Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 671
Filter
1.
Int J Biol Macromol ; 274(Pt 2): 133436, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38936572

ABSTRACT

Legume-rhizobia symbiosis offers a unique approach to increase leguminous crop yields. Previous studies have indicated that the number of soybean nodules are increased under elevated CO2 concentration. However, the underlying mechanism behind this phenomenon remains elusive. In this study, transcriptome analysis was applied to identify candidate genes involved in regulating soybean nodulation mediated by elevated CO2 concentration. Among the different expression genes (DEGs), we identified a gene encoding small heat shock protein (sHSP) called GmHSP23.9, which mainly expressed in soybean roots and nodules, and its expression was significantly induced by rhizobium USDA110 infection at 14 days after inoculation (DAI) under elevated CO2 conditions. We further investigated the role of GmHSP23.9 by generating transgenic composite plants carrying GmHSP23.9 overexpression (GmHSP23.9-OE), RNA interference (GmHSP23.9-RNAi), and CRISPR-Cas9 (GmHSP23.9-KO), and these modifications resulted in notable changes in nodule number and the root hairs deformation and suggesting that GmHSP23.9 function as an important positive regulator in soybean. Moreover, we found that altering the expression of GmHSP23.9 influenced the expression of genes involved in the Nod factor signaling pathway and AON signaling pathway to modulate soybean nodulation. Interestingly, we found that knocking down of GmHSP23.9 prevented the increase in the nodule number of soybean in response to elevated CO2 concentration. This research has successfully identified a crucial regulator that influences soybean nodulation under elevated CO2 level and shedding new light on the role of sHSPs in legume nodulation.

2.
Plant Physiol Biochem ; 213: 108802, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38852236

ABSTRACT

The increasing atmospheric CO2 concentration (e[CO2]) has mixed effects on soybean most varieties' yield. This study elucidated the effect of e[CO2] on soybean yield and the underlying mechanisms related to photosynthetic capacity, non-structural carbohydrate (NSC) accumulation, and remobilisation. Four soybean cultivars were cultivated in open-top chambers at two CO2 levels. Photosynthesis rates were determined from R2 to R6. Plants were sampled at R5 and R8 to determine carbohydrate concentrations. There were significant variations in yield responses among the soybean cultivars under e[CO2], from no change in DS1 to a 22% increase in SN14. DS1 and SN14 had the smallest and largest increase, respectively, in daily carbon assimilation capacity. Under e[CO2], DS1, MF5, and XHJ had an increase in Ci, at which point the transition from Rubisco-limited to ribulose-1,5-bisphosphate regeneration-limited photosynthesis occurred, in contrast with SN14. Thus, the cultivars might have distinct mechanisms that enhance photosynthesis under e[CO2] conditions. A positive correlation was between daily carbon assimilation response to e[CO2] and soybean yield, emphasising the importance of enhanced photosynthate accumulation before the R5 stage in determining yield response to e[CO2]. E[CO2] significantly influenced NSC accumulation in vegetative organs at R5, with variation among cultivars. There was enhanced NSC remobilisation during seed filling, indicating cultivar-specific responses to the remobilisation of sucrose and soluble sugars, excluding sucrose and starch. A positive correlation was between leaf and stem NSC remobilisation and yield response to e[CO2], emphasising the role of genetic differences in carbohydrate remobilisation mechanisms in determining soybean yield variation under elevated CO2 levels.


Subject(s)
Carbohydrate Metabolism , Carbon Dioxide , Glycine max , Photosynthesis , Seeds , Glycine max/metabolism , Glycine max/growth & development , Glycine max/drug effects , Glycine max/physiology , Carbon Dioxide/metabolism , Carbon Dioxide/pharmacology , Photosynthesis/drug effects , Seeds/metabolism , Seeds/growth & development , Seeds/drug effects
3.
Pest Manag Sci ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38738508

