Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Eco Environ Health ; 3(3): 308-316, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39258237

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) can pass through the placenta and adversely affect fetal development. However, there is a lack of comparison of legacy and emerging PFAS levels among different biosamples in pregnant women and their offspring. This study, based on the Shanghai Maternal-Child Pairs Cohort, analyzed the concentrations of 16 PFAS in the maternal serum, cord serum, and breast milk samples from 1,076 mother-child pairs. The placental and breastfeeding transfer efficiencies of PFAS were determined in maternal-cord and maternal-milk pairs, respectively. The binding affinities of PFAS to five transporters were simulated using molecular docking. The results suggested that PFAS were frequently detected in different biosamples. The median concentration of perfluorooctane sulfonate (PFOS) was the highest at 8.85 ng/mL, followed by perfluorooctanoic acid (PFOA) at 7.13 ng/mL and 6:2 chlorinated polyfluorinated ether sulfonate at 5.59 ng/mL in maternal serum. The median concentrations of PFOA were highest in cord serum (4.23 ng/mL) and breast milk (1.08 ng/mL). PFAS demonstrated higher placental than breastfeeding transfer efficiencies. The transfer efficiencies and the binding affinities of most PFAS to proteins exhibited alkyl chain length-dependent patterns. Furthermore, we comprehensively assessed the estimated daily intakes (EDIs) of PFAS in breastfeeding infants of different age groups and used the hazard quotient (HQ) to characterize the potential health risk. EDIs decreased with infant age, and PFOS had higher HQs than PFOA. These findings highlight the significance of considering PFAS exposure, transfer mechanism, and health risks resulting from breast milk intake in early life.

2.
Environ Res ; 263(Pt 1): 119978, 2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39278581

ABSTRACT

Since the addition of perfluorooctane sulfonate (PFOS) to the Stockholm Convention in 2009, it became imperative to reassess the distribution and ecological risk of per- and polyfluoroalkyl substances (PFAS) in coastal sediments over the past decade as sediment records the history of pollutants from human activities. To achieve this, sediments were collected in 2009 and 2021 from China's coastal regions. Despite the consistent geographical pattern where the highest concentrations of ∑PFAS were found in the Yellow Sea, temporal changes have emerged. During the studied period, ∑PFAS levels experienced an increase in the East China Sea while concurrently witnessing a decrease in the South China Sea. Of significance, emerging PFAS compounds displayed not only rising concentrations but also a broader array, pointing towards their intensified production and utilization within China. Alarmingly, PFOS levels in sediments taken from the East China Sea maintained a consistently high ecological risk status over the last ten years. Significant correlations were found between long-chain PFAS and organic carbon content. Comparisons between datasets from 2009 to 2021 uncovered a shifting ecological risk landscape, with heightened concerns for PFOA in the East China Sea, while PFOS-associated risks appeared to diminish in the South China Sea-potentially reflecting the transition to alternative PFAS chemicals. The research reinforces the importance of continuous monitoring and emphasizes the urgent necessity for deeper exploration into the environmental implications and hazards posed by emerging PFAS.

3.
Water Res ; 265: 122256, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39186864

ABSTRACT

Per- and polyfluoroalkyl substances (PFASs) are prevalently present in oceans, posing potential health risks to organisms and humans. However, information of PFAS distribution in remote open oceans is limited. In the Kuroshio Extension region of Northwest Pacific Ocean (6 stations), samples of 84 seawater (0-5800 m), 9 sediments, and 9 organisms were taken, and 25, 10, and 15 out of 29 PFASs were identified, respectively, with perfluorooctanoic acid (PFOA) and perfluorooctane sulfonates (PFOS) as the most dominant PFASs. In seawater, ΣPFASs concentration decreased from the Kuroshio region (4.47 ng/L) to the Oyashio region (3.15 ng/L), and decreased with increasing seawater depth under the function of biological and physical pumps. Additionally, 12 precursors and emerging PFASs, including perfluorooctane sulfonamide (FOSA, 0.20 ng/L), were detected. In sediment, PFASs (5.92-12.97 pg/g) were identified at depths exceeding 5000 m, including 3 precursors (e.g., FOSA, 0.82 pg/g). ΣPFASs contents were 27.12, 31.47 and 36.97 ng/g (dry weight) in brown algae (Phaeophyceae), barnacles (Balanus), and lanternfish (Myctophiformes), respectively, in which two precursors (e.g., FOSA, 0.09-0.12 ng/g) were also identified. A correlation with the trophic position was found for PFOA bioaccumulation. These findings provide useful information on PFAS distribution in the global open ocean environments.


