Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Behav Brain Res ; 449: 114462, 2023 07 09.
Article in English | MEDLINE | ID: mdl-37121276

ABSTRACT

Previously we showed that Deep Brain Stimulation (DBS) of the dorsal region (DRD) and of the lateral wings of the dorsal raphe (lwDR) respectively decreases anxiety and panic-like responses in the elevated T-maze (ETM). This study investigates neurobiological alterations which might respond for these behavioral effects. Male Wistar rats were submitted to high-frequency stimulation (100 µA, 100 Hz) of the DRD or of the lwDR for 1 h, and subsequently tested in the avoidance or escape tasks of the ETM. Since serotonin (5-HT) reuptake inhibitors are first line pharmacological treatment for anxiety disorders, we also tested the effects of chronic fluoxetine administration (10 mg/kg, IP, 21 days) on a separate group of rats. An open field was used for locomotor activity assessment. Additionally, we evaluated c-Fos immunoreactivity (Fos-ir) in serotonergic cells of the dorsal raphe (DR). Results showed that DBS of the DRD decreases avoidance reactions, an anxiolytic-like effect, without altering escape or locomotor activity. Both fluoxetine and DBS of the lwDR decreased escape responses in the ETM, a panicolytic-like effect, without altering avoidance measurements or locomotor activity. While DBS of the DRD decreased double immunostaining in the DRD, DBS of the lwDR increased Fos-ir and double immunostaining in the DRD and lwDR. Fluoxetine also increased double immunostaining in the lwDR and in the DRV but decreased it in the DRD. These results suggest that both the anxiolytic and panicolytic-like effects of DBS and fluoxetine are related to 5-HT modulation in different subnuclei of the DR.


Subject(s)
Anti-Anxiety Agents , Deep Brain Stimulation , Rats , Male , Animals , Anti-Anxiety Agents/pharmacology , Dorsal Raphe Nucleus , Serotonin/pharmacology , Fluoxetine/pharmacology , Rats, Wistar , Escape Reaction/physiology , Anxiety/drug therapy
2.
Exp Brain Res ; 239(4): 1179-1191, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33569614

ABSTRACT

Crack cocaine is the crystal form of cocaine, produced by adding sodium bicarbonate to cocaine base paste. Brazil is the largest consumer of crack cocaine in the world. Users of crack cocaine show important physiological and behavioral alterations, including neuropsychiatric symptoms, such as anxiety-related symptoms. Nevertheless, few pre-clinical studies have been previously performed to understand the neurobiological effects of crack cocaine. The purpose of the present study was to investigate effects of the subchronic treatment (5 days, IP) of rats with crack cocaine in an animal model of anxiety/panic, the elevated T-maze (ETM). The ETM model allows the measurement of two behavioral defensive responses, avoidance and escape, in clinical terms, respectively, associated to generalized anxiety and panic disorder, the two main psychiatric conditions that accompany substance use disorders. Immediately after the ETM model, animals were tested in an open field for locomotor activity assessment. Analysis of delta FosB protein immunoreactivity was used to map areas activated by crack cocaine exposure. Results showed that crack treatment selectively altered escape displayed by rats in the ETM test, inducing either a panicolytic (18 mg/kg IP) or a panicogenic-like effect (25 and 36 mg/kg IP). These effects were followed by the altered functioning of panic-modulating brain regions, i.e., the periaqueductal gray and the dorsal region and lateral wings of the dorsal raphe nucleus. Treatment with 36 mg/kg of crack cocaine also increased locomotor activity. These are the first observations performed with crack cocaine in a rodent model of anxiety/panic and contribute to a better understanding of the behavioral and neurobiological effects of crack cocaine.


Subject(s)
Crack Cocaine , Animals , Anxiety/chemically induced , Dorsal Raphe Nucleus , Escape Reaction , Maze Learning , Proto-Oncogene Proteins c-fos , Rats , Rats, Wistar
3.
Biomolecules ; 10(2)2020 02 14.
Article in English | MEDLINE | ID: mdl-32075023

ABSTRACT

Evidence suggests that histone deacetylases (HDACs) inhibitors could be used as an effective treatment for some psychiatric and neurological conditions such as depression, anxiety and age-related cognitive decline. However, non-specific HDAC inhibiting compounds have a clear disadvantage regarding their efficacy and safety, thus the need to develop more selective ones. The present study evaluated the toxicity, the capacity to inhibit HDAC activity and antidepressant-like activity of three recently described class I HDAC inhibitors IN01, IN04 and IN14, using A.salina toxicity test, in vitro fluorometric HDAC activity assay and forced-swimming test, respectively. Our data show that IN14 possesses a better profile than the other two. Therefore, the pro-cognitive and antidepressant effects of IN14 were evaluated. In the forced-swimming test model of depression, intraperitoneal administration of IN14 (100 mg/Kg/day) for five days decreased immobility, a putative marker of behavioral despair, significantly more than tricyclic antidepressant desipramine, while also increasing climbing behavior, a putative marker of motivational behavior. On the other hand, IN14 left the retention latency in the elevated T-maze unaltered. These results suggest that novel HDAC class I inhibitor IN14 may represent a promising new antidepressant with low toxicity and encourages further studies on this compound.