ABSTRACT

BACKGROUND: Biological control of insect pests is encountering an unprecedented challenge in agricultural systems due to the ongoing rise in carbon dioxide (CO2) level. The use of entomopathogenic fungi (EPF) in these systems is gaining increased attention, and EPF as crop endophytes hold the potential for combining insect pest control and yield enhancement of crops, but the effects of increased CO2 concentration on this interaction are poorly understood. Here, the introduction of endophytic EPF was explored as an alternative sustainable management strategy benefiting crops under elevated CO2, using maize (Zea mays), Asian corn borer (Ostrinia furnacalis), and EPF (Beauveria bassiana) to test changes in damage to maize plants from O. furnacalis, and the nutritional status (content of carbon, nitrogen, phosphorus, potassium), biomass, and yield of maize. RESULTS: The results showed that endophytic B. bassiana could alleviate the damage caused by O. furnacalis larvae for maize plants under ambient CO2 concentration, and this effect was enhanced under higher CO2 concentration. Inoculation with B. bassiana effectively counteracted the adverse impact of elevated CO2 on maize plants by preserving the nitrogen content at its baseline level (comparable with ambient CO2 conditions without B. bassiana). Both simultaneous effects could explain the improvement of biomass and yield of maize under B. bassiana inoculation and elevated CO2. CONCLUSION: This finding provides key information about the multifaceted benefits of B. bassiana as a maize endophyte. Our results highlight the promising potential of incorporating EPF as endophytes into integrated pest management strategies, particularly under elevated CO2 concentrations. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

4.
Plant Physiol Biochem ; 212: 108725, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38772164

ABSTRACT

Elevated CO2 concentrations may inhibit photosynthesis due to nitrogen deficiency, but legumes may be able to overcome this limitation and continue to grow. Our study confirms this conjecture well. First, we placed the two-year-old potted saplings of Ormosia hosiei (O. hosiei) (a leguminous tree species) in the open-top chamber (OTC) with three CO2 concentrations of 400 (CK), 600 (E1), and 800 µmol·mol-1 (E2) to simulate the elevated CO2 concentration environment. After 146 days, the light saturation point (LSP), light compensation point (LCP), apparent quantum efficiency (AQE), and dark respiration rate (Rd) of O. hosiei were increased under increasing CO2 concentration and obtain the maximum ribulose diphosphate (RuBP) carboxylation rate (Vc max) and RuBP regenerated photosynthetic electron transfer rate (Jmax) were also significantly increased under E2 treatment (P < 0.05). This results in a significant increase of the maximum assimilation rate (Amax) under elevated CO2 concentrations. Sucrose phosphate synthase (SPS) activity in sucrose metabolism increased in the leaves, more soluble sugars, starches, and sucrose was produced, but sucrose content only in leaves increased at E2, and more carbon flows to the roots. The activity of the NH4+ assimilating enzymes glutamine synthetase (GS), glutamate synthetase (GOGAT), and glutamate dehydrogenase (GDH) in the leaves of O. hosiei increases under elevated CO2 concentrations to promote nitrogen synthesis that reduces the content of ammonium nitrogen and increases the content of nitrate nitrogen. In addition, under E1 conditions, sucrose synthase (SS), direction of synthesis activity was highest and sucrose invertase (INV) activity was lowest, this means that the balance of C and N metabolism is maintained. While under E2 conditions SS activity decreased and INV activity increased, this increased C/N and nitrogen use efficiency. So, the elevated CO2 concentration promotes the accumulation of O. hosiei biomass, especially in the aboveground part, but did not have a significant effect on the accumulation of root biomass. This means that O. hosiei is able to cope under the elevated CO2 concentration without showing photosynthetic adaptation during the experimental period.


Subject(s)
Biomass , Carbon Dioxide , Carbon , Nitrogen , Photosynthesis , Nitrogen/metabolism , Carbon Dioxide/metabolism , Carbon/metabolism , Glucosyltransferases/metabolism , Fabaceae/metabolism , Fabaceae/growth & development , Plant Leaves/metabolism , Plant Proteins/metabolism
5.
Glob Chang Biol ; 30(5): e17342, 2024 May.
Article in English | MEDLINE | ID: mdl-38804198