Subject(s)
Alkanesulfonic Acids , Environmental Monitoring , Fluorocarbons , Seawater , Water Pollutants, Chemical , Pacific Ocean , Water Pollutants, Chemical/analysis , Animals , Seawater/chemistry , Bioaccumulation , Geologic Sediments/chemistry , Caprylates
4.
Environ Sci Technol ; 58(36): 16153-16163, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39178241

ABSTRACT

Electronic waste is an emerging source of per- and polyfluoroalkyl substance (PFAS) emissions to the environment, yet the contribution from hazardous recycling practices in the South Asian region remains unclear. This study detected 41 PFAS in soil samples from e-waste recycling sites in Pakistan and the total concentrations were 7.43-367 ng/g dry weight (dw) (median: 37.7 ng/g dw). Trifluoroacetic acid (TFA) and 6:2 fluorotelomer sulfonic acid emerged as the dominant PFAS, constituting 49% and 13% of the total PFAS concentrations, respectively. Notably, nine CF3-containing emerging PFAS were identified by the high-resolution mass spectrometry (HRMS)-based screening. Specifically, hexafluoroisopropanol and bistriflimide (NTf2) were consistently identified across all the samples, with quantified concentrations reaching up to 854 and 90 ng/g dw, respectively. This suggests their potential association with electronic manufacturing and recycling processes. Furthermore, except for NTf2, all the identified emerging PFAS were confirmed as precursors of TFA with molar yields of 8.87-40.0% by the TOP assay validation in Milli-Q water. Overall, this study reveals significant emission of PFAS from hazardous e-waste recycling practices and emphasizes the identification of emerging sources of TFA from precursor transformation, which are essential for PFAS risk assessment.


Subject(s)
Electronic Waste , Recycling , Trifluoroacetic Acid , Trifluoroacetic Acid/chemistry , Environmental Monitoring
5.
Bioresour Technol ; 408: 131157, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39059588

ABSTRACT

The present study successfully synthesized a novel biochar adsorbent (M-L-BC) using litchi seed modified with zinc chloride for PFASs removal in water. M-L-BC greatly enhanced removal of all examined PFASs (>95 %) as compared to the pristine biochar (<40 %). The maximum adsorption capacity was observed for PFOS, reaching 29.6 mg/g. Adsorption kinetics of PFASs followed the pseudo-second-order model (PSO), suggesting the predominance of chemical adsorption. Moreover, characterization and density functional theory (DFT) calculations jointly revealed involvement of surface complexation, electrostatic interactions, hydrogen bonding, and hydrophobic interactions in PFAS adsorption. Robust PFAS removal was demonstrated for M-L-BC across a wide range of pH (3-9), and coexisting ions had limited impact on adsorption of PFASs except PFBA. Furthermore, M-L-BC showed excellent performance in real water samples and retained reusability after five cycles of regeneration. Overall, M-L-BC represents a promising and high-quality adsorbent for efficient and sustainable removal of PFASs from water.


Subject(s)
Charcoal , Chlorides , Litchi , Seeds , Water Pollutants, Chemical , Water Purification , Zinc Compounds , Charcoal/chemistry , Adsorption , Water Pollutants, Chemical/isolation & purification , Seeds/chemistry , Water Purification/methods , Chlorides/chemistry , Zinc Compounds/chemistry , Litchi/chemistry , Kinetics , Hydrogen-Ion Concentration , Fluorocarbons/chemistry , Water/chemistry
6.
J Hazard Mater ; 475: 134879, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38876021

