Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 290
Filter
1.
Appl Microbiol Biotechnol ; 108(1): 408, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967685

ABSTRACT

The simulations and predictions obtained from mathematical models of bioprocesses conducted by microorganisms are not overvalued. Mechanistic models are bringing a better process understanding and the possibility of simulating unmeasurable variables. The Dynamic Energy Budget (DEB) model is an energy balance that can be formulated for any living organism and can be classified as a structured model. In this study, the DEB model was used to describe E. coli growth in a batch reactor in carbon and nitrogen substrate limitation conditions. The DEB model provides a possibility to follow the changes in the microbes' cells including their elemental composition and content of some important cell ingredients in different growth phases in substrate limitation conditions which makes it more informative compared to Monod's model. The model can be used as an optimal choice between Monod-like models and flux-based approaches. KEY POINTS: • The DEB model can be used to catch changes in elemental composition of E. coli • Bacteria batch culture growth phases can be explained by the DEB model • The DEB model is more informative compared to Monod's based models.


Subject(s)
Bioreactors , Carbon , Energy Metabolism , Escherichia coli , Nitrogen , Escherichia coli/growth & development , Escherichia coli/metabolism , Nitrogen/metabolism , Carbon/metabolism , Bioreactors/microbiology , Models, Biological , Culture Media/chemistry , Batch Cell Culture Techniques , Models, Theoretical
2.
Appl Radiat Isot ; 211: 111401, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38925037

ABSTRACT

Metallic elemental analyses are needed to complete food composition databases, in which humans consume food to obtain energy and be able to do everyday work. The study aimed to investigate the concentrations of some metals (K, Al, Fe, Cu, Cd, and Pb) in teff and barley samples using flame atomic absorption spectroscopy (FAAS) techniques. The samples, weighing 0.5 grams each, were subjected to wet digestions using a mixture ratio of 7:3(vol/vol) of HNO3 to H2O2 reagents at 90°c for 3:00 h under optimal conditions. The reagents were used to digest food samples for the presence of specific metallic elements. Flame Atomic Absorption Spectroscopy (FAAS) was used to analyze the mineral contents of the digested samples. The results demonstrated that the relative concentrations obtained in these cereal crops are different from one another. The concentration of metallic elements in mg/kg of K (2709.6±3.3), Al (952.3±4.2), Fe (320.9±4.8), Cu (25.3±3.2), Pb (ND) and Cd (ND) for red teff, K (3053.7±1.6), Al (1095.2±4.2), Fe (271.6±4.8), Cu (60.1±3.2), Pb (ND) and Cd (ND) for white teff while K (4333.3±3.2), Al (2595.2±4.2), Fe (74.0±0.00), Cu (10.5±1.8), Pb (ND) and Cd (ND) for barley. The high content of potassium and aluminum metallic elements was found in barley cereals. The results of this study will be useful in enriching the database of Ethiopian cereals as foods, advancing the knowledge of cereals and deepening the scientific understanding of the cereals.

3.
J Environ Manage ; 365: 121616, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38941854

ABSTRACT

Volcanic eruption is associated with the release of large volumes of pollutants in the environment, which can pose a risk to humans and other living organisms. The elemental and radioisotope composition of ash released during the Shiveluch Volcano eruption in 2023 was analyzed using ICP-MS and low-background gamma spectrometry. The ash consisted of 59% SiO2, 16.7% Al2O3, 5.3% CaO, 4.6 % Na2O, 4.5% Fe2O3, 1.4% K2O, 0.48% TiO2, 0.17% P2O5, 0.15% S, 0.078% MnO and 44 trace elements. Hazard Quotient and Hazard Index were calculated in order to evaluate the potential health risks to children and adults due to exposure to contaminants via inhalation, ingestion, and dermal contact. All values were below the unit, indicating a low probability of non-carcinogenic and cancerogenic risk occurrence in target groups. The average activity concentrations of the natural radionuclides were 350, 12.4 and 4.84 Bq/kg for 40K, 226Ra and 232Th. Radiological indices, including external and internal risk assessment, radium equivalent activity, annual effective dose, gamma index, and excess lifetime cancer risk were calculated to estimate the radiological hazard for the population. The values of all indices were below the recommended safety limits, indicating a low level of hazard for the exposed population.