ABSTRACT

Nitrogen (N) is a limiting nutrient for primary productivity in most terrestrial ecosystems, but whether N limitation is strengthening or weakening remains controversial because both N sources and sinks are increasing in magnitude globally. Temperate marshes are exposed to greater amounts of external N inputs than most terrestrial ecosystems and more than in preindustrial times owing to their position downstream of major sources of human-derived N runoff along river mouths and estuaries. Simultaneously, ecosystem N demand may also be increasing owing to other global changes such as rising atmospheric [CO2]. Here, we used interannual variability in external drivers and variables related to exogenous supply of N, along with detailed assessments of plant growth and porewater biogeochemistry, to assess the severity of N-limitation, and to determine its causes, in a 14-year N-addition × elevated CO2 experiment. We found substantial interannual variability in porewater [N], plant growth, and experimental N effects on plant growth, but the magnitude of N pools through time varied independently of the strength of N limitation. Sea level, and secondarily salinity, related closely to interannual variability in growth of the dominant plant functional groups which drove patterns in N limitation and in porewater [N]. Experimental exposure of plants to elevated CO2 and years with high flooding strengthened N limitation for the sedge. Abiotic variables controlled plant growth, which determined the strength of N limitation for each plant species and for ecosystem productivity as a whole. We conclude that in this ecosystem, which has an open N cycle and where N inputs are likely greater than in preindustrial times, plant N demand has increased more than supply.


Subject(s)
Carbon Dioxide , Nitrogen , Wetlands , Nitrogen/metabolism , Nitrogen/analysis , Carbon Dioxide/metabolism , Carbon Dioxide/analysis , Plant Development , Plants/metabolism , Salinity
6.
Environ Pollut ; 352: 124095, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38703984

ABSTRACT

Elevated CO2 levels and methylmercury (MeHg) pollution are important environmental issues faced across the globe. However, the impact of elevated CO2 on MeHg production and its biological utilization remains to be fully understood, particularly in realistic complex systems with biotic interactions. Here, a complete paddy wetland microcosm, namely, the rice-fish-snail co-culture system, was constructed to investigate the impacts of elevated CO2 (600 ppm) on MeHg formation, bioaccumulation, and possible health risks, in multiple environmental and biological media. The results revealed that elevated CO2 significantly increased MeHg concentrations in the overlying water, periphyton, snails and fish, by 135.5%, 66.9%, 45.5%, and 52.1%, respectively. A high MeHg concentration in periphyton, the main diet of snails and fish, was the key factor influencing the enhanced MeHg in aquatic products. Furthermore, elevated CO2 alleviated the carbon limitation in the overlying water and proliferated green algae, with subsequent changes in physico-chemical properties and nutrient concentrations in the overlying water. More algal-derived organic matter promoted an enriched abundance of Archaea-hgcA and Deltaproteobacteria-hgcA genes. This consequently increased the MeHg in the overlying water and food chain. However, MeHg concentrations in rice and soil did not increase under elevated CO2, nor did hgcA gene abundance in soil. The results reveal that elevated CO2 exacerbated the risk of MeHg intake from aquatic products in paddy wetland, indicating an intensified MeHg threat under future elevated CO2 levels.


Subject(s)
Carbon Dioxide , Fishes , Methylmercury Compounds , Oryza , Water Pollutants, Chemical , Wetlands , Methylmercury Compounds/analysis , Carbon Dioxide/analysis , Fishes/metabolism , Animals , Oryza/metabolism , Oryza/chemistry , Water Pollutants, Chemical/analysis , Food Chain , Ecosystem , Environmental Monitoring , Snails/drug effects , Snails/metabolism
7.
J Hazard Mater ; 472: 134453, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38723481

ABSTRACT

Crop plants face complex tropospheric ozone (O3) stress, emphasizing the need for a food security-focused management strategy. While research extensively explores O3's harmful effects, this study delves into the combined impacts of O3 and CO2. This study investigates the contrasting responses of O3-sensitive (PBW-550) and O3-resistant (HUW-55) wheat cultivars, towards elevated ozone (eO3) and elevated carbon dioxide (eCO2), both individually and in combination. The output of the present study confirms the positive effect of eCO2 on wheat cultivars exposed to eO3 stress, with more prominent effects on O3-sensitive cultivar PBW-550, as compared to the O3-resistant HUW-55. The differential response of the two wheat cultivars can be attributed to the mechanistic variations in the enzyme activities of the Halliwell-Asada pathway (AsA-GSH cycle) and the ascorbate and glutathione pool. The results indicate that eCO2 was unable to uplift the regeneration of the glutathione pool in HUW-55, however, PBW-550 responded well, under similar eO3 conditions. The study's findings, highlighting mechanistic variations in antioxidants, show a more positive yield response in PBW-550 compared to HUW-55 under ECO treatment. This insight can inform agricultural strategies, emphasizing the use of O3-sensitive cultivars for sustained productivity in future conditions with high O3 and CO2 concentrations.


