Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
Add more filters











Publication year range
1.
Food Chem ; 463(Pt 4): 141414, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39383797

ABSTRACT

In this paper, Spirulina platensis protein-based emulsion gels were investigated as fat substitutes in meat analogs and compared with conventional fat sources like palm oil, oleogel, and soybean oil. Evaluating parameters such as cooking loss, shrinkage, texture, appearance, and moisture distribution across various cooking methods. Emulsion gels imparted superior juiciness to meat analogs whereas palm oil and oleogel led to drier meat textures. Besides they also resulted in comparable cooking loss and shrinkage to traditional fats, indicating preferred fat options for incorporation of emulsion gels. The novel emulsion gel-filled meat analogs exhibited robust tolerance across three distinct cooking methods, boiling, steaming, and deep-frying. Steamed meat analogs exhibited brighter MRI signals, while fried counterparts displayed peripheral hollowing, attributed to steam's energy transfer and humidity-induced water migration, respectively. Overall, the study underscores the efficacy of these fat analogs in meat analogs, offering insights into their potential as viable alternatives in food formulations.

2.
Gels ; 10(9)2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39330161

ABSTRACT

Starch nanocrystals (SNCs) to stabilize high internal phase emulsions (HIPEs) always suffer low production efficiency from acid hydrolysis. Due to its small granule size, Quinoa starch (QS) was selected to produce SNCs as a function of acid hydrolysis time (0-4 days), and their structural changes and potential application as HIPEs' stabilizers were further explored. With increasing the acid hydrolysis time from 1 day to 4 days, the yield of QS nanocrystals decreased from 30.4% to 10.8%, with the corresponding degree of hydrolysis increasing from 51.2% to 87.8%. The occurrence of QS nanocrystals was evidenced from the Tyndall effect and scanning electron microscopy with particle size distribution. The relative crystallinity of QS subjected to different hydrolysis times (0-4 days) increased from 22.27% to 26.18%. When the acid hydrolysis time of QS was 3 and 4 days, their HIPEs showed self-standing after inversion, known as high internal phase emulsion gels (HIPE gels), closely related to their densely packed interfacial architecture around oil droplets, seen on an optical microscope, and relatively high apparent viscosity. This study could provide a theoretical guidance for the efficient production and novel emulsification of SNCs from QS to HIPE gels.

3.
ACS Appl Mater Interfaces ; 16(35): 46923-46936, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39164962

ABSTRACT

3D printing ultralightweight porous structures using direct ink writing (DIW) while maintaining their mechanical robustness is highly challenging. This difficulty is amplified when low ink concentrations are used to create complex geometries. Herein, this shortfall was addressed by interfacially jammed emulsion gels. The gel emerged from the electrostatic interaction among synergized nanomaterials (graphene oxide (GO) and cellulose nanocrystals (CNCs)) in the aqueous phase and a ligand in the oil phase. This interaction led to the jamming of the nanoparticles and the creation of stable emulsion gels. The formed interfacial assemblies were further treated by post-jamming ionic cross-linking with NaHCO3, which dictated the emulsion gels' rheological characteristics, enhancing the ink's viscoelastic properties for high-resolution 3D printing. The customizable emulsion system allows control over porosity from the macro- to the micro-scale and generates complex geometries with desired compositions. By manipulating post-annealing processes and varying concentrations, it is possible to achieve aerogels that feature a remarkably low density (∼2.63 mg/cm3) and adjustable mechanical robustness (elastic modulus of 0.45 MPa). Additionally, this method allows for producing aerogels with flexible or stiff characteristics as required, alongside the capability to tailor specific electromagnetic shielding effectiveness (ranging from 6791 to 19615 dB cm2/g), showcasing the technique's versatility and engineerability.

