Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Environ Pollut ; 357: 124391, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38906404

ABSTRACT

The Beijing-Tianjin-Hebei (BTH) is one of the key areas with PM2.5 air pollution in China. Driven by the PM2.5 target accessibility of the Interim Target-1 (IT-1) by World Health Organization (WHO) and China's carbon neutrality, this study explored and quantified the contribution of climate change and anthropogenic emission to future PM2.5 in the region. The experiments considered future climate change scenarios RCP8.5, RCP4.5, and RCP2.6 with the baseline (Base) and reduced emission (EIT1) inventories in 2030, and RCP4.5 climate scenario with 3 emission inventories in 2050, the additional strong control emission scenario called Best-Health-Effect (BHE). Under various climate scenarios, the future air quality research modelling system projected annual PM2.5 concentrations nearing 35 µg/m3 in 2030. However, considering only the effect of emission reduction, the annual PM2.5 concentrations under EIT1 emission scenario is about 35% less than under Base scenario in different key years. The future PM2.5 concentrations are highly related to anthropogenic emission from human activities, while climate change by 2030 or 2050 has little impact on future air quality over the BTH region. The BHE emission reduction is significantly required for China to meet the new PM2.5 guideline value of WHO in the future.

2.
J Environ Manage ; 350: 119598, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38000272

ABSTRACT

The combined effects of changes in climate and land use and land cover can lead to a decrease in soil organic carbon, potentially affecting soil fertility and agricultural output. The study aimed to evaluate the dynamics of soil organic carbon under various extreme climate and land use and land cover scenarios. The data on land use types and extreme climate indices between 2015 and 2070 were, respectively, sourced from the IPCC and the European Copernicus Climate Change Service webpages. The 2015 baseline data for soil organic carbon was obtained from the African Soil Information Service's website. Data quality control and model validation were conducted to ensure the reliability of the collected data and the predictive model. A generalized regression model was chosen for its accuracy and reliability in predicting soil organic carbon dynamics under different shared socio-economic pathways such as SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios. The study revealed that variations in extreme climate and land use patterns significantly influenced the organic carbon content of the soil. Increased dry days and the conversion of forest and grassland into farmland resulted in a drop in soil organic carbon, while increased wet days and warming temperatures significantly increase it under each scenario. The soil organic carbon content increased by 5.82 and 2.8 g/kg for the SSP1-2.6 and SSP2-4.5 scenarios, respectively, but decreased by 6.90 g/kg under the SSP5-8.5 scenario. Overall, the higher emission scenarios had a significant negative impact on soil organic carbon levels, while the low emission scenarios had a positive impact. Sustainable land management practices are crucial for preserving and managing soil organic carbon levels.


Subject(s)
Carbon , Soil , Ethiopia , Reproducibility of Results , Agriculture
3.
Environ Res ; 238(Pt 2): 117283, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37783333

ABSTRACT

Climate change threatens surface waters worldwide, especially shallow lakes where one of the expected consequences is a sharp increase in their water temperatures. Phytobenthos is an essential, but still less studied component of aquatic ecosystems, and it would be important to learn more about how global warming will affect this community in shallow lakes. In this research, the effects of different climate change scenarios (SSP2-4.5 and SSP5-8.5, as intermediate and high emission scenarios) on the structure and function of the entire phytobenthos community using species- and trait-based approaches were experimentally investigated in an outdoor mesocosm system. Our results show that the forecasted 3 °C increase in temperature will already exert significant impacts on the benthic algal community by (1) altering its species and (2) trait composition (smaller cell size, lower abundance of colonial and higher of filamentous forms); (3) decreasing Shannon diversity; and (4) enhancing the variability of the community. Higher increase in the temperature (+5 °C) will imply more drastic alterations in freshwater phytobenthos by (1) inducing very high variability in species composition and compositional changes even in phylum level (towards higher abundance of Cyanobacteria and Chlorophyta at the expense of Bacillariophyta); (2) continuing shift in trait composition (benefits for smaller cell volume, filamentous life-forms, non-motile and weakly attached taxa); (3) further reducing the functional diversity; (4) increasing biofilm thickness (1.4 µm/°C) and (5) decreasing maximum quantum yield of photosystem II. In conclusion, already the intermediate emission scenario will predictably induce high risk in biodiversity issues, the high emission scenario will imply drastic impacts on the benthic algae endangering even the function of the ecosystem.