Subject(s)
Ascorbic Acid , Carbon Dioxide , Glutathione , Ozone , Triticum , Ozone/toxicity , Ozone/pharmacology , Triticum/drug effects , Triticum/metabolism , Carbon Dioxide/metabolism , Glutathione/metabolism , Ascorbic Acid/metabolism , Air Pollutants/toxicity
8.
Sci Total Environ ; 935: 173255, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38761936

ABSTRACT

Elevated CO2 (eCO2) decreases N2O emissions from subtropical paddy fields, but the underlying mechanisms remain to be investigated. Herein, the response of key microbial nitrogen cycling genes to eCO2 (ambient air +200 µmol CO2 mol-1) in four rice cultivars, including two weakly CO2-responsive (W27, H5) and two strongly CO2-responsive cultivars (Y1540, L1988), was investigated. Except for nosZ I, eCO2 did not significantly alter the abundance of the other genes. NosZ I was a crucial factor governing N2O emissions, especially under eCO2 and a strongly responsive cultivar. eCO2 affected the nosZ I gene abundance (p < 0.05), for instance, the nosZ I gene abundance of cultivar W27 increased from 1.53 × 107 to 2.86 × 107 copies g-1 dw soil (p < 0.05). In the nosZ I microbial community, the known taxa were mainly Pseudomonadota (phylum) (19.74-31.72 %) and Alphaproteobacteria (class) (0.56-13.12 %). In the nosZ I community assembly process, eCO2 enhanced the role of stochasticity, increasing from 35 % to 85 % (p < 0.05), thereby inducing diffusion limitations of weakly responsive cultivars to dominate (67 %). Taken together, the increase in nosZ I gene abundance is a potential reason for the alleviation of N2O emissions from subtropical paddy fields under eCO2.


Subject(s)
Carbon Dioxide , Nitrous Oxide , Oryza , Soil Microbiology , Carbon Dioxide/analysis , Nitrous Oxide/analysis , Air Pollutants/analysis , Agriculture/methods , Bacteria
9.
Plants (Basel) ; 13(6)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38592830

ABSTRACT

Plants' response to single environmental changes can be highly distinct from the response to multiple changes. The effects of a single environmental factor on wheat growth have been well documented. However, the interactive influences of multiple factors on different wheat genotypes need further investigation. Here, treatments of three important growth factors, namely water regime, temperature, and CO2 concentration ([CO2]), were applied to compare the response of two wheat genotypes with different heat sensitivities. The temperature response curves showed that both genotypes showed more variations at elevated [CO2] (e[CO2]) than ambient [CO2] (a[CO2]) when the plants were treated under different water regimes and temperatures. This corresponded to the results of water use efficiency at the leaf level. At e[CO2], heat-tolerant 'Gladius' showed a higher net photosynthetic rate (Pn), while heat-susceptible 'Paragon' had a lower Pn at reduced water, as compared with full water availability. The temperature optimum for photosynthesis in wheat was increased when the growth temperature was high, while the leaf carbon/nitrogen was increased via a reduced water regime. Generally, water regime, temperature and [CO2] have significant interactive effects on both wheat genotypes. Two wheat genotypes showed different physiological responses to different combinations of environmental factors. Our investigation concerning the interactions of multi-environmental factors on wheat will benefit the future wheat climate-response study.

10.
Physiol Mol Biol Plants ; 30(3): 483-496, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38633268

ABSTRACT

CO2 levels are known to have an impact on plant development and physiology. In the current study, we have investigated the effect of elevated CO2 on flowering and its regulation through miRNA mediated sugar signaling. We also unraveled small RNA transcriptome of pigeonpea under ambient and elevated CO2 conditions and predicted the targets for crucial miRNAs through computational methods. The results have shown that the delayed flowering in pigeonpea under elevated CO2 was due to an imbalance in C:N stoichiometry and differential expression pattern of aging pathway genes, including SQUAMOSA PROMOTER BINDING PROTEIN-LIKE. Furthermore, qRT PCR analysis has revealed the role of miR156 and miR172 in mediating trehalose-6-phosphate dependent flowering regulation. The current study is crucial in understanding the responses of flowering patterns in a legume crop to elevated CO2 which showed a significant impact on its final yields. Also, these findings are crucial in devising effective crop improvement strategies for developing climate resilient crops, including pigeonpea. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01434-9.

