Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Publication year range
1.
Bioinformation ; 19(8): 829-832, 2023.
Article in English | MEDLINE | ID: mdl-37908613

ABSTRACT

Filoviruses, categorized as World Health Organization (WHO) Risk Group 4 (RG-4) pathogens, represent significant global health risks due to their extraordinary virulence. The Filoviridae family encompasses Ebola strains such as Sudan, Zaire, Bundibugyo, Tai Forest (formerly known as Ivory Coast), Reston, and Bombali, in addition to the closely related Marburg and Ravn virus strains. Filoviruses originated from a common ancestor about 10,000 years ago and displayed remarkable consistency in genetic heterogeneity until the 20th century. However, they overcame a genetic bottleneck by mid-century. Paradoxically, this resulted in the emergence of boosted virulent strains from the 1970's onward. Filovirus research is included in the NIAID Biodefense Program and utilizes the highest level specialized protective laboratories, Biosafety Laboratory (BSL)-4. The spread of Filoviruses as well as other RG-4 pathogens within Africa poses a significant health threat increasingly both in Africa and out of Africa.

2.
Hum Vaccin Immunother ; 17(3): 759-772, 2021 03 04.
Article in English | MEDLINE | ID: mdl-32755474

ABSTRACT

TIPICO is an expert meeting and workshop that aims to provide the most recent evidence in the field of infectious diseases and vaccination. The 10th Interactive Infectious Disease TIPICO workshop took place in Santiago de Compostela, Spain, on November 21-22, 2019. Cutting-edge advances in vaccination against respiratory syncytial virus, Streptococcus pneumoniae, rotavirus, human papillomavirus, Neisseria meningitidis, influenza virus, and Salmonella Typhi were discussed. Furthermore, heterologous vaccine effects were updated, including the use of Bacillus Calmette-Guérin (BCG) vaccine as potential treatment for type 1 diabetes. Finally, the workshop also included presentations and discussion on emergent virus and zoonoses, vaccine resilience, building and sustaining confidence in vaccination, approaches to vaccine decision-making, pros and cons of compulsory vaccination, the latest advances in decoding infectious diseases by RNA gene signatures, and the application of big data approaches.


Subject(s)
Communicable Diseases , Respiratory Syncytial Virus, Human , Animals , BCG Vaccine , Humans , Spain , Vaccination
3.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-823921

ABSTRACT

Mayaro virus is an emergent alphavirus that infects humans, leading to Mayaro fever. Approximately fifty percent of infected patients develop arthritis symptoms in the recovery phase, a phase that can last up to a year. The literature about Mayaro virus infection and its immune response is scarce, which may hamper the development of treatment strategies. We summarize changes in cytokines and chemokines in the acute and recovery phase in Mayaro virus infected patients, and relate this molecular characterization with the immune response. VEGF and IL-12/p70 show pronounced changes in patients in the acute phase, suggesting the development of cellular immunity and Th1 response. IL-6, IL-7, CXCL8/IL-8, IL-13, IL-17, and IFN-γ are elevated in patients with arthritis symptoms in the long-term recovery phase, which may be related to the continuous inflammatory process, a possible Th2 inhibiting and promoting Th17 process. Although few studies discuss the issue, with a small number of patients and different backgrounds, inflammatory and immune response and manifestations seem to be closely linked. This information may help to develop the appropriate treatment strategies in Mayaro virus infection. Therefore, we analyzed and summarized data available in literature.

4.
Virol J ; 16(1): 41, 2019 04 02.
Article in English | MEDLINE | ID: mdl-30940162

ABSTRACT

BACKGROUND: Piscine orthoreovirus (PRV) is an emergent virus in salmon aquaculture belonging to the family Reoviridae. PRV is associated with a growing list of pathological conditions including heart and skeletal inflammation (HSMI) of farmed Atlantic salmon. Despite widespread PRV infection in commercially farmed Atlantic salmon, information on PRV prevalence and on the genetic sequence variation of PRV in Atlantic salmon on the north Pacific Coast is limited. METHODS: Feral Atlantic salmon caught in Washington State and British Columbia following a large containment failure at a farm in northern Puget Sound were sampled. Fish tissues were tested for PRV by RT-qPCR assay for segment L1 and conventional RT-PCR for PRV segment S1. The PCR products were sequenced and their relationship to PRV strains in GenBank was determined using phylogenetic analysis and nucleotide and amino acid homology comparisons. RESULTS: Following the escape of 253,000 Atlantic salmon from a salmon farm in Washington State, USA, 72/73 tissue samples from 27 Atlantic salmon captured shortly after the escape tested PRV-positive. We estimate PRV-prevalence in the source farm population at 95% or greater. The PRV found in the fish was identified as PRV sub-genotype Ia and very similar to PRV from farmed Atlantic salmon in Iceland. This correlates with the source of the fish in the farm. Eggs of infected fish were positive for PRV indicating the possibility of vertical transfer and spread with fish egg transports. CONCLUSIONS: PRV prevalence was close to 100% in farmed Atlantic salmon that were caught in Washington State and British Columbia following a large containment failure at a farm in northern Puget Sound. The PRV strains present in the escaped Atlantic salmon were very similar to the PRV strain reported in farmed Atlantic salmon from the source hatchery in Iceland that was used to stock commercial aquaculture sites in Washington State. This study emphasizes the need to screen Atlantic salmon broodstock for PRV, particularly where used to supply eggs to the global Atlantic salmon farming industry thereby improving our understanding of PRV epidemiology.


Subject(s)
Fish Diseases/virology , Orthoreovirus/genetics , Reoviridae Infections/veterinary , Salmo salar/virology , Animals , Aquaculture , British Columbia/epidemiology , Genotype , Heart/virology , Inflammation , Orthoreovirus/isolation & purification , Orthoreovirus/pathogenicity , Phylogeny , Polymerase Chain Reaction , Prevalence , Reoviridae Infections/epidemiology , Washington/epidemiology
5.
Proc Natl Acad Sci U S A ; 114(35): 9397-9402, 2017 08 29.
Article in English | MEDLINE | ID: mdl-28808019

ABSTRACT

In host-pathogen arms races, increases in host resistance prompt counteradaptation by pathogens, but the nature of that counteradaptation is seldom directly observed outside of laboratory models. The best-documented field example is the coevolution of myxoma virus (MYXV) in European rabbits. To understand how MYXV in Australia has continued to evolve in wild rabbits under intense selection for genetic resistance to myxomatosis, we compared the phenotypes of the progenitor MYXV and viral isolates from the 1950s and the 1990s in laboratory rabbits with no resistance. Strikingly, and unlike their 1950s counterparts, most virus isolates from the 1990s induced a highly lethal immune collapse syndrome similar to septic shock. Thus, the next step in this canonical case of coevolution after a species jump has been further escalation by the virus in the face of widespread host resistance.


Subject(s)
Myxoma virus/genetics , Poxviridae Infections/veterinary , Rabbits/virology , Tumor Virus Infections/veterinary , Animals , Australia/epidemiology , Biological Evolution , Myxoma virus/pathogenicity , Poxviridae Infections/epidemiology , Poxviridae Infections/pathology , Time Factors , Tumor Virus Infections/epidemiology , Tumor Virus Infections/pathology , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...