Subject(s)
Climate Change , Lakes , Ecosystem , Global Warming , Biodiversity
4.
Conserv Biol ; 37(3): e14035, 2023 06.
Article in English | MEDLINE | ID: mdl-36424863

ABSTRACT

Mountains are among the natural systems most affected by climate change, and mountain mammals are considered particularly imperiled, given their high degree of specialization to narrow tolerance bands of environmental conditions. Climate change mitigation policies, such as the Paris Agreement, are essential to stem climate change impacts on natural systems. But how significant is the Paris Agreement to the survival of mountain mammals? We investigated how alternative emission scenarios may determine change in the realized climatic niche of mountain carnivores and ungulates in 2050. We based our predictions of future change in species niches based on how species have responded to past environmental changes, focusing on the probabilities of niche shrink and niche stability. We found that achieving the Paris Agreement's commitments would substantially reduce climate instability for mountain species. Specifically, limiting global warming to below 1.5°C would reduce the probability of niche shrinkage by 4% compared with a high-emission scenario. Globally, carnivores showed greater niche shrinkage than ungulates, whereas ungulates were more likely to shift their niches (i.e., face a level of climate change that allows adaptation). Twenty-three species threatened by climate change according to the IUCN Red List had greater niche contraction than other species we analyzed (3% higher on average). We therefore argue that climate mitigation policies must be coupled with rapid species-specific conservation intervention and sustainable land-use policies to avoid high risk of loss of already vulnerable species.


Las montañas se encuentran entre los sistemas naturales más afectados por el cambio climático y se considera a los mamíferos montanos en un peligro particular debido a su alto nivel de especialización en condiciones ambientales dentro de un rango muy reducido de tolerancia. Las políticas de mitigación del cambio climático, como el Acuerdo de París, son esenciales para frenar el impacto del cambio climático sobre los sistemas naturales. ¿Pero cuán significativo es el Acuerdo de París para la supervivencia de los mamíferos montanos? Analizamos cómo los escenarios alternativos de emisiones pueden determinar el cambio en el nicho climático efectivo de los carnívoros y ungulados montanos en el 2050. Basamos nuestras predicciones del cambio en los nichos de las especies con base en cómo éstas han respondido a cambios ambientales anteriores, con un énfasis en las probabilidades de la reducción y la estabilidad del nicho. Descubrimos que lograr los compromisos del Acuerdo de París reduciría sustancialmente la inestabilidad climática para las especies montanas. En concreto, mantener el calentamiento global debajo de los 1.5°C reduciría la probabilidad de reducción del nicho en un 4% en comparación con un escenario de emisiones altas. A nivel mundial, los carnívoros mostraron una reducción de nicho mayor que el de los ungulados, mientras que los ungulados tuvieron mayor probabilidad de cambiar sus nichos (es decir, enfrentar un nivel de cambio climático que permite la adaptación). Veintitrés especies amenazadas por el cambio climático según la Lista Roja de la UICN tuvieron una mayor contracción del nicho que otras especies que analizamos (3% más alto, en promedio). Por esto argumentamos que las políticas de mitigación deben emparejarse con la intervención rápida de conservación específica por especie y las políticas de uso de suelo sustentable para evitar el riesgo elevado de pérdida de especies ya vulnerables. Escenarios de cambio en el nicho climático efectivo de carnívoros y ungulados montanos.


Subject(s)
Biodiversity , Conservation of Natural Resources , Animals , Mammals , Climate Change , Forecasting
5.
Sci Total Environ ; 847: 157352, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-35843319