Subject(s)
Histone Deacetylase Inhibitors/chemical synthesis , Histone Deacetylase Inhibitors/metabolism , Histone Deacetylase Inhibitors/pharmacology , Animals , Antidepressive Agents/pharmacology , Histone Deacetylases/metabolism , Male , Mice
4.
Behav Brain Res ; 365: 178-184, 2019 06 03.
Article in English | MEDLINE | ID: mdl-30857770

ABSTRACT

Ghrelin is a recently discovered peptide, mainly produced in the stomach and involved in body's energy-maintenance processes. Ghrelin exerts its actions by activating the growth hormone secretagogue receptor (GHS-R). Recent analyses indicate that ghrelin targets the brain to regulate a wealth of functions, including behavioral responses that have been associated with stress and anxiety mechanisms. In this context, evidence shows the presence of GHS-R receptors in the dorsal raphe nucleus (DRN), the main source of serotonergic neurons that innervate encephalic structures involved in emotional control. Our study aims to evaluate the effects of the pharmacological manipulation of ghrelin receptors located in the DRN on the expression of the behavioral responses of Wistar rats. Such responses were assessed in the elevated T maze (ETM), an experimental model that allows the measurement, in the same animal, of two defensive tasks, inhibitory avoidance and escape. Our results showed that the intra-DRN infusion of ghrelin impaired the acquisition of inhibitory avoidance, an anxiolytic-like effect, and facilitated the expression of escape response in the ETM, indicating a panicogenic-like effect. The intra-DRN administration of the ghrelin receptor (GHS-R1a) antagonist PF-04628935 did not alter the behavioral tasks assessed in the ETM. Finally, our results revealed that intra-DRN infusions of PF-04628935 prior to the administration of ghrelin into this area neutralized the behavioral effects obtained in the ETM. Taken together, our data reveal the involvement of DRN GHS-R1a receptors in the regulation of defensive tasks that have been associated with generalized anxiety and panic disorders.


Subject(s)
Avoidance Learning/physiology , Dorsal Raphe Nucleus/metabolism , Escape Reaction/physiology , Receptors, Ghrelin/metabolism , Animals , Anti-Anxiety Agents/metabolism , Anti-Anxiety Agents/pharmacology , Anxiety/metabolism , Anxiety Disorders/metabolism , Avoidance Learning/drug effects , Dorsal Raphe Nucleus/drug effects , Escape Reaction/drug effects , Ghrelin/metabolism , Male , Maze Learning/drug effects , Rats , Rats, Wistar , Serotonergic Neurons/metabolism
5.
Mol Neurobiol ; 56(9): 6487-6500, 2019 Sep.
Article in English | MEDLINE | ID: mdl-30847739

ABSTRACT

A wealth of evidence indicates that the lateral wings subnucleus of the dorsal raphe nucleus (lwDR) is implicated in the processing of panic-associated stimuli. Escape expression in the elevated T-maze, considered a panic-related defensive behavior, markedly and selectively recruits non-serotonergic cells within this DR subregion and in the dorsal periaqueductal gray (dPAG), another key panic-associated area. However, whether anti-panic drugs may interfere with this pattern of neuronal activation is still unknown. In the present study, the effects of acute (10 mg/kg) or chronic fluoxetine (10 mg/kg/daily/21 days) treatment on the number of serotonergic and non-serotonergic cells induced by escape expression within the rat DR and PAG subnuclei were investigated by immunochemistry. The results showed that chronic, but not acute, treatment with fluoxetine impaired escape expression, indicating a panicolytic-like effect, and markedly decreased the number of non-serotonergic cells that were recruited in the lwDR and dPAG. The same treatment selectively increased the number of serotonergic neurons within the lwDR. Our immunochemistry analyses also revealed that the non-serotonergic cells recruited in the lwDR and dPAG by the escape expression were not nitrergic. Overall, our findings suggest that the anti-panic effect of chronic treatment with fluoxetine is mediated by stimulation of the lwDR-dPAG pathway that controls the expression of panic-associated escape behaviors.


Subject(s)
Dorsal Raphe Nucleus/metabolism , Fluoxetine/adverse effects , Panic/drug effects , Serotonergic Neurons/metabolism , Animals , Behavior, Animal/drug effects , Dorsal Raphe Nucleus/drug effects , Male , Nitric Oxide Synthase Type I/metabolism , Periaqueductal Gray/drug effects , Periaqueductal Gray/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Rats, Wistar , Serotonergic Neurons/drug effects
6.
Neuropharmacology ; 148: 311-319, 2019 04.
Article in English | MEDLINE | ID: mdl-30685402

ABSTRACT

The role of 5-HT2C receptors (5-HT2CRs) in the regulation of anxiety has been widely acknowledged. However, conflicting results have been reported on whether stimulation of these receptors increases or decreases anxiety. We here investigated the role of 5-HT2CRs of the dorsal hippocampus (DH) in the mediation of anxiety- or panic-associated defensive behaviors and in the anxiolytic effect of the tricyclic antidepressant imipramine. In the Vogel conflict test, administration of the mixed 5-HT2CR agonist mCPP into the DH of male Wistar rats was anxiogenic, whereas infusions of the more selective agonists MK-212 and RO-600175 were anxiolytic. The 5-HT2CR antagonist SB-242084, on the other hand, was anxiogenic. A sub-effective dose of this antagonist blocked the anxiolytic effect of RO-600175, but not the increase in anxiety observed with mCPP, indicating that the latter effect was not due to 5-HT2CR activation. In full agreement with these findings, MK-212 and RO-600175 in the DH also inhibited inhibitory avoidance acquisition in the elevated T-maze, whereas SB-242084 caused the opposite effect. None of these drugs interfered with escape expression in this test, which has been associated with panic. Chronic administration of imipramine (15 mg/kg, ip, 21 days) caused an anxiolytic effect in the elevated T-maze and light-dark transition tests, which was not blocked by previous infusion of SB-242084 into the DH. Therefore, facilitation of 5-HT2CR-mediated neurotransmission in the DH decreases the expression of anxiety-, but not panic-related defensive behaviors. This mechanism, however, is not involved in the anxiolytic effect caused by imipramine.


