub-nanometric thickness, and robust mechanical properties. Considering their large band gap sensitivity to mechanical strain, single-layered TMDs are well-suited for strain-engineered devices. While the impact of various types of mechanical strain on the properties of a variety of TMDs has been studied in the past, TMD-based devices have rarely been studied under mechanical deformations, with uniaxial strain being the most common one. Biaxial strain on the other hand, which is an important mode of deformation, remains scarcely studied as far as 2D material devices are concerned. Here, we study the strain transfer efficiency in MoS2- and WSe2-based flexible transistor structures under biaxial deformation. Utilizing Raman spectroscopy, we identify that strains as high as 0.55% can be efficiently and homogeneously transferred from the substrate to the material in the transistor channel. In particular, for the WSe2 transistors, we capture the strain dependence of the higher-order Raman modes and show that they are up to five times more sensitive compared to the first-order ones. Our work demonstrates Raman spectroscopy as a nondestructive probe for strain detection in 2D material-based flexible electronics and deepens our understanding of the strain transfer effects on 2D TMD devices.

5.
Nat Phys ; 20(9): 1441-1447, 2024.
Article in English | MEDLINE | ID: mdl-39282552

ABSTRACT

Light and sound waves can move objects through the transfer of linear or angular momentum, which has led to the development of optical and acoustic tweezers, with applications ranging from biomedical engineering to quantum optics. Although impressive manipulation results have been achieved, the stringent requirement for a highly controlled, low-reverberant and static environment still hinders the applicability of these techniques in many scenarios. Here we overcome this challenge and demonstrate the manipulation of objects in disordered and dynamic media by optimally tailoring the momentum of sound waves iteratively in the far field. The method does not require information about the object's physical properties or the spatial structure of the surrounding medium but relies only on a real-time scattering matrix measurement and a positional guide-star. Our experiment demonstrates the possibility of optimally moving and rotating objects to extend the reach of wave-based object manipulation to complex and dynamic scattering media. We envision new opportunities for biomedical applications, sensing and manufacturing.

6.
ACS Nano ; 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39288275

ABSTRACT

The burgeoning demands for health care and human-machine interfaces call for the next generation of multifunctional integrated sensor systems with facile fabrication processes and reliable performances. Laser-induced graphene (LIG) with highly tunable physical and chemical characteristics plays vital roles in developing versatile skin-like flexible or stretchable sensor systems. This Progress Report presents an in-depth overview of the latest advances in LIG-based techniques in the applications of flexible sensors. First, the merits of the LIG technique are highlighted especially as the building blocks for flexible sensors, followed by the description of various fabrication methods of LIG and its variants. Then, the focus is moved to diverse LIG-based flexible sensors, including physical sensors, chemical sensors, and electrophysiological sensors. Mechanisms and advantages of LIG in these scenarios are described in detail. Furthermore, various representative paradigms of integrated LIG-based sensor systems are presented to show the capabilities of LIG technique for multipurpose applications. The signal cross-talk issues are discussed with possible strategies. The LIG technology with versatile functionalities coupled with other fabrication strategies will enable high-performance integrated sensor systems for next-generation skin electronics.

7.
Adv Mater ; : e2408969, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39279605

ABSTRACT

As a true 1D system, group-VIA tellurium (Te) is composed of van der Waals bonded molecular chains within a triangular crystal lattice. This unique crystal structure endows Te with many intriguing properties, including electronic, optoelectronic, thermoelectric, piezoelectric, chirality, and topological properties. In addition, the bandgap of Te exhibits thickness dependence, ranging from 0.31 eV in bulk to 1.04 eV in the monolayer limit. These diverse properties make Te suitable for a wide range of applications, addressing both established and emerging challenges. This review begins with an elaboration of the crystal structures and fundamental properties of Te, followed by a detailed discussion of its various synthesis methods, which primarily include solution phase, and chemical and physical vapor deposition technologies. These methods form the foundation for designing Te-centered devices. Then the device applications enabled by Te nanostructures are introduced, with an emphasis on electronics, optoelectronics, sensors, and large-scale circuits. Additionally, performance optimization strategies are discussed for Te-based field-effect transistors. Finally, insights into future research directions and the challenges that lie ahead in this field are shared.