4.
Int J Biol Macromol ; 278(Pt 3): 134751, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39173801

ABSTRACT

The aim of this study was to investigate the effect of varying concentrations of furcellaran (FUR) and safflower (Carthamus Tinctorius) oil on the functional properties of emulgels as potential carriers of bioactive substances. The textural, mechanical, thermal and structural properties of twenty different formulations were characterised. The pH stability and zeta-potential of the emulgels was also examined. It was found clear correlation between gelling agent and oil fraction content and investigated properties. The hardness, strength, thermal stability expressed as melting point of the investigated systems increased with increasing concentration of the furcellaran and decreasing proportion of safflower oil, which indicated a significant weakening of the structure as a result of the addition of the oil fraction. Stored under refrigeration, emulgels appeared to be relatively stable showing a slight decrease in pH values after 7 days. Swelling ratio (SW) of emulgels increased with increasing both, polysaccharide and oil content, in emulgels. Based on the microstructure analyses, it can also be concluded that only part of the added safflower oil chemically bound to the functional groups of the polysaccharide, while the vast majority of it was only physically immobilized in the furcellaran matrix. Colour of furcellaran - safflower oil emulsion gels depended largely on the amount of oil fraction. The presented research demonstrating the wide spectrum of functional properties of polysaccharide-oil systems is a first step to developing a carrier composition for lipophilic compounds at further stages of research.


Subject(s)
Gels , Safflower Oil , Safflower Oil/chemistry , Hydrogen-Ion Concentration , Gels/chemistry , Temperature , Carthamus tinctorius/chemistry
5.
Food Res Int ; 192: 114764, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39147556

ABSTRACT

Protein emulsion gels, as potential novel application ingredients in the food industry, are very unstable in their formation. However, the incorporation of sour substances (phosphoric acid, lactic acid, acetic acid, malic acid, glutamic acid, tartaric acid and citric acid) would potentially contribute to the stable formation of whey protein isolate (WPI) emulsion as well as its gel. Thus, in this work, physical stability of seven acid-treated WPI emulsions, and microstructures, rheological properties, water distribution of its emulsion gels were characterized and compared. Initially, the absolute zeta-potential, interfacial protein adsorption, and emulsifying characteristics of acid-induced WPI emulsions were higher in contrast to acid-untreated WPI emulsions. Moreover, acid-induced WPI emulsions were thermally induced (95 ℃, 30 min) to form its emulsion gel networks via disulfide bonds as the main force (acid-untreated WPI emulsions were unable to form gels). High-resolution microscopic observation revealed that acid-induced WPI in emulsion gel network showed the morphology of aggregates. Dynamic oscillatory rheology results indicated that acid-induced emulsion gel exhibited highly elastic behavior and its viscoelasticity was associated with the generation of protein gel networks and aggregates. In addition, PCA and heatmap results further illustrated that malic acid-induced WPI emulsion gels had the best water holding capacity and gel characteristics. Therefore, this study could provide an effective way for the foodstuffs industry to open up new texture and healthy emulsion gels as fat replaces and loading systems of bioactive substances.


Subject(s)
Emulsions , Gels , Hot Temperature , Rheology , Whey Proteins , Whey Proteins/chemistry , Emulsions/chemistry , Gels/chemistry , Viscosity
6.
Adv Colloid Interface Sci ; 333: 103246, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39208623

ABSTRACT

Pickering emulsions (PEs) can be used as efficient carriers for encapsulation and controlled release of different bioactive compounds. Recent research has revealed the potential of prolamins in development of nanoparticle- and emulsion-based carriers which can improve the stability and bioavailability of bioactive compounds. Prolamin-based particles have been effectively used as stabilizers of various PEs including single PEs, high internal phase PEs, multiple PEs, novel triphasic PEs, and PE gels due to their tunable self-assembly behaviors. Prolamin particles can be fabricated via different techniques including anti-solvent precipitation, dissolution followed by pH adjustment, heating, and ion induced aggregation. Particles fabricated from prolamins alone or in combination with other hydrocolloids or polyphenols have also been used for stabilization of different PEs which were shown to be effective carriers for food bioactives, providing improved stability and functionality. This article covers the recent advances in various PEs stabilized by prolamin particles as innovative carriers for bioactive ingredients. Strategies applied for fabrication of prolamin particles and prolamin-based carriers are discussed. Emerging techno-functional applications of prolamin-based PEs and possible challenges are also highlighted.