Subject(s)
Anxiety/physiopathology , Hippocampus/physiology , Panic/physiology , Receptor, Serotonin, 5-HT2C/physiology , Aminopyridines/pharmacology , Animals , Anti-Anxiety Agents/pharmacology , Anxiety/chemically induced , Avoidance Learning/drug effects , Ethylamines/antagonists & inhibitors , Ethylamines/pharmacology , Hippocampus/drug effects , Imipramine/pharmacology , Indoles/antagonists & inhibitors , Indoles/pharmacology , Male , Maze Learning/drug effects , Microinjections , Panic/drug effects , Piperazines/antagonists & inhibitors , Piperazines/pharmacology , Punishment , Pyrazines/pharmacology , Rats , Serotonin 5-HT2 Receptor Agonists
7.
J Psychopharmacol ; : 269881118817384, 2018 Dec 19.
Article in English | MEDLINE | ID: mdl-30565963

ABSTRACT

BACKGROUND:: Serotonin plays an important role in the regulation of anxiety, acting through complex modulatory mechanisms within distinct brain structures. Serotonin can act through complex negative feedback mechanisms controlling the neuronal activity of serotonergic circuits and downstream physiologic and behavioral responses. Administration of serotonin or the serotonin 1A receptor agonist, (±)-8-hydroxy-2-(dipropylamino)tetralin (8-OH-DPAT), into the prefrontal cortex, inhibits anxiety-like responses. The prelimbic area of the prefrontal cortex regulates serotonergic neurons within the dorsal raphe nucleus and is involved in modulating anxiety-like behavioral responses. AIMS:: This study aimed to investigate the serotonergic role within the prelimbic area on anxiety- and panic-related defensive behavioral responses. METHODS:: We investigated the effects of serotonin within the prelimbic area on inhibitory avoidance and escape behaviors in the elevated T-maze. We also extended the investigation to serotonin 1A, 2A, and 2C receptors. RESULTS:: Intra-prelimbic area injection of serotonin or 8-OH-DPAT induced anxiolytic effects without affecting escape behaviors. Previous administration of the serotonin 1A receptor antagonist, WAY-100635, into the prelimbic area counteracted the anxiolytic effects of serotonin. Neither the serotonin 2A nor the serotonin 2C receptor preferential agonists, (±)-2,5-dimethoxy-4-iodoamphetamine (DOI) and 6-chloro-2-(1-piperazinyl) pyrazine (MK-212), respectively, affected behavioral responses in the elevated T-maze. CONCLUSION:: Facilitation of serotonergic signaling within the prelimbic area of rats induced an anxiolytic effect in the elevated T-maze test, which was mediated by local serotonin 1A receptors. This inhibition of anxiety-like defensive behavioral responses may be mediated by prelimbic area projections to neural systems controlling anxiety, such as the dorsal raphe nucleus or basolateral amygdala.

8.
Behav Brain Res ; 344: 65-72, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29448033

ABSTRACT

Environmental enrichment (EE) is an animal management technique, which seems to improve adaptation to the experimental conditions of housing in laboratory animals. Previous studies have pointed to different beneficial effects of the procedure in the treatment of several disorders, including psychiatric conditions such as depression. The anxiolytic effects induced by EE, on the other hand, are not as clear. In fact, it has been proposed that EE acts as a mild stressor agent. To better understand the relationship of EE with anxiety-related responses, the present study exposed rats to one week of EE and subsequently tested these animals in the inhibitory avoidance and escape tasks of the elevated T-maze (ETM). In clinical terms, these responses have been respectively related to generalized anxiety and panic disorder. All animals were tested in an open field, immediately after the ETM, for locomotor activity assessment. Additionally, analysis of delta FosB protein immunoreactivity (FosB-ir) was used to map areas activated by EE exposure and plasma corticosterone measurements were performed. The results obtained demonstrate that exposure to EE for one week impaired avoidance responses, an anxiolytic-like effect, without altering escape reactions. Also, in animals submitted to the avoidance task EE exposure decreased FosB-ir in the cingulate cortex, dorsolateral and intermediate lateral septum, hippocampus (cornus of Ammon), anterior and dorsomedial hypothalamus, medial and basolateral amygdala and ventral region of the dorsal raphe nucleus. Although no behavioral differences were observed in animals submitted to the escape task, EE exposure also decreased FosB-ir in the cingulate cortex, hippocampus (dentate gyrus), lateral amygdala, paraventricular, anterior and ventromedial hypothalamus, dorsomedial periaqueductal gray and ventral and dorsal region of the dorsal raphe. No changes in corticosterone levels, however, were observed. These results contribute to a better understanding of the effects of EE on anxiety.