ABSTRACT

Legacy and emerging PFAS in the air, wastewater, and sludge from two wastewater treatment plants (WWTPs) in Tianjin were investigated in this study. The semi-quantified nontarget PFAS accounted for up to 99 % of Æ©PFAS in the gas phase, and aqueous film-forming foam (AFFF)-related PFAS were predominant in wastewater (up to 2250 ng/L, 79 % of Æ©PFAS) and sludge (up to 4690 ng/g, 95 % of Æ©PFAS). Furthermore, field-derived air particle-gas, air-wastewater, and wastewater particle-wastewater distribution coefficients of emerging PFAS are characterized, which have rarely been reported. The emerging substitute p-perfluorous nonenoxybenzenesulfonate (OBS) and AFFF-related cationic and zwitterionic PFAS show a stronger tendency to partition into particle phase in air and wastewater than perfluorooctane sulfonic acid (PFOS). The estimated total PFAS emissions from the effluent and sludge of WWTP A were 202 kg/y and 351 kg/y, respectively. While the target PFAS only accounted for 20-33 % of the total emissions, suggesting a significant underestimation of environmental releases of the nontarget PFAS and unknown perfluoroalkyl acid precursors through the wastewater and sludge disposal. Overall, this study highlights the importance of comprehensive monitoring and understanding the behavior of legacy and emerging PFAS in wastewater systems, and fills a critical gap in our understanding of PFAS exposure.

7.
J Hazard Mater ; 466: 133501, 2024 03 15.
Article in English | MEDLINE | ID: mdl-38246060

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) can pass through the placental barrier and pose health risks to fetuses. However, exposure and transplacental transfer patterns of emerging PFAS remain unclear. Here, 24 PFAS were measured in paired maternal whole blood (n = 228), umbilical cord whole blood (n = 119) and serum (n = 120). Orthogonal partial least-squares discriminant analysis (OPLS-DA) was used to differentiate PFAS between different matrices. The transplacental transfer (TPT) of PFAS was calculated using cord to maternal whole blood concentration ratios. PFOS and PFOA were still the dominant PFAS in maternal samples. The emerging PFAS had higher TPT than PFOS and PFOA. Moreover, PFAS with the same chain length but different functional groups and C-F bonds showed different TPT, such as PFOS and PFOSA (C8, median: 0.090 vs. 0.305, p < 0.05) and PFHxS and 4:2 FTS (C6, median: 0.220 vs. 1.190, p < 0.05). A significant sex difference in 4:2 FTS (median: boys 1.250, girls 1.010, p < 0.05) were found. Furthermore, we observed a significant U-shaped trend for the TPT of carboxylates with increasing carbon chain length. PFAS showed a compound-specific transfer through placental barrier and a compound-specific distribution between different matrices in this study.


Subject(s)
Alkanesulfonic Acids , Environmental Pollutants , Fluorocarbons , Humans , Male , Pregnancy , Female , Cohort Studies , Placenta , Fetal Blood/chemistry , Fluorocarbons/analysis , China , Alkanesulfonic Acids/analysis , Environmental Pollutants/analysis
8.
J Hazard Mater ; 465: 133270, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38113743

ABSTRACT

The increasing applications of emerging per- and polyfluoroalkyl substances (PFAS) have raised global concern. However, the release of emerging PFAS from the fluorochemical industry remains unclear. Herein, the occurrence of 48 emerging and legacy PFAS in wastewater from 10 fluorochemical manufacturers and mass flows of PFAS in a centralized wastewater treatment plant were investigated. Their distribution and ecological risk in neighboring riverine water were also evaluated. In wastewater from fluorochemical manufacturers, PFAS concentrations were in the range of 14,700-5200,000 ng/L and 2 H,2 H-perfluorooctanoic acid (6:2 FTCA), perfluorooctanoic acid (PFOA), N-ethyl perfluorooctane sulfonamide (N-EtFOSA), and 1 H,1 H,2 H,2 H-perfluorodecanesulfonate (8:2 FTS) were the major PFAS detected. Several PFAS displayed increased mass flows after wastewater treatment, especially PFOA and 6:2 FTCA. The mass flows of PFAS increased from - 20% to 233% after the activated sludge system but decreased by only 0-13% after the activated carbon filtration. In riverine water, PFAS concentrations were in the range of 5900-39,100 ng/L and 6:2 FTCA, 1 H,1 H,2 H,2 H-perfluorodecyl phosphate monoester (8:2 monoPAP), 1 H,1 H,2 H,2 H-perfluorooctyl phosphate monoester (6:2 monoPAP), PFOA, and perfluorohexanoic acid (PFHxA) were the major PFAS detected. PFOA and 6:2 FTCA exhibited comparable hazard quotients for ecological risk. Current wastewater treatment processes cannot fully remove various PFAS discharged by fluorochemical manufacturers, and further investigations on their risk are needed for better chemical management.