8.
Article in English | MEDLINE | ID: mdl-39318341

ABSTRACT

Ionogels are emerging as promising electronics due to their exceptional ionic conductivity, stretchability, and high thermal stability. However, developing ionogels with enhanced mechanical properties without compromising conductivity and ion transport rates remains a significant challenge. Here, we report a zwitterionic cross-linker, 4-(2-(((2-(methacryloyloxy)ethyl)carbamoyl)oxy)ethyl)-4,14-dimethyl-8,13-dioxo-7,12-dioxa-4,9-diazapentadec-14-en-4-ium-1-propanesulfonate (MEPS) and utilized it to cross-link a variety of functional monomers, leading to the synthesis of conductive ionogels that exhibit both high mechanical strength and versatile applicability. Due to its abundant hydrogen bond donors/acceptors and zwitterionic moiety, MEPS exhibits several hundred times higher solubility in ionic liquids compared to conventional cross-linkers. As a proof-of-concept, the poly(acrylic acid-MEPS) ionogels demonstrate enhanced elongation, fracture toughness, and superior thermal stability, all while maintaining high conductivity due to the high affinity between ionic liquids and zwitterionic networks. Furthermore, MEPS-cross-linked poly(α-thioctic acid) electronics can be engineered as strain sensors, showing exceptional antifatigue properties and recyclability, remaining stable and functional over 300 consecutive cycles. This universal cross-linking strategy not only improves the overall performance of ionogels but also contributes to the development of next-generation soft electronics with enhanced functionality and durability.

9.
Regen Biomater ; 11: rbae109, 2024.
Article in English | MEDLINE | ID: mdl-39323746

ABSTRACT

Hydrogels are highly promising due to their soft texture and excellent biocompatibility. However, the designation and optimization of hydrogels involve numerous experimental parameters, posing challenges in achieving rapid optimization through conventional experimental methods. In this study, we leverage machine learning algorithms to optimize a dual-network hydrogel based on a blend of acrylamide (AM) and alginate, targeting applications in flexible electronics. By treating the concentrations of components as experimental parameters and utilizing five material properties as evaluation criteria, we conduct a comprehensive property assessment of the material using a linear weighting method. Subsequently, we design a series of experimental plans using the Bayesian optimization algorithm and validate them experimentally. Through iterative refinement, we optimize the experimental parameters, resulting in a hydrogel with superior overall properties, including heightened strain sensitivity and flexibility. Leveraging the available experimental data, we employ a classification algorithm to separate the cutoff data. The feature importance identified by the classification model highlights the pronounced impact of AM, ammonium persulfate, and N,N-methylene on the classification outcomes. Additionally, we develop a regression model and demonstrate its utility in predicting and analyzing the relationship between experimental parameters and hydrogel properties through experimental validation.

10.
ACS Sens ; 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39329366

ABSTRACT

The achievement of flexible skin electrodes for dynamic monitoring of biopotential is one of the challenging issues in flexible electronics due to the interference of large acceleration and heavy sweat that influence the stability of skin-electrode interfaces. This work presents materials and techniques to achieve self-healing and shear-stiffening electrodes and an associated flexible system that can be used for multichannel biopotential measurement on the skin. The electrode that is based on a composite of silver (Ag) flakes, Ag nanowires, and polyborosiloxane offers an electrical conductivity of 9.71 × 104 S/m and a rheological characteristic that ensures stable and fully conformal contact with skin and easy removal under different shear rates. The electrode can maintain its conductivity even after being stretched by more than 60% and becomes self-healed after mechanical damage. The combination of the electrodes with a screen-printed multichannel flexible sensor allows stable monitoring of both static and dynamic electromyography signals, leading to the acquisition of high-quality multilead biopotential signals that can be readily extracted to yield gesture recognition results with over 97.42% accuracy. The conductive self-healing materials and flexible sensors may be utilized in various daily biopotential sensing applications, allowing highly stable dynamic measurement to facilitate artificial intelligence-enabled health condition diagnosis and human-computer interface.