Subject(s)
Anxiety/metabolism , Anxiety/therapy , Avoidance Learning/physiology , Brain/metabolism , Environment , Proto-Oncogene Proteins c-fos/metabolism , Animals , Anxiety/pathology , Cell Count , Corticosterone/blood , Escape Reaction/physiology , Housing, Animal , Immunohistochemistry , Male , Motor Activity/physiology , Neurons/metabolism , Neurons/pathology , Rats, Wistar
9.
Behav Brain Res ; 337: 139-150, 2018 Jan 30.
Article in English | MEDLINE | ID: mdl-28935440

ABSTRACT

Corticotrophin releasing factor (CRF) modulates stress/anxiety-related responses. Previous studies showed that exposure to acute restraint and unpredictable chronic mild stress (UCMS) facilitates elevated T-maze (ETM) avoidance responses, an anxiogenic-like effect. This study verified the role of CRF in the modulation of ETM avoidance and escape reactions, in unstressed rats and in animals exposed to acute restraint or to UCMS, by quantifying CRF mRNA concentrations in stress/anxiety-related brain regions, through semiquantitative in situ hybridization. Results showed that stress exposure altered CRF mRNA in regions related to the modulation of stress/anxiety: the cingulate cortex, the hippocampus, the paraventricular and dorsomedial hypothalamus, the medial and central amygdalas, the dorsal region of the dorsal raphe (dDR) and the ventrolateral periaqueductal gray. A regression analysis showed that the anxiogenic-like effects observed in acute restraint animals were particularly associated to increases in CRF mRNA in the paraventricular hypothalamus, medial and central amygdalas and dDR. On the other hand, anxiogenic-like effects observed after UCMS exposure are associated to increases in CRF mRNA in the medial and central amygdalas, in the BNST and in the ventrolateral periaqueductal grey. This observation suggests important differences in the neurocircuitry that mediates responses to acute and chronic stress exposure. CRF mRNA in regions traditionally related to the modulation of panic reactions (the dorsal periaqueductal grey and the lateral wings of the dorsal raphe) were not observed, what might explain the absence of panicogenic-like effects of stress exposure. These results contribute to a better understanding of the role played by CRF in stress/anxiety-related responses.


Subject(s)
Brain/metabolism , Corticotropin-Releasing Hormone/genetics , Maze Learning/physiology , RNA, Messenger/metabolism , Restraint, Physical/psychology , Stress, Psychological/pathology , Analysis of Variance , Animals , Corticotropin-Releasing Hormone/metabolism , Disease Models, Animal , Food Deprivation , Gene Expression Regulation/physiology , Male , Rats , Rats, Wistar , Time Factors , Water Deprivation
10.
Behav Brain Res ; 329: 41-50, 2017 06 30.
Article in English | MEDLINE | ID: mdl-28435125

ABSTRACT

In a previous study, the administration of corticotrophin-releasing factor (CRF) into the dorsomedial hypothalamus (DMH), a region that modulates defensive reactions, was shown to facilitate elevated T-maze (ETM) avoidance responses, an anxiogenic-like effect. Intra-DMH administration of the CRF type 1 receptor (CRFR1) antagonist antalarmin induced anxiolytic-like effects and counteracted the anxiogenic effects of CRF. The present study further investigates the role played by CRF receptors of the medial hypothalamus in anxiety. For that, male wistar rats were treated with CRFR1 and CRFR2-modulating drugs in the DMH or VMH, another hypothalamic nucleus implicated with defensive and emotional behavior, and tested in the ETM for inhibitory avoidance and escape measurements. In clinical terms, these responses have been respectively related to generalized anxiety and panic disorder. All animals were tested in an open field, immediately after the ETM, for locomotor activity assessment. The results showed that intra-VMH CRF or antalarmin did not alter ETM avoidance or escape performance. Intra-VMH injection of the CRFR2 preferential antagonist antisauvagine-30 or of the selective CRFR2 antagonist astressin 2-B inhibited escape performance, a panicolytic-like effect, without altering avoidance reactions. The CRFR2 agonist urocortin-2 intra-VMH was by itself without effect but blocked the effects of astressin 2-B. None of the drugs administered into the DMH altered ETM measurements. Additionally, none of the compounds altered locomotor activity measurements. These results suggest that VMH CRFR2 modulate a defensive response associated with panic disorder and are of relevance to the better understanding of the neural mechanisms underlying this pathological condition.


Subject(s)
Escape Reaction/physiology , Hypothalamus, Middle/metabolism , Maze Learning/physiology , Receptors, Corticotropin-Releasing Hormone/metabolism , Analysis of Variance , Animals , Corticotropin-Releasing Hormone/pharmacology , Dose-Response Relationship, Drug , Escape Reaction/drug effects , Exploratory Behavior/drug effects , Hormone Antagonists/pharmacology , Hypothalamus, Middle/diagnostic imaging , Male , Maze Learning/drug effects , Microinjections , Peptide Fragments/pharmacology , Rats , Rats, Wistar , Receptors, Corticotropin-Releasing Hormone/antagonists & inhibitors , Urocortins/pharmacology
11.
Behav Brain Res ; 326: 52-58, 2017 05 30.
Article in English | MEDLINE | ID: mdl-28245977