ABSTRACT

Climate change has repeatedly been shown to impact the demography and survival of marine top predators. However, most evidence comes from single populations of widely distributed species, limited mainly to polar and subpolar environments. Here, we aimed to evaluate the influence of environmental conditions on the survival of a tropical and migratory seabird over the course of its annual cycle. We used capture-mark-recapture data from three populations of Bulwer's petrel (Bulweria bulwerii) spread across the NE Atlantic Ocean, from the Azores, Canary, and Cabo Verde Islands (including temperate to tropical zones). We also inferred how the survival of this seabird might be affected under different climatic scenarios, defined by the Intergovernmental Panel on Climate Change. Among the environmental variables whose effect we evaluated (North Atlantic Oscillation index, Southern Oscillation Index, Sea Surface Temperature [SST] and wind speed), SST estimated for the breeding area and season was the variable with the greatest influence on adult survival. Negative effects of SST increase emerged across the three populations, most likely through indirect trophic web interactions. Unfortunately, our study also shows that the survival of Bulwer's petrel will be profoundly affected by the different scenarios of climate change, even with the most optimistic trajectory involving the lowest greenhouse gas emission. Furthermore, for the first time, our study predicts stronger impacts of climate change on tropical populations than on subtropical and temperate ones. This result highlights the devastating effect that climate change may also have on tropical areas, and the importance of considering multi-population approaches when evaluating its impacts which may differ across species distributions.


Subject(s)
Climate Change , Greenhouse Gases , Animals , Atlantic Ocean , Birds , Seasons , Tropical Climate
6.
Sci Total Environ ; 765: 144338, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33401063

ABSTRACT

Previous studies demonstrated that global warming can lead to deteriorated air quality even when anthropogenic emissions were kept constant, which has been called a climate change penalty on air quality. It is expected that anthropogenic emissions will decrease significantly in the future considering the aggressive emission control actions in China. However, the dependence of climate change penalty on the choice of emission scenario is still uncertain. To fill this gap, we conducted multiple independent model simulations to investigate the response of PM2.5 to future (2050) climate warming (RCP8.5) in China but with different emission scenarios, including the constant 2015 emissions, the 2050 CLE emissions (based on Current Legislation), and the 2050 MTFR emissions (based on Maximum Technically Feasible Reduction). For each set of emissions, we estimate climate change penalty as the difference in PM2.5 between a pair of simulations with either 2015 or 2050 meteorology. Under 2015 emissions, we find a PM2.5 climate change penalty of 1.43 µg m-3 in Eastern China, leading to an additional 35,000 PM2.5-related premature deaths [95% confidence interval (CI), 21,000-40,000] by 2050. However, the PM2.5 climate change penalty weakens to 0.24 µg m-3 with strict anthropogenic emission controls under the 2050 MTFR emissions, which decreases the associated PM2.5-related deaths to 17,000. The smaller MTFR climate change penalty contributes 14% of the total PM2.5 decrease when both emissions and meteorology are changed from 2015 to 2050, and 24% of total health benefits associated with this PM2.5 decrease in Eastern China. This finding suggests that controlling anthropogenic emissions can effectively reduce the climate change penalty on PM2.5 and its associated premature deaths, even though a climate change penalty still occurs even under MTFR. Strengthened controls on anthropogenic emissions are key to attaining air quality targets and protecting human health in the context of future global climate change.

7.
Philos Trans A Math Phys Eng Sci ; 378(2183): 20190331, 2020 Oct 30.
Article in English | MEDLINE | ID: mdl-32981437

ABSTRACT

Over the last decades, energy and pollution control policies combined with structural changes in the economy decoupled emission trends from economic growth, increasingly also in the developing world. It is found that effective implementation of the presently decided national pollution control regulations should allow further economic growth without major deterioration of ambient air quality, but will not be enough to reduce pollution levels in many world regions. A combination of ambitious policies focusing on pollution controls, energy and climate, agricultural production systems and addressing human consumption habits could drastically improve air quality throughout the world. By 2040, mean population exposure to PM2.5 from anthropogenic sources could be reduced by about 75% relative to 2015 and brought well below the WHO guideline in large areas of the world. While the implementation of the proposed technical measures is likely to be technically feasible in the future, the transformative changes of current practices will require strong political will, supported by a full appreciation of the multiple benefits. Improved air quality would avoid a large share of the current 3-9 million cases of premature deaths annually. At the same time, the measures that deliver clean air would also significantly reduce emissions of greenhouse gases and contribute to multiple UN sustainable development goals. This article is part of a discussion meeting issue 'Air quality, past present and future'.