4.
Article in English | MEDLINE | ID: mdl-38929014

ABSTRACT

Metal workshops are workplaces with the substantial production of particulate matter (PM) with high metal content, which poses a significant health risk to workers. The PM produced by different metal processing techniques differs considerably in its elemental composition and size distribution and therefore poses different health risks. In some previous studies, the pollution sources were isolated under controlled conditions, while, in this study, we present a valuable alternative to characterize the pollution sources that can be applied to real working environments. Fine PM was sampled in five units (partially specializing in different techniques) of the same workshop. A total of 53 samples were collected with a temporal resolution of 30 min and 1 h. The mass concentrations were determined gravimetrically, and the elemental analysis, in which the concentrations of 14 elements were determined, was carried out using the X-ray fluorescence technique. Five sources of pollution were identified: background, steel grinding, metal active gas welding, tungsten inert gas welding, and machining. The sources were identified by positive matrix factorization, a statistical method for source apportionment. The identified sources corresponded well with the work activities in the workshop and with the actual sources described in previous studies. It is shown that positive matrix factorization can be a valuable tool for the identification and characterization of indoor sources.


Subject(s)
Environmental Monitoring , Particulate Matter , Particulate Matter/analysis , Environmental Monitoring/methods , Metals/analysis , Metallurgy , Occupational Exposure/analysis , Air Pollutants, Occupational/analysis , Air Pollution, Indoor/analysis , Spectrometry, X-Ray Emission
5.
Article in English | MEDLINE | ID: mdl-38700838

ABSTRACT

Elements such as As, Cd, Cr and Pb are classified as contaminants of major concern for public health, due to their high degree of toxicity. Saffron is an important medicinal herbal spice used in variety of food items, pharmaceutical medicines, and cosmetics. Presence of heavy metals in saffron will increase the health risk to consumers. Also, authentication of geographical origin of saffron is an issue of utmost importance for global trading. The present study is focused on investigation of elemental contaminants in saffron and elemental composition of saffron from India (Jammu and Kashmir); Iran and Afghanistan are also explored for geographical discrimination, using Chemometrics. In total, 29 elements including Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Se, Si, Sr, Ti, Tl, V and Zn were analyzed using ICP-OES. Toxic elemental contaminants including As, Cd, Pb were found below the maximum permissible limit. Using PCA, elements B, Ni, Ba, Fe, V, Si, Al, Ti, K, Na, Sr, and Zn were found as significant discriminators of geographical origin. Elemental composition of saffron may be utilized, to prevent cases of falsified geographical origin in trade.


Subject(s)
Crocus , Food Contamination , Crocus/chemistry , Food Contamination/analysis , Metals, Heavy/analysis , Chemometrics , India , Iran , Afghanistan , Geography
6.
Proc Natl Acad Sci U S A ; 121(23): e2312173121, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38805287

ABSTRACT

The year 2021 marked a decade of holopelagic sargassum (morphotypes Sargassum natans I and VIII, and Sargassum fluitans III) stranding on the Caribbean and West African coasts. Beaching of millions of tons of sargassum negatively impacts coastal ecosystems, economies, and human health. Additionally, the La Soufrière volcano erupted in St. Vincent in April 2021, at the start of the sargassum season. We investigated potential monthly variations in morphotype abundance and biomass composition of sargassum harvested in Jamaica and assessed the influence of processing methods (shade-drying vs. frozen samples) and of volcanic ash exposure on biochemical and elemental components. S. fluitans III was the most abundant morphotype across the year. Limited monthly variations were observed for key brown algal components (phlorotannins, fucoxanthin, and alginate). Shade-drying did not significantly alter the contents of proteins but affected levels of phlorotannins, fucoxanthin, mannitol, and alginate. Simulation of sargassum and volcanic ash drift combined with age statistics suggested that sargassum potentially shared the surface layer with ash for ~50 d, approximately 100 d before stranding in Jamaica. Integrated elemental analysis of volcanic ash, ambient seawater, and sargassum biomass showed that algae harvested from August had accumulated P, Al, Fe, Mn, Zn, and Ni, probably from the ash, and contained less As. This ash fingerprint confirmed the geographical origin and drift timescale of sargassum. Since environmental conditions and processing methods influence biomass composition, efforts should continue to improve understanding, forecasting, monitoring, and valorizing sargassum, particularly as strandings of sargassum show no sign of abating.