7.
Foods ; 13(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38998647

ABSTRACT

An eco-friendly extraction process of polyphenols from conventional dried rosemary tissues and post-distillation waste residues was applied using ß-cyclodextrin as a co-solvent. The aqueous extracts were characterized by measuring the total phenolic content, and their phenolic compounds were identified and quantified by LC-MS. Sodium alginate solutions (2% w/w) with/without incorporation of rosemary aqueous extracts were prepared and used for the preparation of O/W emulsions containing 20% rapeseed oil and an 80% water phase. Hydrogel beads were then stored at 20 °C for 28 days. The quality of encapsulated oil during storage was evaluated by measurements of the peroxide value, p-anisidine value, free fatty acids, total oxidation value, and fatty acid composition, whilst the aqueous phase of the beads was analyzed for its total extractable phenolic content (TEPC). The experimental findings indicate that the incorporation of aqueous extracts from post-distillation rosemary residues in emulsion-filled hydrogel beads resulted in the lowest level of oxidation products in the encapsulated rapeseed oil (PV = 10.61 ± 0.02 meq/Kg oil, p-AnV = 4.41 ± 0.09, and FFA = 0.14 ± 0.00, expressed as % oleic acid content), indicating an acceptable oil quality until the end of the storage period.

8.
Int J Biol Macromol ; 276(Pt 1): 133640, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38969047

ABSTRACT

The potential of using emulsion gels stabilized by binary plant protein nanoparticle mixtures for the encapsulation and delivery of lipophilic nutraceuticals was evaluated. The particle characteristics, physical stability, water diffusivity, microrheology, large amplitude oscillating shear (LAOS) properties, and in vitro digestion of emulsion gels prepared by different ratios of hydrolyzed rice glutelin fibrils (HRGFs) and pea protein nanoparticle (PNP) were characterized. The emulsion gel with P/H = 2:1 (0.84 µm) exhibited the best storage stability and freeze-thaw stability, as seen by the smaller oil droplet size (1.02 and 1.42 µm, respectively). Low-field pulsed NMR indicated that the majority of water in samples was highly mobile. All the samples were predominantly elastic-like materials. The P/H 2:1 emulsion gel had the lowest FI value (6.21 × 10-4 Hz), the highest MVI value (5.57 s/nm2), G'/ G″ values and enclosed area, showing that it had denser 3D network structures, higher stiffness values, and a high sensitivity to changes in strain. Additionally, P/H 2:1 emulsion gel had a relatively high lipid digestibility (96.1 %), curcumin bioaccessibility (58.9 %), and curcumin stability (94.2 %). This study showed that emulsion gels stabilized by binary protein nanoparticle mixtures (PNP/HRGF) have potential as edible delivery systems for lipophilic nutraceuticals.


Subject(s)
Curcumin , Emulsions , Gels , Glutens , Nanoparticles , Oryza , Pea Proteins , Curcumin/chemistry , Curcumin/pharmacology , Emulsions/chemistry , Nanoparticles/chemistry , Pea Proteins/chemistry , Oryza/chemistry , Glutens/chemistry , Gels/chemistry , Hydrolysis , Particle Size , Rheology , Drug Compounding
9.
Int J Biol Macromol ; 276(Pt 1): 134110, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39047994

ABSTRACT

ß-Carotene is widely used in food systems because of its biological activity; however, ß-carotene has poor chemical stability and low bioavailability. Thus, researchers use encapsulated delivery systems to overcome these disadvantages. In this study, we prepared emulsion gels to encapsulate ß-carotene, using Longzhua mushroom polysaccharide (LMP), which can autonomously form weak gels. The LMP emulsion gel (LEG) exhibited a high water-holding capacity of up to 95.06 %. All samples showed adequate storage stability for 28 days. Increasing the polysaccharide content in the emulsion gel enhanced the encapsulation efficiency of ß-carotene (96.76 %-98.27 %), the release of free fatty acids (68.21 %-81.44 %), and the photostability (80.65 %-91.27 %), thermal stability (73.84 %-97.08 %), and bioaccessibility (18.28 %-30.26 %) of ß-carotene. In conclusion, LEG is a promising fat-soluble material that can be used for food-grade encapsulated delivery systems.