9.
J Hazard Mater ; 464: 133018, 2024 02 15.
Article in English | MEDLINE | ID: mdl-37984148

ABSTRACT

Polyfluoroalkyl phosphate esters (PAPs) are emerging substitutes for legacy per- and polyfluoroalkyl substances (PFAS), which are widely applied in consumer products and closely related to people's daily lives. Increasing concern has been raised about the safety of PAPs due to their metabolism into perfluorooctanoic acid (PFOA) and other perfluorinated carboxylates (PFCAs) in vivo. This review summarizes the current knowledge on PAPs and highlights the knowledge gaps. PAPs dominated the PFAS profiles in wastewater, sludge, household dust, food-contact materials, paper products, paints, and cosmetics. They exhibit biomagnification due to their higher levels in top predators. PAPs have been detected in human blood worldwide, with the highest mean levels being found in the United States (1.9 ng/mL) and China (0.4 ng/mL). 6:2 diPAP is the predominant PAP among all identified matrices, followed by 8:2 diPAP. Toxicokinetic studies suggest that after entering the body, most PAPs undergo biotransformation, generating phase Ⅰ (i.e., PFCAs), phase II, and intermediate products with toxicity to be verified. Several epidemiological and toxicological studies have reported the antiandrogenic effect, estrogenic effect, thyroid disruption, oxidative damage, and reproductive toxicity of PAPs. More research is urgently needed on the source and fate of PAPs, human exposure pathways, toxicity other than reproductive and endocrine systems, toxic effects of metabolites, and mixed exposure effects.


Subject(s)
Fluorocarbons , Humans , Fluorocarbons/toxicity , Fluorocarbons/metabolism , Organophosphates/toxicity , Biotransformation , Carboxylic Acids , Phosphates
10.
Environ Pollut ; 338: 122663, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37783416

ABSTRACT

As traditional per and polyfluoroalkyl substances (PFAS) are phased out, emerging PFAS are being developed and widely used. However, little is known about their properties, including persistence, bioaccumulation, and toxicity (PBT). Screening for emerging PFAS relies on available chemical inventory databases. Here, we compiled a database of emerging PFAS obtained from nontargeted analysis and assessed their PBT properties using machine learning models, including qualitative graph attention networks, Insubria PBT Index and quantitative EAS-E Suite, VEGA, and ProTox-II platforms. Totally 282 homologues (21.8% of emerging PFAS) were identified as PBT based on the combined qualitative and quantitative prediction, in which 140 homologues were detected in industrial and nonbiological/biological samples, belong to four categories, i.e. modifications of perfluoroalkyl carboxylic acids, perfluoroalkane sulfonamido substances, fluorotelomers and modifications of perfluoroalkyl sulfonic acids. Approximately 10.1% of prioritized emerging PFAS were matched to chemical vendors and 19.6% to patents. Aqueous film-forming foams and fluorochemical factories are the predominant sources for prioritized emerging PFAS. The database and screening results can update the assessment related to legislative bodies such as the US Toxic Substances Control Act and the Stockholm Convention. The combined qualitative and quantitative machine learning models can provide a methodological tool for prioritizing other emerging organic contaminants.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Water Pollutants, Chemical , Bioaccumulation , Fluorocarbons/analysis , Water , Machine Learning , Sulfonic Acids , Water Pollutants, Chemical/analysis
11.
Environ Sci Technol ; 57(48): 20127-20137, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37800548