Subject(s)
Biomass , Sargassum , Sargassum/chemistry , Ecosystem , Jamaica , Seasons , Volcanic Eruptions
7.
BMC Urol ; 24(1): 114, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816700

ABSTRACT

BACKGROUND: Urolithiasis has emerged as a global affliction, recognized as one of the most excruciating medical issues. The elemental composition of stones provides crucial information, aiding in understanding the causes, mechanisms, and individual variations in stone formation. By understanding the interactions between elements in various types of stones and exploring the key role of elements in stone formation, insights are provided for the prevention and treatment of urinary stone disease. METHODS: This study collected urinary stone samples from 80 patients in Beijing. The chemical compositions of urinary stones were identified using an infrared spectrometer. The concentrations of major and trace elements in the urinary stones were determined using Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS), respectively. The data were processed using correlation analysis and Principal Component Analysis (PCA) methods. RESULTS: Urinary stones are categorized into five types: the calcium oxalate (CO) stone, carbonate apatite (CA) stone, uric acid (UA) stone, mixed CO and CA stone, and mixed CO and UA stone. Ca is the predominant element, with an average content ranging from 2.64 to 27.68% across the five stone groups. Based on geochemical analysis, the high-content elements follow this order: Ca > Mg > Na > K > Zn > Sr. Correlation analysis and PCA suggested significant variations in the interactions between elements for different types of urinary stones. Trace elements with charges and ionic structures similar to Ca may substitute for Ca during the process of stone formation, such as Sr and Pb affecting the Ca in most stone types except mixed stone types. Moreover, the Mg, Zn and Ba can substitute for Ca in the mixed stone types, showing element behavior dependents on the stone types. CONCLUSION: This study primarily reveals distinct elemental features associated with five types of urinary stones. Additionally, the analysis of these elements indicates that substitutions of trace elements with charges and ion structures similar to Ca (such as Sr and Pb) impact most stone types. This suggests a dependence of stone composition on elemental behavior. The findings of this study will enhance our ability to address the challenges posed by urinary stones to global health and improve the precision of interventions for individuals with different stone compositions.


Subject(s)
Trace Elements , Urinary Calculi , Humans , Urinary Calculi/chemistry , Trace Elements/analysis , Middle Aged , Female , Male , Adult , Calcium Oxalate/analysis , Aged , Uric Acid/analysis , Uric Acid/urine , Young Adult
8.
Plants (Basel) ; 13(4)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38498449

ABSTRACT

(1) Background: This study provides novel insights into the elemental content and biomineralization processes of two halophytic species of the genus Arthrocnemum Moq. (A. macrostachyum and A. meridionale). (2) Methods: Elemental content was analyzed using ICP-MS, while biominerals were detected through electron microscopy (SEM and TEM) and X-ray diffraction. (3) Results: The elemental content showed significant concentrations of macronutrients (sodium, potassium, magnesium, and calcium) and micronutrients, especially iron. Iron was consistently found as ferritin in A. macrostachyum chloroplasts. Notably, A. macrostachyum populations from the Center of the Iberian Peninsula exhibited exceptionally high magnesium content, with values that exceeded 40,000 mg/kg d.w. Succulent stems showed elemental content consistent with the minerals identified through X-ray diffraction analysis (halite, sylvite, natroxalate, and glushinskite). Seed analysis revealed elevated levels of macro- and micronutrients and the absence of heavy metals. Additionally, the presence of reduced sodium chloride crystals in the seed edges suggested a mechanism to mitigate potential sodium toxicity. (4) Conclusions: These findings highlight the potential of Arthrocnemum species as emerging edible halophytes with nutritional properties, particularly in Western European Mediterranean territories and North Africa. They offer promising prospects for biosaline agriculture and biotechnology applications.