12.
New Phytol ; 242(5): 1944-1956, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38575849

ABSTRACT

The oxygen isotope composition of cellulose (δ18O values) has been suggested to contain information on stomatal conductance (gs) responses to rising pCO2. The extent by which pCO2 affects leaf water and cellulose δ18O values (δ18OLW and δ18OC) and the isotope processes that determine pCO2 effects on δ18OLW and δ18OC are, however, unknown. We tested the effects of pCO2 on gs, δ18OLW and δ18OC in a glasshouse experiment, where six plant species were grown under pCO2 ranging from 200 to 500 ppm. Increasing pCO2 caused a decline in gs and an increase in δ18OLW, as expected. Importantly, the effects of pCO2 on gs and δ18OLW were small and pCO2 effects on δ18OLW were not directly transferred to δ18OC but were attenuated in grasses and amplified in dicotyledonous herbs and legumes. This is likely because of functional group-specific pCO2 effects on the model parameter pxpex. Our study highlights important uncertainties when using δ18OC as a proxy for gs. Specifically, pCO2-triggered gs effects on δ18OLW and δ18OC are possibly too small to be detected in natural settings and a pCO2 effect on pxpex may render the commonly assumed negative linkage between δ18OC and gs to be incorrect, potentially confounding δ18OC based gs reconstructions.


Subject(s)
Atmosphere , Carbon Dioxide , Cellulose , Fabaceae , Oxygen Isotopes , Plant Leaves , Poaceae , Water , Carbon Dioxide/pharmacology , Carbon Dioxide/metabolism , Cellulose/metabolism , Poaceae/drug effects , Poaceae/physiology , Plant Leaves/drug effects , Plant Leaves/metabolism , Fabaceae/drug effects , Fabaceae/physiology , Fabaceae/metabolism , Atmosphere/chemistry , Plant Stomata/drug effects , Plant Stomata/physiology
13.
Plant Physiol Biochem ; 210: 108657, 2024 May.
Article in English | MEDLINE | ID: mdl-38670030

ABSTRACT

The continuously rising atmospheric CO2 concentration potentially increase plant growth through stimulating C metabolism; however, plant C:N:P stoichiometry in response to elevated CO2 (eCO2) under low P stress remains largely unknown. We investigated the combined effect of eCO2 and low phosphorus on growth, yield, C:N:P stoichiometry, and remobilization in rice cv. Kasalath (aus type), IR64 (a mega rice variety), and IR64-Pup1 (Pup1 QTL introgressed IR64). In response to eCO2 and low P, the C accumulation increased significantly (particularly at anthesis stage) while N and P concentration decreased leading to higher C:N and C:P ratios in all plant components (leaf, sheath, stem, and grain) than ambient CO2. The remobilization efficiencies of N and P were also reduced under low P with eCO2 as compared to control conditions. Among cultivars, the combined effect of eCO2 and low P was greater in IR64-Pup1 and produced higher biomass and grain yield as compared to IR64. However, IR64-Pup1 exhibited a lower N but higher P concentration than IR64, indicating that the Pup1 QTL improved P uptake but did not influence N uptake. Our study suggests that the P availability along with eCO2 would alter the C:N:P ratios due to their differential partitioning, thereby affecting growth and yield.


Subject(s)
Carbon Dioxide , Nitrogen , Oryza , Phosphorus , Biomass , Carbon/metabolism , Carbon Dioxide/metabolism , Carbon Dioxide/pharmacology , Nitrogen/metabolism , Oryza/drug effects , Oryza/growth & development , Oryza/metabolism , Phosphorus/metabolism , Phosphorus/pharmacology , Quantitative Trait Loci
14.
Environ Sci Technol ; 58(14): 6215-6225, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38546713