ABSTRACT

Wastewater treatment plants (WWTPs) are typical point sources of per- and polyfluoroalkyl substances (PFAS) released into the environment. The suspect and nontarget screening based on gas chromatography or liquid chromatography-high resolution mass spectrometry were performed on atmosphere, wastewater, and sludge samples collected from two WWTPs in Tianjin to discover emerging PFAS and their fate in this study. A total of 40 PFAS (14 neutral and 26 ionic) and 64 PFAS were identified in the atmosphere and wastewater/sludge, respectively, among which 5 short-chain perfluoroalkyl sulfonamide derivatives, 4 ionic PFAS, and 15 aqueous film-forming foam-related cationic or zwitterionic PFAS have rarely or never been reported in WWTPs in China. Active air sampling is more conducive to the enrichment of emerging PFAS, while passive sampling is inclined to leave out some ultrashort-chain PFAS or unstable transformation intermediates. Moreover, most precursors and intermediates could be enriched in the atmosphere at night, while the PFAS associated with aerosols with high water content or particles enter the atmosphere easily during the day. Although most emerging PFAS could not be eliminated efficiently in conventional treatment units, deep bed filtration and advanced oxidation processes could partly remove some emerging precursors.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Water Purification , Wastewater , Sewage/analysis , Water Pollutants, Chemical/analysis , Fluorocarbons/analysis , Water , China
12.
Chemosphere ; 344: 140360, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37816443

ABSTRACT

Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are a large category of crucial environmental contaminants of global concerns. There are limited data on PFAS in surface water around international airports in China. The present study investigated the concentrations, distributions, and sources of emerging and legacy PFAS in surface waters around Beijing Capital International Airport (BC), Shanghai Pudong International Airport (SP), and Guangzhou Baiyun International Airport (GB) in China. Twenty-seven target compounds were quantified. The Σ27PFAS concentrations ranged from 19.0 to 62.8 ng/L (mean 36.1 ng/L) in BC, 25.6-342 ng/L (mean 76.0 ng/L) in SP, 7.35-72.7 ng/L (mean 21.6 ng/L) in GB. The dominant compound was perfluorooctanoic acid (PFOA), which accounted for an average of 27% (5%-65%) of the Σ27PFAS concentrations. The alternatives with -C6F12- group had detection frequencies ranging from 72% to 100%. The partition coefficient results indicate that the longer chain PFAS (C > 8) tend to be more distributed in the particle phase. Fifty suspect and nontarget PFAS were identified. In GB, 44 PFAS were identified, more than SP of 39 and BC of 38. An ultra short-chain (C = 2) precursor, N-methylperfluoroethanesulfonamido acetic acid (MeFEtSAA), was identified and semi-quantified. Domestic wastewater discharges might be the main sources around BC, while industrial and aviation activities might be the main sources around SP and GB.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Water Pollutants, Chemical , Water , Airports , China , Water Pollutants, Chemical/analysis , Fluorocarbons/analysis , Alkanesulfonic Acids/analysis
13.
J Hazard Mater ; 460: 132411, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37666171

ABSTRACT

The objectives of this study were to identify both legacy and emerging per- and polyfluoroalkyl substances (PFAS) from three typical fluoridated industrial parks (FIPs) in China, and to assess their environmental occurrence and fate. Complementary suspect target and nontarget screening were implemented, and a total of 111 emerging PFAS were identified. Based on the multi-mass scale analysis, 25 emerging PFAS were identified for the first time, including 24 per- and polyfluoroalkyl ether carboxylic acids (PFECAs) and 1 ultra-short chlorinated perfluoroalkyl carboxylic acids (Cl-PFCAs, C2), with a maximum percentage of 48.2 % in nontarget PFAS (exclude target PFAS). The composition of PFAS identified in different media was influenced by functional groups, carbon chain length, substituents and ether bond insertion, with poly-hydrogen substituted being preferably in water and a more diverse pattern of PFECAs in sediments. The patterns of PFAS homologs revealed distinct differences among the three typical FIPs in the shift of PFAS production patterns. The C4-PFAS and short-chain carboxylic acids (≤C6) were the main PFAS in the Fuxin and Changshu, respectively. In contrast, perfluorooctanoic acid (PFOA, C8) remained dominant in Zibo, and the highest point concentrations in water and sediment were up to 706 µg/L and 553 µg/g, respectively.