8.
Sci Total Environ ; 692: 361-370, 2019 Nov 20.
Article in English | MEDLINE | ID: mdl-31351280

ABSTRACT

In 2013, the Chinese government announced its first air quality standard for PM2.5 (particulate matter with a diameter < 2.5 µm) which requires annual mean PM2.5 concentration to achieve the World Health Organization (WHO) interim target 1 of 35 µg/m3 nationwide including the most polluted region of Beijing-Tianjin-Hebei (BTH). Here, we explore the future mitigation pathways for the BTH region to investigate the possibility of air quality attainment by 2030 in that region, by developing two energy scenarios (i.e., baseline energy scenario and enhanced energy scenario) and two end-of-pipe scenarios (i.e., business as usual scenario and best available technology scenario) and simulating future air quality for different scenarios using the WRF/CMAQ model. Results showed that without stringent energy and industrial structure adjustment, even the most advanced end-of-pipe technologies did not allow the BTH region to attain the 35 µg/m3 target. Under the most stringent scenario that coupled the enhanced structure adjustment measures and the best available end-of-pipe measures, the emissions of SO2, NOx, PM2.5 and NMVOCs (nonmethane volatile organic compounds) were estimated to be reduced by 85%, 74%, 82% and 72%, respectively, in 2030 over the BTH region. As a result, the simulated annual mean PM2.5 concentrations in Beijing, Tianjin and Hebei could decline to 23, 28 and 28 µg/m3, respectively, all of which achieved the 35 µg/m3 target by 2030. Our study identified a feasible pathway to achieve the 2030 target and highlighted the importance of reshaping the energy and industrial structure of the BTH region for future air pollution mitigation.

9.
Geohealth ; 2(7): 196-211, 2018 Jul.
Article in English | MEDLINE | ID: mdl-32395679

ABSTRACT

Exposure to high concentrations of ambient fine particulate matter (PM2.5) is a leading risk factor for public health in India causing a large burden of disease. Business-as-usual economic and industrial growth in India is predicted to increase emissions, worsen air quality, and increase the associated disease burden in future decades. Here we use a high-resolution online-coupled model to estimate the impacts of different air pollution control pathways on ambient PM2.5 concentrations and human health in India. We find that with no change in emissions, the disease burden from exposure to ambient PM2.5 in 2050 will increase by 75% relative to 2015, due to population aging and growth increasing the number of people susceptible to air pollution. We estimate that the International Energy Agencies New Policy Scenario (NPS) and Clean Air Scenario (CAS) in 2050 can reduce ambient PM2.5 concentrations below 2015 levels by 9% and 68%, respectively, offsetting 61,000 and 610,000 premature mortalities a year, which is 9% and 91% of the projected increase in premature mortalities due to population growth and aging. Throughout India, the CAS stands out as the most effective scenario to reduce ambient PM2.5 concentrations and the associated disease burden, reducing the 2050 mortality rate per 100,000 below 2015 control levels by 15%. However, even under such stringent emission control policies, population growth and aging results in premature mortality estimates from exposure to particulate air pollution to increase by 7% compared to 2015, highlighting the challenge facing efforts to improve public health in India.

10.
Proc Natl Acad Sci U S A ; 114(47): E10142-E10150, 2017 11 21.
Article in English | MEDLINE | ID: mdl-29109266

ABSTRACT

Warmer and drier climatic conditions are projected for the 21st century; however, the role played by extreme climatic events on forest vulnerability is still little understood. For example, more severe droughts and heat waves could threaten quaternary relict tree refugia such as Circum-Mediterranean fir forests (CMFF). Using tree-ring data and a process-based model, we characterized the major climate constraints of recent (1950-2010) CMFF growth to project their vulnerability to 21st-century climate. Simulations predict a 30% growth reduction in some fir species with the 2050s business-as-usual emission scenario, whereas growth would increase in moist refugia due to a longer and warmer growing season. Fir populations currently subjected to warm and dry conditions will be the most vulnerable in the late 21st century when climatic conditions will be analogous to the most severe dry/heat spells causing dieback in the late 20th century. Quantification of growth trends based on climate scenarios could allow defining vulnerability thresholds in tree populations. The presented predictions call for conservation strategies to safeguard relict tree populations and anticipate how many refugia could be threatened by 21st-century dry spells.