9.
Life (Basel) ; 14(2)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38398682

ABSTRACT

The present study aims to elucidate the metabolomic profile of Arthrospira platensis grown in a bioreactor in Bulgaria. The results show that Arthrospira platensis has a high content of mannose, 137.02 mg g-1, and vitamin A (retinol)-10.3 µg/100 g. High concentrations of calcium, sulfur, and zinc distinguish its elemental composition. The freeze-dried powder contained 15.81 ± 0.45% dietary fiber, 50.16 ± 0.25% total protein content, and 1.22 ± 0.11% total fat content. Among the unsaturated fatty acids with the highest content is α-linolenic acid (25.28%), while among the saturated fatty acids, palmitic acid prevails (22.55%). Of the sterols in the sample, ß-sitosterol predominated. There is no presence of microcystins LR, RR, YR, and nodularin. Therefore, Arthrospira platensis grown in a Bulgarian bioreactor is safe for use in the pharmaceutical and food industries. Many of the organic compounds found have applications in medicine and pharmacology and play an important role in biochemical processes in the body. Therefore, Arthrospira platensis grown in Bulgaria has a high potential for use as an independent food supplement or in combination with other natural products.

10.
Sci Rep ; 14(1): 4695, 2024 02 26.
Article in English | MEDLINE | ID: mdl-38409429

ABSTRACT

Insect feeding structures, such as mandibles, interact with the ingesta (food or/and substrate) and can be adapted in morphology, composition of material and mechanical properties. The foraging on abrasive ingesta, as on algae covering rocks, is particularly challenging because the mandibles will be prone to wear and structural failure, thus suggesting the presence of mandibular adaptations to accompany this feeding behavior. Adaptations to this are well studied in the mouthparts of molluscs and sea urchins, but for insects there are large gaps in our knowledge. In this study, we investigated the mandibles of a grazing insect, the larvae of the trichopteran Glossosoma boltoni. Using scanning electron microscopy, wear was documented on the mandibles. The highest degree was identified on the medial surface of the sharp mandible tip. Using nanoindentation, the mechanical properties, such as hardness and Young's modulus, of the medial and lateral mandible cuticles were tested. We found, that the medial cuticle of the tip was significantly softer and more flexible than the lateral one. These findings indicate that a self-sharpening mechanism is present in the mandibles of this species, since the softer medial cuticle is probably abraded faster than the harder lateral one, leading to sharp mandible tips. To investigate the origins of these properties, we visualized the degree of tanning by confocal laser scanning microscopy. The autofluorescence signal related to the mechanical property gradients. The presence of transition and alkaline earth metals by energy dispersive X-ray spectroscopy was also tested. We found Ca, Cl, Cu, Fe, K, Mg, Mn, P, S, Si, and Zn in the cuticle, but the content was very low and did not correlate with the mechanical property values.


Subject(s)
Holometabola , Insecta , Animals , Larva , Microscopy, Electron, Scanning , Mandible/anatomy & histology
11.
Mar Pollut Bull ; 200: 116152, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38364641

ABSTRACT

Green tides occurrence has increased in coral reefs, yet few reference values have been documented to support bloom management in these ecosystems. Here, we took advantage of recent Ulva green tides that occurred in New Caledonia to (i) identify the elements limiting the growth of Ulva spp. during these blooms; and (ii) validate the use of isotopic markers for identifying sources of nutrients that generated blooms. N/P ratios highlighted a stronger limitation of algae by phosphorus than by nitrogen on sites under oceanic influence, while the proportions of N and P were optimal for algal growth at sites where green tides occurred. Macroalgae highly exposed to sewage water was characterized by higher δ15N than macroalgae collected in areas exposed to synthetic inorganic fertilizers. From these results, we established a new set of threshold values for using δ15N in Ulva species as an indicator of nitrogen source type in coral reefs.