ABSTRACT

Globally, agricultural soils account for approximately one-third of anthropogenic emissions of the potent greenhouse gas and stratospheric ozone-depleting substance nitrous oxide (N2O). Emissions of N2O from agricultural soils are affected by a number of global change factors, such as elevated air temperatures and elevated atmospheric carbon dioxide (CO2). Yet, a mechanistic understanding of how these climatic factors affect N2O emissions in agricultural soils remains largely unresolved. Here, we investigate the soil N2O emission pathway using a 15N tracing approach in a nine-year field experiment using a combined temperature and free air carbon dioxide enrichment (T-FACE). We show that the effect of CO2 enrichment completely counteracts warming-induced stimulation of both nitrification- and denitrification-derived N2O emissions. The elevated CO2 induced decrease in pH and labile organic nitrogen (N) masked the stimulation of organic carbon and N by warming. Unexpectedly, both elevated CO2 and warming had little effect on the abundances of the nitrifying and denitrifying genes. Overall, our study confirms the importance of multifactorial experiments to understand N2O emission pathways from agricultural soils under climate change. This better understanding is a prerequisite for more accurate models and the development of effective options to combat climate change.


Subject(s)
Greenhouse Gases , Soil , Soil/chemistry , Carbon Dioxide/analysis , Temperature , Agriculture , Nitrous Oxide/analysis
15.
mSystems ; 9(3): e0133123, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38376262

ABSTRACT

The ecological impacts of long-term (press) disturbance on mechanisms regulating the relative abundance (i.e., commonness or rarity) and temporal dynamics of species within a community remain largely unknown. This is particularly true for the functionally important arbuscular mycorrhizal (AM) fungi; obligate plant-root endosymbionts that colonize more than two-thirds of terrestrial plant species. Here, we use high-resolution amplicon sequencing to examine how AM fungal communities in a specific extreme ecosystem-mofettes or natural CO2 springs caused by geological CO2 exhalations-are affected by long-term stress. We found that in mofettes, specific and temporally stable communities form as a subset of the local metacommunity. These communities are less diverse and dominated by adapted, "stress tolerant" taxa. Those taxa are rare in control locations and more benign environments worldwide, but show a stable temporal pattern in the extreme sites, consistently dominating the communities in grassland mofettes. This pattern of lower diversity and high dominance of specific taxa has been confirmed as relatively stable over several sampling years and is independently observed across multiple geographic locations (mofettes in different countries). This study implies that the response of soil microbial community composition to long-term stress is relatively predictable, which can also reflect the community response to other anthropogenic stressors (e.g., heavy metal pollution or land use change). Moreover, as AM fungi are functionally differentiated, with different taxa providing different benefits to host plants, changes in community structure in response to long-term environmental change have the potential to impact terrestrial plant communities and their productivity.IMPORTANCEArbuscular mycorrhizal (AM) fungi form symbiotic relationships with more than two-thirds of plant species. In return for using plant carbon as their sole energy source, AM fungi improve plant mineral supply, water balance, and protection against pathogens. This work demonstrates the importance of long-term experiments to understand the effects of long-term environmental change and long-term disturbance on terrestrial ecosystems. We demonstrated a consistent response of the AM fungal community to a long-term stress, with lower diversity and a less variable AM fungal community over time under stress conditions compared to the surrounding controls. We have also identified, for the first time, a suite of AM fungal taxa that are consistently observed across broad geographic scales in stressed and anthropogenically heavily influenced ecosystems. This is critical because global environmental change in terrestrial ecosystems requires an integrative approach that considers both above- and below-ground changes and examines patterns over a longer geographic and temporal scale, rather than just single sampling events.


Subject(s)
Mycorrhizae , Mycorrhizae/genetics , Ecosystem , Carbon Dioxide/pharmacology , Soil Microbiology , Plants/microbiology , Extreme Environments
16.
Front Plant Sci ; 15: 1345462, 2024.
Article in English | MEDLINE | ID: mdl-38371407