Subject(s)
Agaricales , Emulsions , Gels , Polysaccharides , beta Carotene , beta Carotene/chemistry , Gels/chemistry , Agaricales/chemistry , Polysaccharides/chemistry , Drug Carriers/chemistry , Biological Availability , Drug Stability
10.
Food Chem ; 458: 140302, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-38968706

ABSTRACT

Texture-modified, multi-nutrient composite foods are essential in clinical treatment for dysphagia individuals. Herein, fibrous whey protein-stabilized emulsion and different crystalline starches (wheat, corn, rice, potato, sweet potato, cassava, mung bean and pea) were used to structure composite emulsion gels (CEGs). These CEGs then underwent 3D printing to explore the feasibility of developing a dysphagia diet. The network of molded CEGs was mainly maintained by hydrophobic interactions and hydrogen bonds. Rice and cassava starches were better suited for structuring soft-textured CEGs. Compared with molded CEGs, 3D printing decreased hydrogen bonds and the compactness of the nano-aggregate structure within the gel system, forming a looser gel network and softening the CEGs. Interestingly, these effects were more pronounced for the CEGs with high initial hardness. This study provided new strategy to fabricate CEGs as dysphagia diet using fibrous whey protein and starch, and to design texture-modified foods for patients using 3D printing.


Subject(s)
Deglutition Disorders , Emulsions , Gels , Printing, Three-Dimensional , Starch , Whey Proteins , Whey Proteins/chemistry , Starch/chemistry , Emulsions/chemistry , Gels/chemistry , Humans , Hydrophobic and Hydrophilic Interactions
11.
Food Res Int ; 191: 114703, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39059910

ABSTRACT

Fat plays a pivotal role in the appearance, flavor, texture, and palatability of food. However, excessive fat consumption poses a significant risk for chronic ailments such as obesity, hypercholesterolemia, and cardiovascular disease. Therefore, the development of green, healthy, and stable protein-based emulsion gel as an alternative to traditional fats represents a novel approach to designing low-fat food. This paper reviews the emulsification behavior of proteins from different sources to gain a comprehensive understanding of their potential in the development of emulsion gels with fat-analog properties. It further investigates the emulsifying potential of protein combined with diverse substances. Then, the mechanisms of protein-stabilized emulsion gels with fat-analog properties are discussed, mainly involving single proteins, proteins-polysaccharides, as well as proteins-polyphenols. Moreover, the potential applications of protein emulsion gels as fat analogues in the food industry are also encompassed. By combining natural proteins with other components such as polysaccharides, polyphenols, or biopolymers, it is possible to enhance the stability of the emulsion gels and improve its fat-analog texture properties. In addition to their advantages in protecting oil oxidation, limiting hydrogenated oil intake, and delivering bioactive substances, protein-based emulsion gels have potential in food 3D printing and the development of specialty fats for plant-based meat.


Subject(s)
Emulsions , Gels , Emulsions/chemistry , Gels/chemistry , Proteins/chemistry , Polysaccharides/chemistry , Polyphenols/chemistry , Humans , Food Handling/methods , Food Industry , Dietary Fats
12.
Food Chem ; 455: 139928, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38850974

ABSTRACT

In this study, the impact of Gluconolactone (GDL) concentration on the formation of high-internal-phase emulsion gels (HIPEGs) and the gastrointestinal digestive viability of Lactobacillus plantarum encapsulated within these HIPEGs were demonstrated. Increasing GDL concentrations led to cross-linking of particles at the oil-water interface, thereby stabilizing smaller oil droplets. The addition of GDL to HIPEs results in a significant increase in the secondary structure of SPI, specifically in ß-sheet and ß-turn formations, accompanied by a reduction in α-helix percentage. This alteration enhanced the binding effect of protein on water, leading to changes in intermolecular force. Notably, HIPEGs containing 3.0% GDL demonstrated superior encapsulation efficiency and delivery efficiency, reaching 99.0% and 84.5%, respectively. After 14 d of continuous zebrafishs feeding, the intestinal viable cells count of Lactobacillus plantarum reached 1.18 × 107 CFU/mL. This finding supports the potential use of HIPEGs as a probiotic delivery carrier, effectively enhancing the intestinal colonization rate.