Subject(s)
Seaweed , Ulva , Ecosystem , Coral Reefs , Reference Values , Nitrogen , Eutrophication
12.
Foods ; 13(4)2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38397486

ABSTRACT

The more yerba mate infusions that are consumed, the larger the amount of grounds generated. What is more, both the infusion and the residues after brewing remain rich elements. Therefore, a strategy for the three-stage assessment of the element content was presented. A new brewing method was based on dynamic extraction, ensuring both the ease of preparing the infusion and recovering the grounds. In turn, microwave-assisted acid mineralization was used to decompose the leaves and twigs of yerba mate before and after brewing. In total, 30 products were analyzed by ICP OES in three fractions each, i.e., dry yerba mate, infusion, and grounds, to determine up to 25 elements. The elemental composition was considered in terms of the country of origin, type, or composition of yerba mate. The extraction percentages obtained with dynamic extraction were comparable to previously used ultrasound-assisted extraction, as well as data from the literature. The three-stage strategy is a novel approach in yerba mate studies, and it may be a model procedure for the laboratory preparation of yerba mate grounds (waste that can be re-used, e.g., a natural fertilizer).

13.
Talanta ; 272: 125738, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38359717

ABSTRACT

The sulfidation is considered as one of the most important environmental transformation processes of silver nanoparticles (AgNPs), which affects their transport, uptake and toxicity. Herein, based on the hollow fiber flow-field flow fractionation coupled with triple quadrupole inductively coupled plasma mass spectrometry (HF5-ICP-QQQ), we developed an efficient approach to accurately characterize the sulfidation process of AgNPs in aquatic solutions. HF5 could efficiently remove interferential ions and separate nanoparticles with different sizes online, and ICP-QQQ could accurately detect S element through monitoring 32S16O+ in mass shift mode. By the proposed method, two kinds of AgNPs, citrate-coated AgNPs and PVP-coated AgNPs, were selected as models to trace their transfer behaviors during the sulfidation. The results showed once AgNPs were exposed to Na2S solution, the overlapping fractograms of 32S16O+ and 107Ag+ were rapidly detected by HF5-ICP-QQQ to indicate the co-presence of Ag and S, and thus confirming the production of Ag2S and AgNPs underwent a rapid sulfidation process. There were substantial differences in the influence of the two coated agents on the stability of the particles under the conditions examined. In the presence of sulfide, PVP-coated AgNPs could maintain initial size distribution with higher stability, while the size distribution of citrate-coated AgNPs changed considerably. The developed HF5-ICP-QQQ method provides a reliable tool to identify and characterize the transformation process of AgNPs in aquatic solution, which contributed to a deeper understanding of the environmental fate and behavior of AgNPs with different coating.

14.
Biomimetics (Basel) ; 9(2)2024 Feb 11.
Article in English | MEDLINE | ID: mdl-38392153

ABSTRACT

Node-containing straws exhibit superior mechanical properties compared to node-free straw plants, particularly in terms of shear resistance and compression resistance. We explore the relationship between the structure and mechanical properties of straw materials, providing deeper insights for the field of biomechanics. In this study, we focused on two node-containing straw plants, namely sorghum and reed. The main characteristics of sorghum and reed stalks were compared using macroscopic observation, stereomicroscopy, scanning electron microscopy, infrared spectroscopy, and EDS analysis. This study revealed numerous similarities and differences in the macro- and microstructures as well as the elemental composition of sorghum and reed stalks. The functional groups in sorghum and reed stalks were largely similar, with the primary elements being C and O. Distinguishing features included a higher tapering and a slightly larger reduction in wall thickness in sorghum stalks compared to reed stalks. The cross-section of sorghum stalks was filled with pith structures, while reed stalks exhibited a hollow structure. The vascular bundles in sorghum typically showed a paired arrangement, whereas those in reeds were arranged in odd numbers. Furthermore, sorghum straws contained more Cl and no Br, while the parenchyma of reed straws contained higher Br. The C and O proportions of sorghum straws and reed straws are 50-53% (50-51%) and 45-46% (48-49%), respectively. These variations in elemental composition are believed to be correlated with the mechanical properties of the materials. By conducting a detailed study of the micro/macrostructures and material composition of sorghum and reed straw, this paper provides valuable insights for the field of biomechanics.