11.
Gels ; 10(9)2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39330157

ABSTRACT

Flexible sensors can measure various stimuli owing to their exceptional flexibility, stretchability, and electrical properties. However, the integration of multiple stimuli into a single sensor for measurement is challenging. To address this issue, the sensor developed in this study utilizes the natural biopolymers sodium alginate and carboxymethyl cellulose to construct a dual interpenetrating network, This results in a flexible porous sponge that exhibits a dual-modal response to strain and magnetic stimulation. The dual-mode flexible sensor achieved a maximum tensile strength of 429 kPa and elongation at break of 24.7%. It also exhibited rapid response times and reliable stability under both strain and magnetic stimuli. The porous foam sensor is intended for use as a wearable electronic device for monitoring joint movements of the body. It provides a swift and stable sensing response to mechanical stimuli arising from joint activities, such as stretching, compression, and bending. Furthermore, the sensor generates opposing response signals to strain and magnetic stimulation, enabling real-time decoupling of different stimuli. This study employed a simple and environmentally friendly manufacturing method for the dual-modal flexible sensor. Because of its remarkable performance, it has significant potential for application in smart wearable electronics and artificial electroskins.

12.
Nanomaterials (Basel) ; 14(18)2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39330657

ABSTRACT

We review recent results on textile triboelectric nanogenerators (T-TENGs), which function both as harvesters of mechanical energy and self-powered motion sensors. T-TENGs can be flexible, breathable, and lightweight. With a combination of traditional and novel manufacturing methods, including nanofibers, T-TENGs can deliver promising power output. We review the evolution of T-TENG device structures based on various textile material configurations and fabrication methods, along with demonstrations of self-powered systems. We also provide a detailed analysis of different textile materials and approaches used to enhance output. Additionally, we discuss integration capabilities with supercapacitors and potential applications across various fields such as health monitoring, human activity monitoring, human-machine interaction applications, etc. This review concludes by addressing the challenges and key research questions that remain for developing viable T-TENG technology.

13.
ACS Nano ; 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39331416

ABSTRACT

Significant advancements in hydrogel-based epidermal electrodes have been made in recent years. However, inherent limitations, such as adaptability, adhesion, and conductivity, have presented challenges, thereby limiting the sensitivity, signal-to-noise ratio (SNR), and stability of the physiological-electrode interface. In this study, we propose the concept of myelin sheath-inspired hydrogel epidermal electronics by incorporating numerous interpenetrating core-sheath-structured conductive nanofibers within a physically cross-linked polyelectrolyte network. Poly(3,4-ethylenedioxythiophene)-coated sulfonated cellulose nanofibers (PEDOT:SCNFs) are synthesized through a simple solvent-catalyzed sulfonation process, followed by oxidative self-polymerization and ionic liquid (IL) shielding steps, achieving a low electrochemical impedance of 42 Ω. The physical associations within the composite hydrogel network include complexation, electrostatic forces, hydrogen bonding, π-π stacking, hydrophobic interaction, and weak entanglements. These properties confer the hydrogel with high stretchability (770%), superconformability, self-adhesion (28 kPa on pigskin), and self-healing capabilities. By simulating the saltatory propagation effect of the nodes of Ranvier in the nervous system, the biomimetic hydrogel establishes high-fidelity epidermal electronic interfaces, offering benefits such as low interfacial contact impedance, significantly increased SNR (30 dB), as well as large-scale sensor array integration. The advanced biomimetic hydrogel holds tremendous potential for applications in electronic skin (e-skin), human-machine interfaces (HMIs), and healthcare assessment devices.