Subject(s)
Emulsions , Gastrointestinal Tract , Gels , Gluconates , Lactobacillus plantarum , Probiotics , Zebrafish , Lactobacillus plantarum/chemistry , Lactobacillus plantarum/metabolism , Lactobacillus plantarum/growth & development , Emulsions/chemistry , Probiotics/chemistry , Probiotics/pharmacology , Probiotics/administration & dosage , Animals , Gels/chemistry , Gluconates/chemistry , Gluconates/metabolism , Gastrointestinal Tract/microbiology , Gastrointestinal Tract/metabolism , Microbial Viability , Lactones
13.
Int J Biol Macromol ; 270(Pt 1): 131758, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38714282

ABSTRACT

In this study, the whey protein concentrate and xanthan gum complex obtained by specific pH treatment, along with κ-carrageenan (KC), were used to encapsulate Lactobacillus acidophilus JYLA-191 in an emulsion gel system. The effects of crosslinking and KC concentration on the visual characteristics, stability, mechanical properties, and formation mechanism of emulsion gels were investigated. The results of optical imaging, particle size distribution, and rheology exhibited that with the addition of crosslinking agents, denser and more homogeneous emulsion gels were formed, along with a relative decrease in the droplet size and a gradual increase in viscosity. Especially when the concentration of citric acid (CA) was 0.09 wt%, KC was 0.8 wt%, and K+ was present in the system, the double-network emulsion gel was stable at high temperatures and in freezing environments, and the swelling ratio was the lowest (9.41%). Gastrointestinal tract digestive treatments and pasteurization revealed that the probiotics encapsulated in the double-network emulsion gel had a higher survival rate, which was attributed to the synergistic cross-linking of CA and K+ biopolymers to construct the emulsion gels. Overall, this study highlights the potential of emulsion gels to maintain probiotic vitality and provides valuable insights for developing inventive functional foods.


Subject(s)
Carrageenan , Emulsions , Gels , Lactobacillus acidophilus , Polysaccharides, Bacterial , Probiotics , Whey Proteins , Polysaccharides, Bacterial/chemistry , Polysaccharides, Bacterial/pharmacology , Carrageenan/chemistry , Carrageenan/pharmacology , Emulsions/chemistry , Probiotics/chemistry , Whey Proteins/chemistry , Whey Proteins/pharmacology , Gels/chemistry , Lactobacillus acidophilus/drug effects , Rheology , Microbial Viability/drug effects , Particle Size , Viscosity
14.
Food Chem X ; 22: 101377, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38633741

ABSTRACT

In this study, the effects on the structures and emulsion gels of carrageenan (CA) and gum arabic (GA) with soybean protein isolate (SPI) were investigated. The results showed that CA and GA exposed hydrophobic groups to SPI, and formed complexes through non-covalent interactions to improve the stability of the complexes. Furthermore, the emulsion gels based on the emulsions exhibited that CA formed emulsion-filled gels with higher elasticity, stronger gel strength, and thermal reversibility, whereas GA formed emulsion-aggregated gels with higher viscosity, and a weak-gel network. The results of digestion showed that, CA was more helpful to slow down the release of free fatty acids and protect vitamin E during digestion. Compared with SPI-GA emulsion gel, SPI-CA emulsion gel had better physicochemical properties and stronger network structure. The results of this study may be useful in the development of anionic polysaccharides that interact with SPI, and they may provide new insights on the preparation of emulsion gels that slowly release fat-soluble nutrients.