15.
Sci Total Environ ; 918: 170354, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38307276

ABSTRACT

The bioenergetic status of fishes has been used to study their physiological responses to temporal changes at interannual scales. We evaluated the physiological responses of swordfish at an interannual scale from the El Niño Southern Oscillation (ENSO): warm phase "El Niño" in 2015 to the cold phase "La Niña" in 2017 and under neutral conditions as well in 2019. Herein, muscle samples from females and males were analyzed to evaluate the bioenergetic status from their biochemical constituents (L: lipids, P: proteins and G: glucose, E: total energy, and FAs: fatty acid profile), elemental composition (C: carbon, N: nitrogen, H: hydrogen), and nutritional indices (L:P, C:N, DHA/C18:1n-3, DHA/C16:0 and ω3/ω6 FAs). The physiological response of swordfish showed an interaction between the year and sex. Herein, the L and E showed similar trends, with the lowest female values found in 2015 and the highest in 2019. Contrary, males showed their highest values in 2015 and lowest in 2019. FA profile differed among years and highlighted significant differences between females and males in 2019. Although the female L:P and C:N ratios were lower in 2015 than in 2017, a decreasing trend in these ratios was found from 2017 to 2019. Moreover, DHA/C18:1n-3, DHA/C16:0 and ω3/ω6 showed higher ratios in females than males in 2019. Our results coincide with the beginning of the ENSO phases; it is therefore likely that the swordfish diet changed in response to the disturbances in environmental conditions. Furthermore, the degree of individual dietary specialization found under the neutral conditions could indicate differences in the feeding behaviors of males vs. females, which may be an adaptive strategy in this species. These findings will aid in understanding the bioenergetic status of swordfish under different climatic scenarios and the current global warming, providing relevant information for the management of this resource.


Subject(s)
El Nino-Southern Oscillation , Perciformes , Animals , Male , Female , Pacific Ocean , Global Warming , Fishes
16.
Environ Sci Pollut Res Int ; 31(6): 8552-8565, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38180672

ABSTRACT

This study investigates a circulating fluidised bed (CFB) incineration plant to examine the concentrations and fingerprints of polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), and biphenyls (PCBs) at five locations downstream of the post-combustion zone. Sampling encompassed both flue gas and ash, spanning from the high-temperature superheater to the outlet of the baghouse filter, thus covering a wide range of flue gas temperatures. The analysis reveals a continuous increase in PCDD/F and PCB concentrations in the flue gas from the superheater to the inlet of the air pollution control system (APCS). The maximum concentrations observed were 75.8 ng/Nm3 for PCDDs, 219 ng/Nm3 for PCDFs, and 763 ng/Nm3 for PCBs. These values represent 9.14, 11.5, and 6.37 times their respective concentrations at the outlet of the high-temperature superheater. Concurrently, the levels of PCDD/Fs and dioxin-like PCBs (dl-PCBs) in the ash steadily increased along the cooling path of the flue gas within the plant. Comparing dl-PCBs to the total amount of 209 PCB congeners, it was evident that dl-PCBs exhibited a trend more akin to that of PCDD/Fs. A robust linear correlation was observed between dl-PCBs and PCDD/Fs (R2 = 0.99, p < 0.001), surpassing that between PCBs and PCDD/Fs (R2 = 0.92, p < 0.01), suggesting that dl-PCBs share closer formation pathways with PCDD/Fs. Additionally, elemental composition analysis of fly ash samples aimed to explore potential links between fly ash characteristics and PCDD/F and PCB formation. The Cl/S ratio increased from 1.58 to 5.13 with decreasing flue gas temperature. Principal component analysis (PCA) was employed to visualise the concentrations of PCDD/Fs and PCBs in the flue gas alongside elemental contents in the fly ash. With the exception of PCBs in ash, all other PCDD/Fs and PCBs in fly ash exhibited positive correlations with both carbon (C) and chlorine (Cl). Furthermore, a positive relationship between C/Cl and PCDD/Fs-PCBs in fly ash implies that fly ash serves as the primary reaction surface for dioxin generation during low-temperature heterogeneous catalytic reactions.