14.
ACS Appl Mater Interfaces ; 16(38): 51000-51009, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39258764

ABSTRACT

Nanostructured ultraviolet (UV) light sources represent a growing research field in view of their potential applications in wearable optoelectronics or medical treatment devices. In this work, we report the demonstration of the first flexible UV-A light emitting diode (LED) based on AlGaN/GaN core-shell microwires. The device is based on a composite microwire/poly(dimethylsiloxane) (PDMS) membrane with flexible transparent electrodes. The electrode transparency in the UV range is optimized: namely, we demonstrate that single-walled carbon nanotube electrodes provide a stable electrical contact to the membrane with high transparency (70% at 350 nm). The flexible UV-A membrane demonstrating electroluminescence around 345 nm is further applied to excite Zn-Ir-BipyPDMS luminophores: the UV-A LED is combined with the elastic luminophore-containing membrane to produce a visible amber emission from 520 to 650 nm. The obtained results pave the way for flexible inorganic light-emitting diodes to be employed in sensing, detection of fluorescent labels, or light therapy.

15.
ACS Appl Mater Interfaces ; 16(38): 51274-51282, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39285705

ABSTRACT

Artificial intelligence and human-computer interaction advances demand bioinspired sensing modalities capable of comprehending human affective states and speech. However, endowing skin-like interfaces with such intricate perception abilities remains challenging. Here, we have developed a flexible piezoresistive artificial ear (AE) sensor based on gold nanoparticles, which can convert sound signals into electrical signals through changes in resistance. By testing the sensor's performance at both frequency and sound pressure level (SPL), the AE has a frequency response range of 20 Hz to 12 kHz and can sense sound signals from up to 5 m away at a frequency of 1 kHz and an SPL of 126 dB. Furthermore, through deep learning, the device achieves up to 96.9% and 95.0% accuracy in classification and recognition applications for seven emotional and eight urban environmental noises, respectively. Hence, on one hand, our device can monitor the patient's emotional state by their speech, such as sudden yelling and screaming, which can help healthcare workers understand patients' condition in time. On the other hand, the device could also be used for real-time monitoring of noise levels in aircraft, ships, factories, and other high-decibel equipment and environments.


Subject(s)
Deep Learning , Emotions , Gold , Humans , Emotions/physiology , Gold/chemistry , Metal Nanoparticles/chemistry , Voice
16.
Angew Chem Int Ed Engl ; : e202415113, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39297652

ABSTRACT

Creating fluorophores that meet the Broadcast Service Television 2020 (BT.2020) standard is a significant achievement. In this paper, we present an innovative strategy that could revolutionize the development of high-performance narrowband fluorophores for ultra-high-definition displays. Our approach combines classic multi-resonance BN-doped fragments with naphthalene, creating two novel narrowband bright green quasi-fluorescent emitters, NT-2B and NT-3B. When tested in dilute toluene, these molecules exhibit emission peaks at 510 and 511 nm with extremely narrow FWHM values of 15 and 14 nm, respectively. Both molecules also demonstrate conventional fluorescence properties with high photoluminescence quantum yields (PLQYs) of up to 85%. Notably, OLEDs containing NT-2B achieve a peak EQE of approximately 30% and at a doping concentration of 5 wt.%, OLEDs based on NT-2B achieve a CIEy value of roughly 0.75, closely matching the BT.2020 standard.

17.
Small ; : e2408182, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39308200

ABSTRACT

Disposable wearable electronics are valuable for diagnostic and healthcare purposes, reducing maintenance needs and enabling broad accessibility. However, integrating a reliable power supply is crucial for their advancement, but conventional power sources present significant challenges. To address that issue, a novel paper-based moist-electric generator is developed that harnesses ambient moisture for power generation. The device features gradients for functional groups and moisture adsorption and architecture of nanostructures within a disposable paper substrate. The nanoporous, gradient-formed spore-based biofilm and asymmetric electrode deposition enable sustained high-efficiency power output. A Janus hydrophobic-hydrophilic paper layer enhances moisture harvesting, ensuring effective operation even in low-humidity environments. This research reveals that the water adsorption gradient is crucial for performance under high humidity, whereas the functional group gradient is dominant under low humidity. The device delivers consistent performance across diverse conditions and flexibly conforms to various surfaces, making it ideal for wearable applications. Its eco-friendly, cost-effective, and disposable nature makes it a viable solution for widespread use with minimal environmental effects. This innovative approach overcomes the limitations of traditional power sources for wearable electronics, offering a sustainable solution for future disposable wearables. It significantly enhances personalized medicine through improved health monitoring and diagnostics.