ABSTRACT

This study examined the effect of the interactions of key factors associated with predicted climate change (increased temperature, and drought) and elevated CO2 concentration on C3 and C4 crop representatives, barley and sorghum. The effect of two levels of atmospheric CO2 concentration (400 and 800 ppm), three levels of temperature regime (21/7, 26/12 and 33/19°C) and two regimes of water availability (simulation of drought by gradual reduction of irrigation and well-watered control) in all combinations was investigated in a pot experiment within growth chambers for barley variety Bojos and sorghum variety Ruby. Due to differences in photosynthetic metabolism in C3 barley and C4 sorghum, leading to different responses to elevated CO2 concentration, we hypothesized mitigation of the negative drought impact in barley under elevated CO2 concentration and, conversely, improved performance of sorghum at high temperatures. The results demonstrate the decoupling of photosynthetic CO2 assimilation and production parameters in sorghum. High temperatures and elevated CO2 concentration resulted in a significant increase in sorghum above- and below-ground biomass under sufficient water availability despite the enhanced sensitivity of photosynthesis to high temperatures. However, the negative effect of drought is amplified by the effect of high temperature, similarly for biomass and photosynthetic rates. Sorghum also showed a mitigating effect of elevated CO2 concentration on the negative drought impact, particularly in reducing the decrease of relative water content in leaves. In barley, no significant factor interactions were observed, indicating the absence of mitigating the negative drought effects by elevated CO2 concentration. These complex interactions imply that, unlike barley, sorghum can be predicted to have a much higher variability in response to climate change. However, under conditions combining elevated CO2 concentration, high temperature, and sufficient water availability, the outperforming of C4 crops can be expected. On the contrary, the C3 crops can be expected to perform even better under drought conditions when accompanied by lower temperatures.

17.
Glob Chang Biol ; 30(1): e17104, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38273555

ABSTRACT

Globally pervasive increases in atmospheric CO2 and nitrogen (N) deposition could have substantial effects on plant communities, either directly or mediated by their interactions with soil nutrient limitation. While the direct consequences of N enrichment on plant communities are well documented, potential interactions with rising CO2 and globally widespread phosphorus (P) limitation remain poorly understood. We investigated the consequences of simultaneous elevated CO2 (eCO2 ) and N and P additions on grassland biodiversity, community and functional composition in P-limited grasslands. We exposed soil-turf monoliths from limestone and acidic grasslands that have received >25 years of N additions (3.5 and 14 g m-2 year-1 ) and 11 (limestone) or 25 (acidic) years of P additions (3.5 g m-2 year-1 ) to eCO2 (600 ppm) for 3 years. Across both grasslands, eCO2 , N and P additions significantly changed community composition. Limestone communities were more responsive to eCO2 and saw significant functional shifts resulting from eCO2 -nutrient interactions. Here, legume cover tripled in response to combined eCO2 and P additions, and combined eCO2 and N treatments shifted functional dominance from grasses to sedges. We suggest that eCO2 may disproportionately benefit P acquisition by sedges by subsidising the carbon cost of locally intense root exudation at the expense of co-occurring grasses. In contrast, the functional composition of the acidic grassland was insensitive to eCO2 and its interactions with nutrient additions. Greater diversity of P-acquisition strategies in the limestone grassland, combined with a more functionally even and diverse community, may contribute to the stronger responses compared to the acidic grassland. Our work suggests we may see large changes in the composition and biodiversity of P-limited grasslands in response to eCO2 and its interactions with nutrient loading, particularly where these contain a high diversity of P-acquisition strategies or developmentally young soils with sufficient bioavailable mineral P.


Subject(s)
Carbon Dioxide , Grassland , Carbon Dioxide/analysis , Phosphorus , Plants , Poaceae , Nitrogen , Soil/chemistry , Calcium Carbonate
18.
Glob Chang Biol ; 30(1): e17110, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38273584

ABSTRACT

There may be trade-offs in the allocation patterns of recent photosynthetic carbon (RPC) allocation in response to environmental changes, with a greater proportion of RPC being directed towards compartments experiencing limited resource availability. Alternatively, the allocation of RPC could shift from sources to sinks as plants processing excess photosynthates. It prompts the question: Does the pattern of RPC allocation vary under global changes? If so, is this variation driven by optimal or by residual C allocation strategies? We conducted a meta-analysis by complicating 273 pairwise observations from 55 articles with 13 C or 14 C pulse or continuous labeling to assess the partitioning of RPC in biomass (leaf, stem, shoot, and root), soil pools (soil organic C, rhizosphere, and microbial biomass C) and CO2 fluxes under elevated CO2 (eCO2 ), warming, drought and nitrogen (N) addition. We propose that the increased allocation of RPC to belowground under sufficient CO2 results from the excretion of excess photosynthates. Warming led to a significant reduction in the percentage of RPC allocated to shoots, alongside an increase in roots allocation, although this was not statistically significant. This pattern is due to the reduced water availability resulting from warming. In conditions of drought, there was a notable increase in the partitioning of RPC to stems (+7.25%) and roots (+36.38%), indicative of a greater investment of RPC in roots for accessing water from deeper soil. Additionally, N addition led to a heightened allocation of RPC in leaves (+10.18%) and shoots (+5.78%), while reducing its partitioning in soil organic C (-8.92%). Contrary to the residual C partitioning observed under eCO2 , the alterations in RPC partitioning in response to warming, drought, and N supplementation are more comprehensively explained through the lens of optimal partitioning theory, showing a trade-off in the partitioning of RPC under global change.