Subject(s)
Abies/physiology , Models, Statistical , Plant Dispersal/physiology , Climate Change/statistics & numerical data , Computer Simulation , Droughts/statistics & numerical data , Forecasting , Forests , Mediterranean Region , Refugium , Seasons , Trees
11.
Air Qual Atmos Health ; 10(2): 235-248, 2017.
Article in English | MEDLINE | ID: mdl-28250866

ABSTRACT

Regional and local authorities have the obligation to design air quality plans and assess their impacts when concentration levels exceed the limit values. Because these limit values cover both short- (day) and long-term (year) effects, air quality plans also follow these two formats. In this work, we propose a methodology to analyze modeled air quality forecast results, looking at emission reduction for different sectors (residential, transport, agriculture, etc.) with the aim of supporting policy makers in assessing the impact of short-term action plans. Regarding PM10, results highlight the diversity of responses across European cities, in terms of magnitude and type that raises the necessity of designing area-specific air quality plans. Action plans extended from 1 to 3 days (i.e., emissions reductions applied for 24 and 72 h, respectively) point to the added value of trans-city coordinated actions. The largest benefits are seen in central Europe (Vienna, Prague) while major cities (e.g., Paris) already solve a large part of the problem on their own. Eastern Europe would particularly benefit from plans based on emission reduction in the residential sectors; while in northern cities, agriculture seems to be the key sector on which to focus attention. Transport is playing a key role in most cities whereas the impact of industry is limited to a few cities in south-eastern Europe. For NO2, short-term action plans focusing on traffic emission reductions are efficient in all cities. This is due to the local character of this type of pollution. It is important, however, to stress that these results remain dependent on the selected months available for this study.

12.
Sci Total Environ ; 586: 197-205, 2017 May 15.
Article in English | MEDLINE | ID: mdl-28162759

ABSTRACT

Along with socioeconomic developments, and population increase, natural disasters around the world have recently increased the awareness of harmful impacts they cause. Among natural disasters, drought is of great interest to scientists due to the extraordinary diversity of their severity and duration. Motivated by the development of a potential approach to investigate future possible droughts in a probabilistic framework based on climate change projections, a methodology to consider thirteen future climate projections based on four emission scenarios to characterize droughts is presented. The proposed approach uses a regional climate model coupled with a physically-based hydrology model (Watershed Environmental Hydrology Hydro-Climate Model; WEHY-HCM) to generate thirteen equally likely future water supply projections. The water supply projections were compared to the current water demand for the detection of drought events and estimation of drought properties. The procedure was applied to Shasta Dam watershed to analyze drought conditions at the watershed outlet, Shasta Dam. The results suggest an increasing water scarcity at Shasta Dam with more severe and longer future drought events in some future scenarios. An important advantage of the proposed approach to the probabilistic analysis of future droughts is that it provides the drought properties of the 100-year and 200-year return periods without resorting to any extrapolation of the frequency curve.

13.
Article in English | MEDLINE | ID: mdl-28117743

ABSTRACT

This paper reviews information from the existing literature and the EU GMOS (Global Mercury Observation System) project to assess the current scientific knowledge on global mercury releases into the atmosphere, on global atmospheric transport and deposition, and on the linkage between environmental contamination and potential impacts on human health. The review concludes that assessment of global sources and pathways of mercury in the context of human health is important for being able to monitor the effects from implementation of the Minamata Convention targets, although new research is needed on the improvement of emission inventory data, the chemical and physical behaviour of mercury in the atmosphere, the improvement of monitoring network data, predictions of future emissions and speciation, and on the subsequent effects on the environment, human health, as well as the economic costs and benefits of reducing these aspects.


Subject(s)
Air Pollutants/analysis , Air Pollution/analysis , Atmosphere/analysis , Mercury/analysis , Public Health , Environmental Monitoring , Humans
14.
Glob Chang Biol ; 23(7): 2705-2719, 2017 07.
Article in English | MEDLINE | ID: mdl-27782362