18.
Heliyon ; 10(16): e36336, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39253238

ABSTRACT

Tantalum is not only one of the critical metals applied in various advanced industries such as electronics, aerospace, military, and medical applications, but also is considered a conflict mineral, posing a threat to its global supply security. China plays a significant role in the tantalum industrial chain; however, the complete picture of its anthropogenic tantalum cycle remains unknown. This study investigates the tantalum cycles in China from 2000 to 2021 by conducting a dynamic material flow analysis. The results reveal that China's domestic tantalum consumption surged from 91 tons in 2000 to 580 tons in 2021. China heavily relied on importing tantalum minerals to support its domestic production, with a trade dependence rate of 90 %. Moreover, the trade volume of tantalum-related commodities experienced substantial growth from 2000 to 2014 and then fluctuated, with tantalum concentrates as the primary imported goods and electronic products as the primary exported goods. Approximately 24.9 % of the overall tantalum demand was met with secondary tantalum, in which 80 % of such secondary material being recovered during the refining and production stages. Policy recommendations are proposed accordingly, including diversifying tantalum mineral resources and increasing the recovery rates from end-of-life products. These policies can significantly contribute to achieving sufficient tantalum supply and maintaining sustainable tantalum supply chain in China.

19.
Biomaterials ; 314: 122806, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39260031

ABSTRACT

Assessing the transepithelial resistance to ion flow in the presence of an electric field enables the evaluation of the integrity of the epithelial cell layer. In this study, we introduce an organic electrochemical transistor (OECT) interfaced with a 3D living tissue, designed to monitor the electrical resistance of cellular barriers in real-time. We have developed a non-invasive, tissue-sensing platform by integrating an inkjet-printed large-area OECT with a 3D-bioprinted multilayered airway tissue. This unique configuration enables the evaluation of epithelial barrier integrity through the dynamic response capabilities of the OECT. Our system effectively tracks the formation and integrity of 3D-printed airway tissues in both liquid-liquid and air-liquid interface culture environments. Furthermore, we successfully quantified the degradation of barrier function due to influenza A (H1N1) viral infection and the dose-dependent efficacy of oseltamivir (Tamiflu®) in mitigating this degradation. The tissue-electronic platform offers a non-invasive and label-free method for real-time monitoring of 3D artificial tissue barriers, without disturbing the cellular biology. It holds the potential for further applications in monitoring the structures and functions of 3D tissues and organs, significantly contributing to the advancement of personalized medicine.

20.
Article in English | MEDLINE | ID: mdl-39226420

ABSTRACT

The crystal structures of 16 boron subphthalocyanines (BsubPcs) with structurally diverse axial groups were analyzed and compared to elucidate the impact of the axial group on the intermolecular π-π interactions, axial-group interactions, axial bond length and BsubPc bowl depth. π-π interactions between the isoindole units of adjacent BsubPc molecules most often involve concave-concave packing, whereas axial-group interactions with adjacent BsubPc molecules tend to favour the convex side of the BsubPc bowl. Furthermore, axial groups that contain O and/or F atoms tend to have significant hydrogen-bonding interactions, while axial groups containing arene site(s) can participate in π-π interactions with the BsubPc bowl, both of which can strongly influence the crystal packing. Bulky axial groups did tend to disrupt the π-π interactions and/or axial-group interactions, preventing some of the close packing that is seen in BsubPcs with less bulky axial groups. The atomic radius of the heteroatom bonded to boron directly influences the axial bond length, whereas the axial group has minimal impact on the BsubPc bowl depth. Finally, the crystal growth method did not generally appear to have a significant impact on the solid-state arrangement, with the exception of water occasionally being incorporated into crystal structures when hygroscopic solvents were used. These insights can help with the design and fine-tuning of the solid-state structures of BsubPcs as they continue to be developed as functional materials in organic electronics.

SELECTION OF CITATIONS
SEARCH DETAIL