15.
Colloids Surf B Biointerfaces ; 236: 113810, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38430828

ABSTRACT

Distearin (DS) can be used as an emulsifier, due to its surface activity derived from the amphiphilic nature of the molecule, moreover, it can also crystallize and form a 3D crystal network that can induce oil gelation. The current research aimed to examine the ability to combine both emulsifying and oil gelation properties to structure and stabilize water-in-oil emulsion gel system. Different water contents and DS concentrations produce emulsion gels with different textural attributes while incorporating up to 30% of water in a 15% wt. DS-based oleogel resulted in stable white gels. Microscopy imaging confirmed the formation of a water-in-oleogel type emulsion gel characterized by DS crystallization in the continuous phase and at the interface through Pickering mechanism. A positive relation was observed between the G' and hardness values and water content, suggesting gel strengthening resulted from interactions between the DS crystals at the interface and the continuous phase, as suggested by the active filler theory. Thermal analysis revealed two broad melting events at the temperature range of 42.2-44.9 °C and 55.9-58.6 °C for emulsion gels with 10-30% water content, suggesting initial melting of ß' polymorph and transition to ß during melting, which was confirmed by XRD. The results showed that homogenization significantly improved the oil retention of the gels due to increased crystal surface area, while water addition slightly reduced it. Compared with traditional emulsions or oleogels, this water-in-oil gel system demonstrated prolonged stability and enhanced mechanical properties due to the dual functionality of DS at the water/oil interface and bulk.


Subject(s)
Diglycerides , Water , Emulsions/chemistry , Water/chemistry , Emulsifying Agents/chemistry , Gels/chemistry
16.
Food Chem ; 446: 138803, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38412810

ABSTRACT

The objective of this study was to enhance the bioavailability and stability of curcumin (Cur) by encapsulating it in corn starch (CS)/octenylsuccinic acid modified (OSA)-starch-whey protein isolate (WPI) emulsion gels (EGs). As the volume fraction of the oil phase increased, the droplet size and ζ- potential of the EGs decreased. The encapsulation efficiency and bioavailability of Cur in CS/OSA-starch-WPI EGs with a 60% oil ratio were 96.0% and 67.3%, respectively. The release rate of free fatty acid and the bioavailability of Cur from the EGs after digestion were significantly higher compared to Cur dissolved in oil. EGs with an oil phase volume fraction of 75% and 80% demonstrated greater protection against light irradiation but were less effective against UV irradiation compared to EGs with a 60% oil phase volume fraction. Encapsulation in EGs proved to be an effective method for enhancing the bioavailability and stability of Cur.


Subject(s)
Curcumin , Starch , Succinates , Emulsions , Whey Proteins , Zea mays , Gels
17.
Int J Biol Macromol ; 255: 128190, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37979738

ABSTRACT

Adequate amounts of live probiotics reaching the gut are necessary to maintain host health. However, the harsh environment during processing, the low pH of human gastric acid, and the high concentration of bile salts in the gut can significantly reduce survivability of probiotics. In this work, we propose a simple Pickering emulsion gels strategy to encapsulate Lactobacillus plantarum Lp90 into oil droplets filled in calcium alginate gels to improve its viability under pasteurization and gastrointestinal conditions. The emulsion gels were stabilized by the soluble complexes of salmon by-product protein (SP) and sodium alginate (ALG), and the aqueous phase was solidified by the addition of calcium. The interaction between SP and ALG and the effect of ALG concentration on emulsifying ability and emulsion stability were studied. The results from optical imaging, nuclear magnetic resonance, and rheological properties showed that the stability and viscosity of the emulsions gradually increased with the increased ALG concentration, while the droplet size of the emulsions and the content of free water in the system decreased significantly. Especially when the concentration of ALG was 1 %, the emulsion system was stable under the environment of high temperature and high ionic strength, and the water holding capacity was the highest. Through pasteurization and gastrointestinal digestion experiments, it was found that the survival rate of probiotics encapsulated in emulsion gels was significantly higher than that encapsulated in emulsions or hydrogels, which benefited from the dual action of oil droplets and calcium alginate gels network. These results provide a new strategy for the processing of probiotics and the high-value utilization of marine fish by-products.