ABSTRACT

Tramadol is a synthetic opioid prescribed for the treatment of moderate to severe pain, acting as agonist of µ-opioid receptors and serotonin (5-HT) and noradrenaline (NE) reuptake inhibitor. This study evaluated the effects of tramadol in rats submitted to the elevated T-maze (ETM), an animal model that evaluates behavioural parameters such as anxiety and panic. Male Wistar rats were intraperitoneally (i.p.) treated acutely with tramadol (16 and 32mg/kg) and were submitted to the ETM. Tramadol (32mg/kg) promoted a panicolytic-like effect. Considering that dorsal periaqueductal grey (dPAG) is the main brain structure related to the pathophysiology of panic disorder (PD), this study also evaluated the participation of 5-HT and opioid receptors located in the dPAG in the panicolytic-like effect of tramadol. Seven days after stereotaxic surgery for implantation of a cannula in the dPAG, the animals were submitted to the test. To assess the involvement of 5-HT1A receptors on the effect of tramadol, we combined the 5-HT1A receptor antagonist, WAY100635 (0.37nmol), microinjected intra-dPAG, 10min prior to the administration of tramadol (32mg/kg, i.p.). WAY100635 did not block the panicolytic-like effect of tramadol. We also associated the non-selective opioid receptor antagonist, naloxone, systemically (1mg/kg, i.p.) or intra-dPAG (0.5nmol) administered 10min prior to tramadol (32mg/kg, i.p.). Naloxone blocked the panicolytic-like effect of tramadol in both routes of administrations, showing that tramadol modulates acute panic defensive behaviours through its interaction with opioid receptors located in the dPAG.


Subject(s)
Analgesics, Opioid/pharmacology , Anxiety/chemically induced , Behavior, Animal/drug effects , Narcotic Antagonists/pharmacology , Panic/drug effects , Periaqueductal Gray/drug effects , Serotonin 5-HT1 Receptor Antagonists/pharmacology , Serotonin and Noradrenaline Reuptake Inhibitors/pharmacology , Tramadol/pharmacology , Analgesics, Opioid/administration & dosage , Animals , Disease Models, Animal , Male , Naloxone/pharmacology , Narcotic Antagonists/administration & dosage , Piperazines/pharmacology , Pyridines/pharmacology , Rats , Rats, Wistar , Receptors, Opioid, mu/agonists , Serotonin 5-HT1 Receptor Antagonists/administration & dosage , Serotonin and Noradrenaline Reuptake Inhibitors/administration & dosage , Tramadol/administration & dosage
12.
Behav Brain Res ; 327: 75-82, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28347824

ABSTRACT

Panic patients may have abnormalities in serotonergic and opioidergic neurotransmission. The dorsal periaqueductal gray (dPAG) plays an important role in organizing proximal defense, related to panic attacks. The 5-HT1A receptor (5-HT1A-R) is involved in regulating escape behavior that is organized in the dPAG. Activation of κ-opioid receptor (KOR) in this region causes anxiogenic effects. In this study, we investigated the involvement of KOR in regulating escape behavior, using systemic and intra-dPAG injection of the KOR antagonist Nor-BNI. As panic models, we used the elevated T-maze (ETM) and the dPAG electrical stimulation test (EST). We also evaluated whether activation of the 5-HT1A-R or the µ-opioid receptor (MOR) in the dPAG contributes to the Nor-BNI effects. The results showed that systemic administration of Nor-BNI, either subcutaneously (2.0 and 4.0mg/kg) or intraperitoneally (2.0mg/kg), impaired escape in the EST, indicating a panicolytic-like effect. Intra-dPAG injection of this antagonist (6.8nmol) caused the same effect in the EST and in the ETM. Association of ineffective doses of Nor-BNI and the 5-HT1A-R agonist 8-OH-DPAT caused panicolytic-like effect in these two tests. Previous administration of the 5-HT1A-R antagonist WAY-100635, but not of the MOR antagonist CTOP, blocked the panicolytic-like effect of Nor-BNI. These results indicate that KOR enhances proximal defense in the dPAG through 5-HT1A-R modulation, independently of MOR. Because former results indicate that the 5-HT1A-R is involved in the antipanic action of antidepressants, KOR antagonists may be useful as adjunctive or alternative drug treatment of panic disorder.


Subject(s)
Naltrexone/analogs & derivatives , Panic/drug effects , Periaqueductal Gray/drug effects , Receptor, Serotonin, 5-HT1A/metabolism , Receptors, Opioid, kappa/antagonists & inhibitors , Tranquilizing Agents/pharmacology , 8-Hydroxy-2-(di-n-propylamino)tetralin/pharmacology , Animals , Dose-Response Relationship, Drug , Escape Reaction/drug effects , Escape Reaction/physiology , Male , Models, Animal , Naltrexone/pharmacology , Narcotic Antagonists/pharmacology , Panic/physiology , Periaqueductal Gray/metabolism , Piperazines/pharmacology , Pyridines/pharmacology , Rats, Wistar , Receptors, Opioid, kappa/metabolism , Receptors, Opioid, mu/antagonists & inhibitors , Receptors, Opioid, mu/metabolism , Serotonin 5-HT1 Receptor Agonists/pharmacology , Serotonin 5-HT1 Receptor Antagonists/pharmacology , Somatostatin/analogs & derivatives , Somatostatin/pharmacology
13.
Braz. J. Psychiatry (São Paulo, 1999, Impr.) ; 39(1): 72-83, Jan.-Mar. 2017. tab, graf
Article in English | LILACS | ID: biblio-844170