ABSTRACT

Growth models can be used to assess forest vulnerability to climate warming. If global warming amplifies water deficit in drought-prone areas, tree populations located at the driest and southernmost distribution limits (rear-edges) should be particularly threatened. Here, we address these statements by analyzing and projecting growth responses to climate of three major tree species (silver fir, Abies alba; Scots pine, Pinus sylvestris; and mountain pine, Pinus uncinata) in mountainous areas of NE Spain. This region is subjected to Mediterranean continental conditions, it encompasses wide climatic, topographic and environmental gradients, and, more importantly, it includes rear-edges of the continuous distributions of these tree species. We used tree-ring width data from a network of 110 forests in combination with the process-based Vaganov-Shashkin-Lite growth model and climate-growth analyses to forecast changes in tree growth during the 21st century. Climatic projections were based on four ensembles CO2 emission scenarios. Warm and dry conditions during the growing season constrain silver fir and Scots pine growth, particularly at the species rear-edge. By contrast, growth of high-elevation mountain pine forests is enhanced by climate warming. The emission scenario (RCP 8.5) corresponding to the most pronounced warming (+1.4 to 4.8 °C) forecasted mean growth reductions of -10.7% and -16.4% in silver fir and Scots pine, respectively, after 2050. This indicates that rising temperatures could amplify drought stress and thus constrain the growth of silver fir and Scots pine rear-edge populations growing at xeric sites. Contrastingly, mountain pine growth is expected to increase by +12.5% due to a longer and warmer growing season. The projections of growth reduction in silver fir and Scots pine portend dieback and a contraction of their species distribution areas through potential local extinctions of the most vulnerable driest rear-edge stands. Our modeling approach provides accessible tools to evaluate forest vulnerability to warmer conditions.


Subject(s)
Climate Change , Forests , Trees/growth & development , Climate , Droughts , Models, Theoretical , Spain
15.
An. acad. bras. ciênc ; 89(3,supl): 1971-1983, 2017. tab, graf
Article in English | LILACS | ID: biblio-886778

ABSTRACT

ABSTRACT In recent years, the majority of economic sectors in Brazil have gone through processes of development and transformation. These processes have led to increases in environmental pollution of all kinds; air pollution being one of the most adverse. The Brazilian transportation sector, which heavily affects the air quality, experienced a significant increase in its vehicle fleet thus provoking larger emissions of pollutant gases, mainly in regions with high population density such as the Metropolitan Region of Porto Alegre (MRPA). Within this research, considering mainly the ozone precursor species and Carbon Monoxide and using the year 2001 as a base year, scenarios are obtained for vehicular emissions of pollutant gases in the MRPA until the year 2030. In addition, scenarios related to the evolution of the study region's vehicle fleet were estimated. The statistical tool LEAP (Long Range Energy Alternatives Planning System) was used. The scenario analysis shows that the vehicle fleet will grow exponentially until 2030, considering that the Light Flex vehicles category will mainly contribute to this increase. It is also noted that vehicle emissions of CO, NOx, and THC decrease in the region. The decrease is caused mainly by the renewal of technology in new vehicles and the implementation of emission control programs created by the government.

16.
Sci Total Environ ; 541: 1410-1419, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26479914

ABSTRACT

Inventory of emission sources and biomonitoring with moss transplants are two different methods to evaluate air pollution. In this study, for the first time, both these approaches were simultaneously applied in five municipalities in Campania (southern Italy), deserving attention for health-oriented interventions as part of a National Interest Priority Site. The pollutants covered by the inventory were CO, NOx, particulate matter (PM10), volatile organic compounds (VOCs), and some heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, Se, and Zn). The biomonitoring survey was based on the use of the devitalized moss Hypnum cupressiforme transplanted into bags, following a harmonized protocol. The exposure covered 40 agricultural and urban/residential sites, with half of them located in proximity to roads. The pollutants monitored were Al, As, Cd, Cr, Cu, Fe, Hg, Ni, Pb, Se, and Zn, as well as total polycyclic aromatic hydrocarbons (PAHs) only in five sites. Using the emission inventory approach, high emission loads were detected for all the major air pollutants and the following heavy metals: Cr, Cu, Ni, Pb and Zn, over the entire study area. Arsenic, Pb, and Zn were the elements most accumulated by moss. Total PAH postexposure contents were higher than the preexposure values (~20-50% of initial value). Moss uptakes did not differ substantially among municipalities or within exposure sites. In the five municipalities, a similar spatial pattern was evidenced for Pb by emission inventory and moss accumulation. Both approaches indicated the same most polluted municipality, suggesting their combined use as a valuable resource to reveal contaminants that are not routinely monitored.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring/methods , Air Pollution/statistics & numerical data , Bryophyta/chemistry , Bryopsida/chemistry , Cities , Hazardous Substances , Italy , Metals, Heavy/analysis , Particulate Matter/analysis , Polycyclic Aromatic Hydrocarbons/analysis
17.
Glob Chang Biol ; 21(2): 637-51, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25044467