Subject(s)
Carbon Dioxide , Carbon , Biomass , Soil , Water
19.
Environ Sci Pollut Res Int ; 31(5): 8164-8185, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38172319

ABSTRACT

Complex environmental conditions like heavy metal contamination and elevated CO2 concentration may cause numerous plant stresses and lead to considerable crop losses worldwide. Cadmium is a non-essential element and potentially highly toxic soil metal pollution, causing oxidative stress in plants and human toxicity. In order to assess a combination of complex factors on the responses of two genotypes of Festuca arundinacea (75B and 75C), a greenhouse experiment was conducted on plants grown in two Cd-contaminated soil conditions and two soil textures under combined effects of elevated ambient CO2 (700 ppm) and Epichloë endophyte infection. Plant biomass, Cd, Fe, Cu, Zn, and Mn concentrations in the plant shoots and roots, Fv/Fm, chlorophyll (a & b), and carotenoid contents were measured after 7 months of growth in pots. Our results showed that endophyte-infected plants (E+) grown in elevated CO2 atmosphere (CO2+), clay-loam soil texture (H) with no Cd amendment (Cd-) in the genotype 75B had significantly greater shoot and root biomass than non-infected plants (E-) grown in ambient CO2 concentration (CO2-), sandy-loam soil texture (L) with amended Cd (Cd+) in the genotype 75C. Increased CO2 concentration and endophyte infection, especially in the genotype 75B, enabled Festuca for greater phytoremediation of Cd because of higher tolerance to Cd stress and higher biomass accumulation in the plant genotype. However, CO2 enrichment negatively influenced the plant mineral absorption due to the inhibitory effects of high Cd concentration in shoots and roots. It is concluded that Cd phytoremediation can be positively affected by the increased atmospheric CO2 concentration, tolerant plant genotype, heavy soil texture, and Epichloë endophyte. Using Taguchi and AIC design methodologies, it was also predicted that the most critical factors affecting Cd phytoremediation potential were CO2 concentration and plant genotype.


Subject(s)
Epichloe , Festuca , Soil Pollutants , Humans , Biodegradation, Environmental , Cadmium/analysis , Endophytes , Carbon Dioxide/pharmacology , Soil , Soil Pollutants/analysis , Plant Roots
20.
New Phytol ; 241(3): 1222-1235, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37929754

ABSTRACT

Mosses hold a unique position in plant evolution and are crucial for protecting natural, long-term carbon storage systems such as permafrost and bogs. Due to small stature, mosses grow close to the soil surface and are exposed to high levels of CO2 , produced by soil respiration. However, the impact of elevated CO2 (eCO2 ) levels on mosses remains underexplored. We determined the growth responses of the moss Physcomitrium patens to eCO2 in combination with different nitrogen levels and characterized the underlying physiological and metabolic changes. Three distinct growth characteristics, an early transition to caulonema, the development of longer, highly pigmented rhizoids, and increased biomass, define the phenotypic responses of P. patens to eCO2 . Elevated CO2 impacts growth by enhancing the level of a sugar signaling metabolite, T6P. The quantity and form of nitrogen source influences these metabolic and phenotypic changes. Under eCO2 , P. patens exhibits a diffused growth pattern in the presence of nitrate, but ammonium supplementation results in dense growth with tall gametophores, demonstrating high phenotypic plasticity under different environments. These results provide a framework for comparing the eCO2 responses of P. patens with other plant groups and provide crucial insights into moss growth that may benefit climate change models.


Subject(s)
Carbon Dioxide , Nitrogen , Nitrogen/metabolism , Carbon Dioxide/pharmacology , Sugars , Biomass , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...