ABSTRACT

Objective: To compare prey and snake paradigms performed in complex environments to the elevated plus-maze (EPM) and T-maze (ETM) tests for the study of panic attack- and anticipatory anxiety-like behaviors in rodents. Methods: PubMed was reviewed in search of articles focusing on the plus maze test, EPM, and ETM, as well as on defensive behaviors displayed by threatened rodents. In addition, the authors’ research with polygonal arenas and complex labyrinth (designed by the first author for confrontation between snakes and small rodents) was examined. Results: The EPM and ETM tests evoke anxiety/fear-related defensive responses that are pharmacologically validated, whereas the confrontation between rodents and snakes in polygonal arenas with or without shelters or in the complex labyrinth offers ethological conditions for studying more complex defensive behaviors and the effects of anxiolytic and panicolytic drugs. Prey vs. predator paradigms also allow discrimination between non-oriented and oriented escape behavior. Conclusions: Both EPM and ETM simple labyrinths are excellent apparatuses for the study of anxiety- and instinctive fear-related responses, respectively. The confrontation between rodents and snakes in polygonal arenas, however, offers a more ethological environment for addressing both unconditioned and conditioned fear-induced behaviors and the effects of anxiolytic and panicolytic drugs.


Subject(s)
Animals , Rats , Anxiety Disorders/psychology , Snakes , Behavior, Animal/physiology , Panic Disorder/psychology , Instinct , Predatory Behavior , Rats, Wistar , Maze Learning , Fear/physiology , Fear/psychology
14.
J Psychopharmacol ; 31(6): 704-714, 2017 06.
Article in English | MEDLINE | ID: mdl-28071216

ABSTRACT

Several studies have shown that serotonin plays a dual role in the modulation of defensive behaviors related to anxiety and panic. A major source of serotonergic projections to limbic structures responsible for this modulation is the dorsal raphe nucleus (DR). Anatomical studies indicate that the prelimbic (PL) cortex sends dense glutamatergic projections to the DR, leading to stimulation or inhibition of serotonin release in structures innervated by the DR. The objective of the present study was to investigate if GABAergic disinhibition of the PL by means of local administration of picrotoxin (PIC), a chloride channel blocker, can affect serotonergic tone and the expression of defensive behaviors related to anxiety and panic. We used the elevated T-maze model and Vogel conflict test to evaluate defensive responses associated with anxiety or panic. The results showed that intra-PL PIC caused an increase in c-Fos activation in serotonergic cells in DR subregions. Furthermore, the intra-PL injection of PIC induced a panicolytic-like effect without affecting behaviors associated with anxiety. Our findings suggest that the PL-DR pathway, through DR serotonergic stimulation, is involved in the control of panic-related behaviors by control of serotonin release in structures that modulate panic responses, such as the dorsal periaqueductal gray.


Subject(s)
Anxiety Disorders/metabolism , Behavior, Animal/physiology , Dorsal Raphe Nucleus/metabolism , Panic Disorder/metabolism , Serotonin/metabolism , Animals , Anxiety/metabolism , Dorsal Raphe Nucleus/drug effects , Escape Reaction/drug effects , Escape Reaction/physiology , Male , Panic/physiology , Periaqueductal Gray/drug effects , Periaqueductal Gray/metabolism , Picrotoxin/pharmacology , Proto-Oncogene Proteins c-fos/metabolism , Rats , Rats, Wistar , gamma-Aminobutyric Acid/metabolism
15.
Behav Brain Res ; 321: 193-200, 2017 03 15.
Article in English | MEDLINE | ID: mdl-28034802

ABSTRACT

One of the main neurochemical systems associated with anxiety/panic is the serotonergic system originating from the dorsal raphe nucleus (DR). Previous evidence suggests that the DR is composed of distinct subpopulations of neurons, both morphologically and functionally distinct. It seems that mainly the dorsal region of the DR (DRD) regulates anxiety-related reactions, while lateral wings DR (lwDR) serotonin (5-HT) neurons inhibit panic-related responses. In this study we used the technique of deep brain stimulation (DBS) to investigate the role played by the DRD and lwDR in defense. Male Wistar rats were submitted to high-frequency stimulation (100µA, 100Hz) in one of the two DR regions for 1h and immediately after tested in the avoidance or escape tasks of the elevated T-maze (ETM). In clinical terms, these responses have been related to generalized anxiety and panic disorder, respectively. After being submitted to the ETM, animals were placed in an open field for locomotor activity assessment. An additional group of rats was submitted to DBS of the DRD or the lwDR and used for quantification of c-Fos immunoreactive (Fos-ir) neurons in brain regions related to the modulation of defense. Results showed that stimulation of the DRD decreased avoidance latencies, an anxiolytic-like effect. DRD stimulation also led to increases in Fos-ir in the medial amygdala, lateral septum and cingulate cortex. DBS applied to the lwDR increased escape latencies, a panicolytic-like effect. This data highlights the importance of raphe topography and the potential benefit of the DBS technique for the treatment of anxiety-related disorders.