Subject(s)
Dioxins , Polychlorinated Biphenyls , Polychlorinated Dibenzodioxins , Polychlorinated Dibenzodioxins/analysis , Polychlorinated Biphenyls/analysis , Solid Waste/analysis , Coal Ash/analysis , Dioxins/analysis , Dibenzofurans/analysis , Dibenzofurans, Polychlorinated/analysis , Incineration
17.
Int J Paleopathol ; 44: 85-89, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38176088

ABSTRACT

OBJECTIVE: X-ray fluorescence (XRF) is a non-destructive technique that measures the elemental concentration of different materials, including human bone. Recently, it began to be applied to paleopathological studies due to the development of portable devices and their relative ease of use. However, the lack of uniform procedures hampers comparability and reproducibility. This paper aims to provide guidelines for an efficient and standardized evaluation of bone elemental composition with a portable XRF (pXRF) device. MATERIALS: This technical note is based on the application of the Thermo Scientific Niton XL3t 900 GOLDD+. METHODS: This work includes suggestions for the choice and preparation of human bone samples, both from archaeological context and documented collections, and methodological procedures in pXRF setup, such as choice of calibration, assessment of accuracy, and analysis run time. Additionally, recommendations for data validation and statistical analysis are also included. CONCLUSIONS: This technique has great potential in paleopathology since bone chemical variations may be associated with different pathological conditions, environmental contamination (e.g., lead), and/or administered treatments, such as mercury. Following an expected increase in the number of studies, it is essential to establish good practices that allow results from different researchers to be comparable. SIGNIFICANCE: X-ray fluorescence is a non-destructive technique that measures small concentrations (ppm) of elements from magnesium (12Mg) through bismuth (83Bi). LIMITATIONS: pXRF does not detect elements lighter than Mg, and its lower energy excitation penetrates less than other techniques. SUGGESTIONS FOR FURTHER RESEARCH: Other research groups should test these guidelines and comment on their usefulness and replicability.


Subject(s)
Environmental Monitoring , Humans , X-Rays , Reproducibility of Results , Spectrometry, X-Ray Emission/methods , Environmental Monitoring/methods , Radiography
18.
Mar Environ Res ; 195: 106366, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38277814

ABSTRACT

The producer of paralytic shellfish toxin (PST), Alexandrium catenella, is one of the main generators of HABs in the coasts of Chile. Its presence produces ecological and economic damage, directly affecting filter-feeding organisms, and indirectly to other organism through the trophic chain. The objective of this research was to identify the effect of a toxic diet on the energetic and reproductive parameters of the carnivorous snail Chorus giganteus. Two groups of snails were used, one fed with toxic prey (bivalves fed with A. catenella), and the other fed with non-toxic prey. Both treatments were maintained under these conditions for 63 days, then, elemental composition (C, N) and energy content were estimated, and fecundity parameters were analyzed. The results indicate that snails fed with toxic prey had a lower percentage of C and C/N ratio. The energy content was significantly lower in intoxicated snails. Regarding fecundity parameters, a higher number of egg-masses were produced by toxic snails, however, only 62% of these showed embryonic development, with 57% hatching success. A negative relationship was identified between the mean PST concentration, quantified in snails, and the number of egg-masses produced per aquarium. In the aquarium where the snails had highest average PST concentration (1200 ± 820 µg STX.2HCL eq. Kg-1) there was no oviposition, while egg-masses were only produced by snails in aquaria where the average concentration did not exceed 360 ± 160 µg STX.2HCL eq. Kg-1. It is likely that, with low levels of accumulated PST, C. giganteus activates its oviposition process as a response to toxin-induced stress, generating a higher energy expenditure supported by a redirection of its reserves. However, when the intoxication presents higher levels, the reproductive process could be inhibited, similar to what has been identified in other molluscs.