14.
J Hazard Mater ; 460: 132419, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37651931

ABSTRACT

In recent years, shorter-chain fluorinated compounds have been manufactured as alternatives to legacy per- and polyfluoroalkyl substances (PFAS) after a global ban on some long-chain PFAS. This study is the first to investigate the degradability of emerging PFAS by an electrochemical plug flow reactor (EPFR). Ten different emerging PFAS, representing classes of fluorotelomer alcohol, perfluoroalkyl ether carboxylate, polyfluoroalkyl ethersulfonic acids, perfluoroalkyl ether/polyether carboxylates, perfluoroether sulfonate, N-alkyl perfluoroalkylsulfonamido carboxylate, fluoroalkyl phosphonic acid, and perfluoro alkane sulfonamide were investigated. The process kinetics was performed. The degradation of parent compounds increased with increasing retention time (RT). At 45.2 min of RT, the degradation of parent compounds ranged between 68%-100% with a current density of 17.2 mA/cm2. A linear increase in pseudo-first order rate constants was observed for all PFAS with increasing current density from 5.7 to 28.7 mA/cm2 (R2 > 0.91). The effect of pH, natural organic matter, and bicarbonate on the degradation, defluorination, and fluorine mass balance are reported. Alkaline pH (11) caused a decrease in degradation for all PFAS. While the presence of natural organic matter (NOM) significantly decreased the degradation and defluorination processes, the presence of bicarbonate at all studied concentrations (25, 50, and 100 mg/L) did not affect the process efficiency. The defluorination reduced to 34% from 81% with 15 mg/L NOM. The unknown/undetected fluorine fraction also increased in the presence of 15 mg/L NOM indicating the formation of NOM-PFAS complexes. Additionally, C2-C8 perfluoro carboxylic acids (PFCAs), one perfluoro sulfonic acid (PFSA), two H-PFCAs, and 4:2 fluorotelomer sulfonate (FTS) were identified as degradation byproducts in suspect screening. The electrical energy per order for PFAS ranged between 1.8 and 19.4 kWh/m3. This study demonstrates that emerging types of PFAS can potentially be degraded using an EPFR with relatively low electrical energy requirements.

15.
Environ Res ; 233: 116495, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37364627

ABSTRACT

Per-and polyfluoroalkyl substances (PFASs) have received great attention due to their persistence, bioaccumulation and toxicity. Various activated carbons (ACs) exhibit wide variability in adsorptive performance towards PFASs. In order to gain a systematic understanding of adsorptive removal of legacy and emerging PFASs by ACs, the adsorption of ten PFASs on various ACs was comprehensively investigated. Results showed that granular activated carbon-1 (GAC-1) and powdered activated carbon-1 (PAC-1) removed more than 90% of all target PFASs. Particle size, surface charge, and micropores quantity of ACs were closely related to their performance for PFASs removal. Electrostatic interaction, hydrophobic interaction, surface complexation and hydrogen bonding were the adsorption mechanisms, with hydrophobic interaction being the predominant adsorptive force. Physical and chemical adsorption were both involved in PFAS adsorption. The removal rates of PFASs by GAC-1 decreased from 93%-100% to 15%-66% in the presence of 5 mg/L fulvic acid (FA). GAC was able to remove more PFASs under acidic medium, whereas PAC removed hydrophobic PFASs better under the neutral medium. The removal rates of PFASs by GAC-3 increased significantly from 0%-21% to 52%-97% after being impregnated with benzalkonium chlorides (BACs), demonstrating the superiority of this modification method. Overall, this study provided theoretical support for removing PFASs from water phase with ACs.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Charcoal/chemistry , Adsorption , Water Pollutants, Chemical/analysis , Fluorocarbons/analysis , Water
16.
Arch Toxicol ; 97(5): 1195-1245, 2023 05.
Article in English | MEDLINE | ID: mdl-36947184

ABSTRACT

Cardiovascular disease (CVD) poses the leading threats to human health and life, and their occurrence and severity are associated with exposure to environmental pollutants. Per- and polyfluoroalkyl substances (PFAS), a group of widely used industrial chemicals, are characterized by persistence, long-distance migration, bioaccumulation, and toxicity. Some PFAS, particularly perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA) and perfluorohexanesulfonic acid (PFHxS), have been banned, leaving only legacy exposure to the environment and human body, while a number of novel PFAS alternatives have emerged and raised concerns, such as polyfluoroalkyl ether sulfonic and carboxylic acid (PFESA and PFECA) and sodium p-perfluorous nonenoxybenzene sulfonate (OBS). Overall, this review systematically elucidated the adverse cardiovascular (CV) effects of legacy and emerging PFAS, emphasized the dose/concentration-dependent, time-dependent, carbon chain length-dependent, sex-specific, and coexposure effects, and discussed the underlying mechanisms and possible prevention and treatment. Extensive epidemiological and laboratory evidence suggests that accumulated serum levels of legacy PFAS possibly contribute to an increased risk of CVD and its subclinical course, such as cardiac toxicity, vascular disorder, hypertension, and dyslipidemia. The underlying biological mechanisms may include oxidative stress, signaling pathway disturbance, lipid metabolism disturbance, and so on. Various emerging alternatives to PFAS also play increasingly prominent toxic roles in CV outcomes that are milder, similar to, or more severe than legacy PFAS. Future research is recommended to conduct more in-depth CV toxicity assessments of legacy and emerging PFAS and explore more effective surveillance, prevention, and treatment strategies, accordingly.