Subject(s)
Alginates , Probiotics , Animals , Humans , Emulsions/chemistry , Alginates/chemistry , Salmon , Gels/chemistry , Hydrogels , Hydrogen-Ion Concentration , Water/chemistry
18.
Int J Biol Macromol ; 257(Pt 2): 128718, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38101676

ABSTRACT

This study aimed to optimize the formulation of olive oil-in-water (O/W) emulsion gels by incorporating Pea Protein (PP) and Guar Gum (GG) as alternative options for solid fats. The optimum rheological (consistency index, apparent viscosity, recovery) and texture (firmness) properties of the emulsion gels were obtained using a mixture of 2 % PP, 1 % GG, 60 % Olive Oil (OO), and 37 % Water (W). The blend of PP2/GG1 showed the highest results for recovery and firmness, 111.27 % and 33.89 g, respectively. PP/GG blend emulsion gels exhibited higher absolute ζ-potential values, ranging between -72.3 and -77.4 mV. The polydispersity index (PDI) ranged from 0.185 to 0.535, with the most uniform distributions found in the PP/GG blend emulsion gels. Strong phase separation resistance indicated strong stability of PP-GG complex emulsion gels. Higher PP concentrations decreased emulsion oxidation. FTIR and XRD research showed that PP and GG interact strongly, indicating good compatibility. The free binding energy of the most stable configuration of the molecules was -6.8 kcal mol-1, indicating a high affinity. PP interacted with GG through 9 amino acid residues, with notable residues being Asp 224, Thr 235, Ala 332, Ile 334, and Arg 336, and their respective interaction distances ranged between 2.69 Å and 3.87 Å.


Subject(s)
Fat Substitutes , Galactans , Mannans , Olea , Pea Proteins , Plant Gums , Fat Substitutes/chemistry , Olive Oil/chemistry , Emulsions/chemistry , Gels/chemistry , Water/chemistry
19.
Int J Biol Macromol ; 258(Pt 1): 128805, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38104682

ABSTRACT

The growing prevalence of dysphagia among the aging population presents a significant challenge. Many highly nutritious foods, like salmon, are often unsuitable for the elderly due to their firm texture when heated. To address this concern, a combination of salmon myofibrillar protein (SMP), Konjac glucomannan (KGM), and different emulsion fillers-such as oil droplets, octenyl succinic anhydride (OSA)-modified potato starch emulsion, and high methoxylated pectin (HMP) emulsions-was selected to enhance the network of salmon protein gels with the aims to create potential applications as dysphagia-friendly foods. The International Dysphagia Dietary Standardization Initiative (IDDSI) test indicated that all gel samples were classified as level 5. The OSA-SMP-KGM gel exhibited notably higher cohesiveness (P < 0.05), reduced adhesion, and enhanced mouthfeel. The OSA-SMP-KGM gel exhibited a smooth surface and excellent water retention (92.4 %), rendering it suitable for individuals with swallowing difficulties, particularly those prone to experiencing dry mouth. The yield stress of OSA-SMP-KGM gel was 594.14 Pa and stable structure was maintained during chewing and swallowing (γe/γv = 62.5). This study serves as a valuable reference for developing salmon-based products that are not only highly nutritious but also fulfill the criteria for a desirable swallowing texture.


Subject(s)
Deglutition Disorders , Animals , Humans , Aged , Emulsions/chemistry , Salmon , Diet , Gels/chemistry , Mannans/chemistry , Seafood
20.
Gels ; 9(12)2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38131956

ABSTRACT

This study aimed to develop stable emulsion gels enriched in polyunsaturated fatty acids, formulated with a mixture of olive (75%) and linseed (25%) oils, by incorporating two different stabilizers-pea and soy protein isolates-and three different cold gelling agents-chitosan, pectin and xanthan-to be used as pork backfat replacers in beef burgers. The color, pH, stability and textural properties of the emulsion gels were analyzed as affected by cold storage (4 °C, 7 days). Proximate composition, fatty acid content, technological and sensory properties were determined after burger processing. Meanwhile, color, pH, textural parameters and lipid oxidation were monitored in burgers at 0, 5 and 10 days of storage at 4 °C. A reduction of the fat content between 21.49% and 39.26% was achieved in the reformulated burgers as compared with the control, while the n-6/n-3 polyunsaturated fatty acid ratio decreased from 5.11 to 0.62. The highest moisture and fat retention were found in reformulated burgers made with xanthan, both with pea and soy proteins; however, their textural properties were negatively affected. The reformulated burgers made with chitosan were rated highest for sensory attributes and overall acceptability, not significantly different from the controls.

SELECTION OF CITATIONS
SEARCH DETAIL