Subject(s)
Bivalvia , Dinoflagellida , Gastropoda , Animals , Marine Toxins/toxicity , Shellfish/analysis , Eating
19.
Sci Total Environ ; 915: 170008, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38220016

ABSTRACT

A SEM/EDX based automated measurement and classification algorithm was tested as a method for the in-depth analysis of micro-environments in the Munich subway using a custom build mobile measurements system. Sampling was conducted at platform stations, to investigate the personal exposure of commuters to subway particulate matter during platform stays. EDX spectra and morphological features of all analyzed particles were automatically obtained and particles were automatically classified based on pre-defined chemical and morphological boundaries. Source apportionment for individual particles, such as abrasion processes at the wheel-brake interface, was partially possible based on the established particle classes. An average of 98.87 ± 1.06 % of over 200,000 analyzed particles were automatically assigned to the pre-defined classes, with 84.68 ± 16.45 % of particles classified as highly ferruginous. Manual EDX analysis further revealed, that heavy metal rich particles were also present in the ultrafine size range well below 100 nm.

20.
J Trace Elem Med Biol ; 83: 127389, 2024 May.
Article in English | MEDLINE | ID: mdl-38242004

ABSTRACT

BACKGROUND: Minerals are important not only for better plant growth and development but also for human and animal nutrition. It is known that east and west Gojam in the Amhara region and east and west Shoa areas in the Oromia region Ethiopia's most teff growing areas. However, there is no information on the mineral content and nutritional worth of Teff Sire district, Arsi zone, Ethiopia. Since ICP OES is a powerful technique to examine elemental compositions even in lower concentration, it is used in this work to investigate the elemental composition of red teff samples. METHODS: The elemental compositions of red Teff grain samples were determined using ICP-OES from three sites: S1, S2, and S3 of Sire district, Arsi zone, Ethiopia. Wet digestion of the teff samples was carried out by weighing 0.5 g red teff sample and digested with 8 ml HNO3 and 2 ml H2O2 (30%) for 3:00 h at a temperature of 100℃ on hot plate. The investigations of method validation, limit of detection and limit of quantification were also carried out. RESULTS: The average amount of elements in red teff sample obtained as 172-280 mg/kg Fe, 13-76 mg/kg Mn, 8.2-8.5 mg/kg Cu, 24-26 mg/kg Zn, and toxic trace elements 0.12-0.29 mg/kg Pb and 0.15-0.22 mg/kg Cd. The limit of detection found in ranges from 0.21 mg Kg-1 to 10.44 mg Kg-1 whereas quantification limit resulted in 0.7 mg Kg-1 to 34.8 mg Kg-1 for the metals under consideration. The method was validated by its linear range in the concentration range of 0.028-1.4 ppm or 0.056-2.8 ppm and excellent recovery result was achieved in the range of 90-120%. CONCLUSION: This study aimed to investigate the mineral content in red teff cultivated in Ethiopia specifically Arsi zone by using ICP OES. From the obtained results, Iron was the first abundant essential element in red teff compared to Mn, Cu and Zn. The level of trace elements: Cd and Pb in the samples slightly above the acceptable limit, possibly due to agricultural practices like usage of fertilizers, pesticides, and other industrial products. Overall, this red teff elemental composition information contributes to the nutrition database and food safety in Ethiopia and beyond.


Subject(s)
Eragrostis , Trace Elements , Humans , Animals , Trace Elements/analysis , Ethiopia , Cadmium , Hydrogen Peroxide , Lead , Spectrum Analysis , Minerals
SELECTION OF CITATIONS
SEARCH DETAIL
...