Subject(s)
Alkanesulfonic Acids , Cardiovascular Diseases , Environmental Pollutants , Fluorocarbons , Male , Female , Humans , Alkanesulfonic Acids/toxicity , Alkanesulfonates , Environmental Pollutants/toxicity , Fluorocarbons/toxicity , Cardiovascular Diseases/chemically induced
17.
Anal Bioanal Chem ; 415(3): 457-470, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36383228

ABSTRACT

Legacy and emerging per- and polyfluoroalkyl substances (PFAS) have attracted growing attention due to their potential adverse effects on humans. We developed a method to simultaneously determine thirty-three PFAS (legacy PFAS, precursors, and alternatives) in human plasma and serum using solid phase extraction coupled to ultra-performance liquid chromatography-tandem mass spectrometry (SPE-UPLC-MS/MS). The method yielded good linearity (>0.995) and excellent limits of detection (LODs) (0.0005~0.012 ng mL-1 in plasma and 0.002~0.016 ng mL-1 in serum). The relative recoveries ranged from 80.1 to 116%, with intra- and inter-day precision less than 14.3%. The robustness of this method has been tested continuously for 10 months (coefficients of variation <14.9%). Our method was successfully applied to the PFAS analysis of 42 real human plasma and serum samples collected from women. The proposed method is attractive for the biomonitoring of multi-class PFAS in human health risk assessment and epidemiological studies.


Subject(s)
Fluorocarbons , Tandem Mass Spectrometry , Humans , Female , Chromatography, Liquid , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Serum/chemistry , Fluorocarbons/analysis , Solid Phase Extraction/methods
18.
J Hazard Mater ; 443(Pt A): 130163, 2023 02 05.
Article in English | MEDLINE | ID: mdl-36272370

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are persistent organic pollutants widely contaminated and exposed in humans. China is a major manufacturer and consumer of these chemicals. To characterize the occurrences, geographical variations, temporal trends, and exposure risks of legacy and emerging PFAS in perinatal women and their children in China, 30 PFAS were measured in 100 pooled human milk samples consisting of 3531 individual samples collected from 100 sites in 24 provinces during the 2017-2020 National Human Milk Survey. Linear-perfluorooctanoic acid (L-PFOA, 151 pg/mL) and linear-perfluorooctane sulfonate (L-PFOS, 57.0 pg/mL) were the predominant PFAS in human milk, followed by 6:2 chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFESA, 25.9 pg/mL). The geographic variation trend of PFOA was different from PFOS and Cl-PFESA, and a special geographic trend of perfluoropentanesulfonate (PFPeS) was observed. Comparison of National Human Milk surveys from different periods showed a sharp decrease of PFAS exposure in old industrial areas including Shanghai and Liaoning, but higher PFAS exposure observed in Shandong and Hubei indicated a possible domestic shift of PFAS manufacture to these areas. Worldwide comparison of PFAS in human milk indicated high PFOA exposure in China. Risk assessments for mothers and breastfeeding infants showed that PFAS exposure is of concern in China.