Subject(s)
Anxiety/physiopathology , Avoidance Learning/physiology , Deep Brain Stimulation , Dorsal Raphe Nucleus/physiopathology , Escape Reaction/physiology , Panic/physiology , Animals , Dorsal Raphe Nucleus/pathology , Immunohistochemistry , Male , Neurons/metabolism , Neurons/pathology , Prosencephalon/pathology , Prosencephalon/physiopathology , Proto-Oncogene Proteins c-fos/metabolism , Rats, Wistar
16.
Behav Brain Res ; 315: 115-22, 2016 12 15.
Article in English | MEDLINE | ID: mdl-27531502

ABSTRACT

The elevated T-maze was developed to test the hypothesis that serotonin plays an opposing role in the regulation of defensive behaviors associated with anxiety and panic. Previous pharmacological exploitation of this test supports the association between inhibitory avoidance acquisition and escape expression with anxiety and fear/panic, respectively. In the present study, we extend the pharmacological validation of this test by investigating the effects of other putative or clinically effective anxiety- and panic-modulating drugs. The results showed that chronic, but not acute injection of the reversible monoamine oxidase-A inhibitor moclobemide (3, 10 and 30mg/kg) inhibited escape expression, indicating a panicolytic-like effect. The same effect was observed after either acute or chronic treatment with alprazolam (1, 2 and 4mg/kg), a high potency benzodiazepine. This drug also impaired inhibitory avoidance acquisition, suggesting an anxiolytic effect. On the other hand, subcutaneous administration of the 5-HT1D/1B receptor agonist sumatriptan (0.1, 0.5 and 2.5µg/kg) facilitated escape performance, indicating a panicogenic-like effect, while treatment with α-para-chlorophenylalanine (p-CPA; 4days i.p injections of 100mg/kg, or a single i.p injection of 300mg/kg), which caused marked 5-HT depletion in the amygdala and striatum, was without effect. Altogether, these results are in full agreement with the clinical effects of these compounds and offer further evidence that the elevated T-maze has broad predictive validity for the effects of anxiety- and panic-modulating drugs.


Subject(s)
Anti-Anxiety Agents/pharmacology , Maze Learning/drug effects , Panic/drug effects , Alprazolam/pharmacology , Animals , Brain/drug effects , Brain/metabolism , Disease Models, Animal , Escape Reaction/drug effects , Exploratory Behavior/drug effects , Fenclonine/pharmacology , Locomotion/drug effects , Male , Moclobemide/pharmacology , Rats , Rats, Wistar , Serotonin/metabolism , Sumatriptan/pharmacology
17.
Life Sci ; 152: 94-8, 2016 May 01.
Article in English | MEDLINE | ID: mdl-26968783

ABSTRACT

AIMS: The dorsal periaqueductal gray matter (dPAG) is involved in the integration of behavioral and cardiovascular responses caused by fear and anxiety situations. Some studies suggest an involvement of noradrenergic neurotransmission in the dPAG in anxiety modulation, however, there is no evidence about its role in panic attacks. The goal of this work was to study the effect of NA microinjection in dPAG in rats submitted to the elevated T-maze (ETM). MATERIALS AND METHODS: Male Wistar had a cannula implanted in the PAG where it was injected NA in the doses of 1, 3, 15, 45nmol/50nl or artificial cerebrospinal fluid previous the ETM test. KEY FINDINGS: NA intra-dPAG decreased inhibitory avoidance behavior in the ETM without changing escape, indicating only an anxiolytic-like effect. Furthermore, the microinjection of NA did not change the general exploratory activity of the animals submitted to the open field test, suggesting that the anxiolytic-like effect is not due to an increase in exploratory activity. SIGNIFICANCE: The results indicate an involvement of noradrenergic neurotransmission in the dPAG in defensive reactions associated with generalized anxiety, but not as main mechanisms for the panic, in rats submitted to the elevated T-maze providing support for other research aimed at improving the treatment of generalized anxiety.


Subject(s)
Anti-Anxiety Agents/pharmacology , Norepinephrine/pharmacology , Periaqueductal Gray , Sympathomimetics/pharmacology , Animals , Anti-Anxiety Agents/administration & dosage , Anxiety/drug therapy , Anxiety/psychology , Anxiety Disorders/drug therapy , Anxiety Disorders/psychology , Dose-Response Relationship, Drug , Escape Reaction/drug effects , Exploratory Behavior/drug effects , Male , Microinjections , Norepinephrine/administration & dosage , Rats , Rats, Wistar , Sympathomimetics/administration & dosage , Synaptic Transmission/drug effects
18.
Behav Brain Res ; 305: 191-7, 2016 May 15.
Article in English | MEDLINE | ID: mdl-26965566

ABSTRACT

Previous results show that the activation of CRF type 1 (CRFR1) receptors of the medial amygdala (MeA) induces anxiogenic-like effects. The present study investigates the role played by medial amygdala CRF type 2 receptors (CRFR2) in the modulation of anxiety and panic-related responses. Male Wistar rats were administered into the MeA with the CRFR2 agonist urocortin 2 (0.5 e 1.0µg/0.2µl, experiment 1) or with the CRFR2 antagonist astressin 2-B (60ng/0.2µl, experiment 2) and 10min later tested in the elevated T-maze (ETM) for inhibitory avoidance and escape measurements. In clinical terms, these responses have been respectively related to generalized anxiety and panic disorder. In a third experiment, the effects of the combined treatment with urocortin 2 (1.0µg/0.2µl) and a sub-effective dose of astressin 2-B (30ng/0.2µl) were also investigated. All animals were tested in an open field, immediately after the ETM, for locomotor activity assessment. Results showed that urocortin 2, in the highest dose administered (1.0µg/0.2µl), facilitated ETM avoidance, an anxiogenic-like effect. Astressin 2-B, also in the highest dose (60ng/0.2µl), significantly decreased avoidance latencies, an anxiolytic-like effect. The lower dose of astressin 2-B (30ng/0.2µl) did not induce anxiolytic-like effects but was able to counteract the anxiogenic-like effects of urocortin 2. None of the compounds administered altered escape responses or locomotor activity measurements. These results suggest that CRFR2 in the medial amygdala, as CRFR1, selectively modulate an anxiety-related response.


Subject(s)
Avoidance Learning/drug effects , Corticomedial Nuclear Complex/physiology , Inhibition, Psychological , Maze Learning/physiology , Receptors, Corticotropin-Releasing Hormone/metabolism , Analysis of Variance , Animals , Anti-Anxiety Agents/pharmacology , Corticomedial Nuclear Complex/drug effects , Corticotropin-Releasing Hormone/pharmacology , Dose-Response Relationship, Drug , Drug Combinations , Male , Maze Learning/drug effects , Microinjections , Peptide Fragments/pharmacology , Rats , Reaction Time/drug effects , Receptors, Corticotropin-Releasing Hormone/agonists , Urocortins/pharmacology
19.
Brain Res Bull ; 121: 42-7, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26751815

ABSTRACT

Galanin is a peptide that is present in the central nervous system in mammals, including rodents and humans. The actions of galanin are mediated by three types of metabotropic receptors: GAL1, GAL2, and GAL3. GAL1 and GAL3 increase K(+) efflux, and GAL2 increases intracellular Ca(2+) levels. The distribution of galanin and its receptors suggests its involvement in fear and/or anxiety. The periaqueductal gray matter (PAG) is a key mediator of defensive behaviors that is both targeted by galaninergic projections and supplied with GAL1 receptors and, less markedly, GAL2 receptors. We examined the effects of galanin microinjections in the dorsal PAG (dPAG) on the performance of rats in different models of anxiety. Male Wistar rats (n=7-12) were implanted with guide cannulae in the dPAG. They received microinjections of either galanin (0.3, 1.0, and 3.0 nmol) or vehicle and were tested in the Vogel conflict test (VCT), elevated plus maze (EPM), and elevated T-maze (ETM). Rats that were tested in the ETM were further evaluated for exploratory activity in the open field test (OFT). Galanin microinjections had no effects on anxiety-like behavior in the EPM or VCT or exploratory activity in the EPM or OFT. In the ETM, however, microinjections of 3 nmol galanin impaired learned anxiety (i.e., avoidance of the open arms) without changing unconditioned fear (i.e., escape from the open arms). The present data suggest that galanin transmission in the dPAG inhibits the acquisition of anxiety-like responses in the ETM.


Subject(s)
Anxiety/drug therapy , Galanin/pharmacology , Galanin/therapeutic use , Periaqueductal Gray/drug effects , Animals , Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/therapeutic use , Avoidance Learning/drug effects , Disease Models, Animal , Dose-Response Relationship, Drug , Exploratory Behavior/drug effects , Male , Microinjections , Periaqueductal Gray/physiology , Rats , Rats, Wistar , Statistics, Nonparametric
20.
Neuropharmacology ; 99: 620-6, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26320545

ABSTRACT

Previously reported results have shown that the inhibitory effect of fluoxetine on escape behavior, interpreted as a panicolytic-like effect, is blocked by pretreatment with either the opioid receptor antagonist naloxone or the 5-HT1A receptor (5-HT1A-R) antagonist WAY100635 via injection into the dorsal periaqueductal gray matter (dPAG). Additionally, reported evidence indicates that the µ-opioid receptor (MOR) interacts with the 5-HT1A-R in the dPAG. In the present work, pretreatment of the dPAG with the selective MOR blocker CTOP antagonized the anti-escape effect of chronic fluoxetine (10 mg/kg, i.p., daily, for 21 days), as measured in the elevated T-maze (ETM) test, indicating mediation of this effect by the MOR. In addition, the combined administration of sub-effective doses of the selective MOR agonist DAMGO (intra-dPAG) and sub-effective doses of chronic as well as subchronic (7 days) fluoxetine increased avoidance and escape latencies, suggesting that the activation of MORs may facilitate and accelerate the effects of fluoxetine. The current observation that MORs located in the dPAG mediate the anti-escape effect of fluoxetine may open new perspectives for the development of more efficient and fast-acting panic-alleviating drugs.


Subject(s)
Escape Reaction/drug effects , Fluoxetine/pharmacology , Periaqueductal Gray/drug effects , Psychotropic Drugs/pharmacology , Receptors, Opioid, mu/metabolism , Analgesics, Opioid/pharmacology , Animals , Avoidance Learning/drug effects , Avoidance Learning/physiology , Catheters, Indwelling , Dose-Response Relationship, Drug , Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology , Escape Reaction/physiology , Male , Microinjections , Narcotic Antagonists/pharmacology , Neuropsychological Tests , Periaqueductal Gray/metabolism , Random Allocation , Rats, Wistar , Receptors, Opioid, mu/agonists , Receptors, Opioid, mu/antagonists & inhibitors , Somatostatin/analogs & derivatives , Somatostatin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...