ABSTRACT

Conservation strategies are often established without consideration of the impact of climate change. However, this impact is expected to threaten species and ecosystem persistence and to have dramatic effects towards the end of the 21st century. Landscape suitability for species under climate change is determined by several interacting factors including dispersal and human land use. Designing effective conservation strategies at regional scales to improve landscape suitability requires measuring the vulnerabilities of specific regions to climate change and determining their conservation capacities. Although methods for defining vulnerability categories are available, methods for doing this in a systematic, cost-effective way have not been identified. Here, we use an ecosystem model to define the potential resilience of the Finnish forest landscape by relating its current conservation capacity to its vulnerability to climate change. In applying this framework, we take into account the responses to climate change of a broad range of red-listed species with different niche requirements. This framework allowed us to identify four categories in which representation in the landscape varies among three IPCC emission scenarios (B1, low; A1B, intermediate; A2, high emissions): (i) susceptible (B1 = 24.7%, A1B = 26.4%, A2 = 26.2%), the most intact forest landscapes vulnerable to climate change, requiring management for heterogeneity and resilience; (ii) resilient (B1 = 2.2%, A1B = 0.5%, A2 = 0.6%), intact areas with low vulnerability that represent potential climate refugia and require conservation capacity maintenance; (iii) resistant (B1 = 6.7%, A1B = 0.8%, A2 = 1.1%), landscapes with low current conservation capacity and low vulnerability that are suitable for restoration projects; (iv) sensitive (B1 = 66.4%, A1B = 72.3%, A2 = 72.0%), low conservation capacity landscapes that are vulnerable and for which alternative conservation measures are required depending on the intensity of climate change. Our results indicate that the Finnish landscape is likely to be dominated by a very high proportion of sensitive and susceptible forest patches, thereby increasing uncertainty for landscape managers in the choice of conservation strategies.


Subject(s)
Biodiversity , Climate Change , Conservation of Natural Resources/methods , Taiga , Trees/physiology , Finland , Models, Biological
18.
Integr Environ Assess Manag ; 10(1): 48-59, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23801648

ABSTRACT

An evaluation of conventional emission scenarios is carried out targeting a possible impact of European Union (EU) policies on riverine loads to the European seas for 3 pilot pollutants: lindane, trifluralin, and perfluorooctane sulfonate (PFOS). The policy scenarios are investigated to the time horizon of year 2020 starting from chemical-specific reference conditions and considering different types of regulatory measures including business as usual (BAU), current trend (CT), partial implementation (PI), or complete ban (PI ban) of emissions. The scenario analyses show that the model-estimated lindane load of 745 t to European seas in 1995, based on the official emission data, would be reduced by 98.3% to approximately 12.5 t in 2005 (BAU scenario), 10 years after the start of the EU regulation of this chemical. The CT and PI ban scenarios indicate a reduction of sea loads of lindane in 2020 by 74% and 95%, respectively, when compared to the BAU estimate. For trifluralin, an annual load of approximately 61.7 t is estimated for the baseline year 2003 (BAU scenario), although the applied conservative assumptions related to pesticide use data availability in Europe. Under the PI (ban) scenario, assuming only small residual emissions of trifluralin, we estimate a sea loading of approximately 0.07 t/y. For PFOS, the total sea load from all European countries is estimated at approximately 5.8 t/y referred to 2007 (BAU scenario). Reducing the total load of PFOS below 1 t/y requires emissions to be reduced by 84%. The analysis of conventional scenarios or scenario typologies for emissions of contaminants using simple spatially explicit GIS-based models is suggested as a viable, affordable exercise that may support the assessment of implementation of policies and the identification or negotiation of emission reduction targets.


Subject(s)
Alkanesulfonic Acids/analysis , Environmental Policy , Fluorocarbons/analysis , Hexachlorocyclohexane/analysis , Trifluralin/analysis , Water Pollutants, Chemical/analysis , Atlantic Ocean , Environment , European Union , Seawater
SELECTION OF CITATIONS
SEARCH DETAIL
...