Subject(s)
Alkanesulfonic Acids , Environmental Pollutants , Fluorocarbons , Infant , Child , Humans , Female , Fluorocarbons/analysis , Milk, Human/chemistry , China , Alkanesulfonic Acids/analysis , Alkanesulfonates , Ethers , Environmental Pollutants/analysis
19.
Environ Pollut ; 309: 119739, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35817301

ABSTRACT

Research on per- and polyfluoroalkyl substances (PFAS) in freshwater ecosystems has focused primarily on legacy compounds and little is still known on the presence of emerging PFAS. Here, we investigated the occurrence of 60 anionic, zwitterionic, and cationic PFAS in a food web of the St. Lawrence River (Quebec, Canada) near a major metropolitan area. Water, sediments, aquatic vegetation, invertebrates, and 14 fish species were targeted for analysis. Levels of perfluorobutanoic acid (PFBA) in river water exceeded those of perfluorooctanoic acid (PFOA) or perfluorooctane sulfonate (PFOS), and a zwitterionic betaine was observed for the first time in the St. Lawrence River. The highest mean PFAS concentrations were observed for the benthopelagic top predator Smallmouth bass (Micropterus dolomieu, Σ60PFAS âˆ¼ 92 ± 34 ng/g wet weight whole-body) and the lowest for aquatic plants (0.52-2.3 ng/g). Up to 33 PFAS were detected in biotic samples, with frequent occurrences of emerging PFAS such as perfluorobutane sulfonamide (FBSA) and perfluoroethyl cyclohexane sulfonate (PFECHS), while targeted ether-PFAS all remained undetected. PFOS and long-chain perfluorocarboxylates (C10-C13 PFCAs) dominated the contamination profiles in biota except for insects where PFBA was predominant. Gammarids, molluscs, and insects also had frequent detections of PFOA and fluorotelomer sulfonates, an important distinction with fish and presumably due to different metabolism. Based on bioaccumulation factors >5000 and trophic magnification factors >1, long-chain (C10-C13) PFCAs, PFOS, perfluorodecane sulfonate, and perfluorooctane sulfonamide qualified as very bioaccumulative and biomagnifying. Newly monitored PFAS such as FBSA and PFECHS were biomagnified but moderately bioaccumulative, while PFOA was biodiluted.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Water Pollutants, Chemical , Alkanesulfonates/analysis , Alkanesulfonic Acids/analysis , Animals , Bioaccumulation , Ecosystem , Environmental Monitoring , Fishes/metabolism , Fluorocarbons/analysis , Food Chain , Rivers , Sulfonamides/metabolism , Water/analysis , Water Pollutants, Chemical/analysis
20.
Ecotoxicol Environ Saf ; 239: 113691, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35643033

ABSTRACT

Emerging per- and polyfluoroalkyl substances (PFAS) alternatives are increasingly used in daily life. Although legacy PFAS have been associated with miscarriage in previous studies, it remains unknown whether exposure to emerging and legacy PFAS has any impact on the risk of unexplained recurrent spontaneous abortion (URSA). We conducted a case-control study with 464 URSA cases who had at least 2 unexplained miscarriages and 440 normal controls who had at least one normal livebirth. Concentrations of 21 PFAS in plasma, including three emerging PFAS alternatives, eight linear and branched PFAS isomers, four short-chain PFAS, and six legacy PFAS, were measured by ultra-performance liquid chromatography coupled with a tandem mass spectrometry (UPLC-MS/MS). Multiple logistic regression was applied to evaluate the relationship between PFAS and URSA risk. Perfluorooctanoic acid (PFOA, median: 6.18 ng/mL), perfluorooctane sulfonate (PFOS, median: 4.10 ng/mL), and 6:2 chlorinated perfluoroalkyl ether sulfonic acid (6:2 Cl-PFESA, median: 2.27 ng/mL) were the predominant PFAS in the controls. Exposure to 6:2 Cl-PFESA [adjusted odds ratio (aOR) = 1.18 (95% CI: 1.00, 1.39)] and hexafluoropropylene oxide dimer acid (HFPO-DA) [aOR = 1.35 (95% CI: 1.15, 1.59)] were significantly associated with increased risks of URSA. Women with older age (>30 years old) had a stronger association between PFAS and URSA. Our results suggest that emerging PFAS alternatives may be an important risk factor for URSA.


Subject(s)
Abortion, Spontaneous , Alkanesulfonic Acids , Fluorocarbons , Abortion, Spontaneous/chemically induced , Adult , Case-Control Studies , Chromatography, Liquid , Female , Fluorocarbons/analysis , Fluorocarbons/toxicity , Humans , Pregnancy , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL