Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.257
Filter
1.
Neurochem Res ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847909

ABSTRACT

Understanding the endocannabinoid system in C. elegans may offer insights into basic biological processes and potential therapeutic targets for managing pain and inflammation in human. It is well established that anandamide modulates pain perception by binding to cannabinoid and vanilloid receptors, regulating neurotransmitter release and neuronal activity. One objective of this study was to demonstrate the suitability of C. elegans as a model organism for assessing the antinociceptive properties of bioactive compounds and learning about the role of endocannabinoid system in C. elegans. The evaluation of the compound anandamide (AEA) revealed antinociceptive activity by impeding C. elegans nocifensive response to noxious heat. Proteomic and bioinformatic investigations uncovered several pathways activated by AEA. Enrichment analysis unveiled significant involvement of ion homeostasis pathways, which are crucial for maintaining neuronal function and synaptic transmission, suggesting AEA's impact on neurotransmitter release and synaptic plasticity. Additionally, pathways related to translation, protein synthesis, and mTORC1 signaling were enriched, highlighting potential mechanisms underlying AEA's antinociceptive effects. Thermal proteome profiling identified NPR-32 and NPR-19 as primary targets of AEA, along with OCR-2, Cathepsin B, Progranulin, Transthyretin, and ribosomal proteins. These findings suggest a complex interplay between AEA and various cellular processes implicated in nociceptive pathways and inflammation modulation. Further investigation into these interactions could provide valuable insights into the therapeutic potential of AEA and its targets for the management of pain-related conditions.

2.
Neurosci Biobehav Rev ; 163: 105741, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38838875

ABSTRACT

Anxiety disorders constitute a spectrum of psychological conditions affecting millions of individuals worldwide, imposing a significant health burden. Historically, the development of anxiolytic medications has been largely focused on neurotransmitter function and modulation. However, in recent years, neurolipids emerged as a prime target for understanding psychiatric pathogenesis and developing novel medications. Neurolipids influence various neural activities such as neurotransmission and cellular functioning, as well as maintaining cell membrane integrity. Therefore, this review aims to elucidate the alterations in neurolipids associated with an anxious mental state and explore their potential as targets of novel anxiolytic medications. Existing evidence tentatively associates dysregulated neurolipid levels with the etiopathology of anxiety disorders. Notably, preclinical investigations suggest that several neurolipids, including endocannabinoids and polyunsaturated fatty acids, may hold promise as potential pharmacological targets. Overall, the current literature tentatively suggests the involvement of lipids in the pathogenesis of anxiety disorders, hinting at potential prospects for future pharmacological interventions.

3.
Front Immunol ; 15: 1374301, 2024.
Article in English | MEDLINE | ID: mdl-38835765

ABSTRACT

Background: Human immunodeficiency virus (HIV) affects nearly 40 million people globally, with roughly 80% of all people living with HIV receiving antiretroviral therapy. Antiretroviral treatment suppresses viral load in peripheral tissues but does not effectively penetrate the blood-brain barrier. Thus, viral reservoirs persist in the central nervous system and continue to produce low levels of inflammatory factors and early viral proteins, including the transactivator of transcription (Tat). HIV Tat is known to contribute to chronic neuroinflammation and synaptodendritic damage, which is associated with the development of cognitive, motor, and/or mood problems, collectively known as HIV-associated neurocognitive disorders (HAND). Cannabinoid anti-inflammatory effects are well documented, but therapeutic utility of cannabis remains limited due to its psychotropic effects, including alterations within brain regions encoding reward processing and motivation, such as the nucleus accumbens. Alternatively, inhibiting monoacylglycerol lipase (MAGL) has demonstrated therapeutic potential through interactions with the endocannabinoid system. Methods: The present study utilized a reward-related operant behavioral task to quantify motivated behavior in female Tat transgenic mice treated with vehicle or MAGL inhibitor MJN110 (1 mg/kg). Brain tissue was collected to assess dendritic injury and neuroinflammatory profiles, including dendritic microtubule-associated protein (MAP2ab) intensity, microglia density, microglia morphology, astrocyte density, astrocytic interleukin-1ß (IL-1ß) colocalization, and various lipid mediators. Results: No significant behavioral differences were observed; however, MJN110 protected against Tat-induced dendritic injury by significantly upregulating MAP2ab intensity in the nucleus accumbens and in the infralimbic cortex of Tat(+) mice. No or only minor effects were noted for Iba-1+ microglia density and/or microglia morphology. Further, Tat increased GFAP+ astrocyte density in the infralimbic cortex and GFAP+ astrocytic IL-1ß colocalization in the nucleus accumbens, with MJN110 significantly reducing these measures in Tat(+) subjects. Lastly, selected HETE-related inflammatory lipid mediators in the striatum were downregulated by chronic MJN110 treatment. Conclusions: These findings demonstrate anti-inflammatory and neuroprotective properties of MJN110 without cannabimimetic behavioral effects and suggest a promising alternative to cannabis for managing neuroinflammation.


Subject(s)
HIV-1 , Mice, Transgenic , Monoacylglycerol Lipases , Neuroinflammatory Diseases , Animals , Mice , HIV-1/physiology , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/etiology , Female , Monoacylglycerol Lipases/antagonists & inhibitors , Monoacylglycerol Lipases/metabolism , tat Gene Products, Human Immunodeficiency Virus/metabolism , HIV Infections/drug therapy , Humans , Brain/drug effects , Brain/metabolism , Brain/virology , Brain/pathology , Disease Models, Animal , Microglia/drug effects , Microglia/metabolism , AIDS Dementia Complex/drug therapy
4.
Nutr J ; 23(1): 61, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38862960

ABSTRACT

BACKGROUND: The Mediterranean diet (MedDiet) has demonstrated efficacy in preventing age-related cognitive decline and modulating plasma concentrations of endocannabinoids (eCBs) and N-acylethanolamines (NAEs, or eCB-like compounds), which are lipid mediators involved in multiple neurological disorders and metabolic processes. Hypothesizing that eCBs and NAEs will be biomarkers of a MedDiet intervention and will be related to the cognitive response, we investigated this relationship according to sex and apolipoprotein E (APOE) genotype, which may affect eCBs and cognitive performance. METHODS: This was a prospective cohort study of 102 participants (53.9% women, 18.8% APOE-ɛ4 carriers, aged 65.6 ± 4.5 years) from the PREDIMED-Plus-Cognition substudy, who were recruited at the Hospital del Mar Research Institute (Barcelona). All of them presented metabolic syndrome plus overweight/obesity (inclusion criteria of the PREDIMED-Plus) and normal cognitive performance at baseline (inclusion criteria of this substudy). A comprehensive battery of neuropsychological tests was administered at baseline and after 1 and 3 years. Plasma concentrations of eCBs and NAEs, including 2-arachidonoylglycerol (2-AG), anandamide (AEA), oleoylethanolamide (OEA), palmitoylethanolamide (PEA), and N-docosahexaenoylethanolamine (DHEA), were also monitored. Baseline cognition, cognitive changes, and the association between eCBs/NAEs and cognition were evaluated according to gender (crude models), sex (adjusted models), and APOE genotype. RESULTS: At baseline, men had better executive function and global cognition than women (the effect size of gender differences was - 0.49, p = 0.015; and - 0.42, p = 0.036); however, these differences became nonsignificant in models of sex differences. After 3 years of MedDiet intervention, participants exhibited modest improvements in memory and global cognition. However, greater memory changes were observed in men than in women (Cohen's d of 0.40 vs. 0.25; p = 0.017). In men and APOE-ε4 carriers, 2-AG concentrations were inversely associated with baseline cognition and cognitive changes, while in women, cognitive changes were positively linked to changes in DHEA and the DHEA/AEA ratio. In men, changes in the OEA/AEA and OEA/PEA ratios were positively associated with cognitive changes. CONCLUSIONS: The MedDiet improved participants' cognitive performance but the effect size was small and negatively influenced by female sex. Changes in 2-AG, DHEA, the OEA/AEA, the OEA/PEA and the DHEA/AEA ratios were associated with cognitive changes in a sex- and APOE-dependent fashion. These results support the modulation of the endocannabinoid system as a potential therapeutic approach to prevent cognitive decline in at-risk populations. TRIAL REGISTRATION: ISRCTN89898870.


Subject(s)
Cognition , Diet, Mediterranean , Endocannabinoids , Genotype , Metabolic Syndrome , Humans , Endocannabinoids/blood , Female , Male , Diet, Mediterranean/statistics & numerical data , Aged , Metabolic Syndrome/genetics , Cognition/physiology , Prospective Studies , Middle Aged , Arachidonic Acids/blood , Ethanolamines/blood , Polyunsaturated Alkamides/blood , Sex Factors , Glycerides/blood , Apolipoproteins E/genetics , Oleic Acids/blood , Amides , Biomarkers/blood , Palmitic Acids/blood
5.
Gut Microbes ; 16(1): 2335879, 2024.
Article in English | MEDLINE | ID: mdl-38695302

ABSTRACT

Dietary omega-3 polyunsaturated fatty acids (n-3 PUFAs) and the gut microbiome affect each other. We investigated the impact of supplementation with Buglossoides arvensis oil (BO), rich in stearidonic acid (SDA), on the human gut microbiome. Employing the Mucosal Simulator of the Human Intestinal Microbial Ecosystem (M-SHIME), we simulated the ileal and ascending colon microbiomes of four donors. Our results reveal two distinct microbiota clusters influenced by BO, exhibiting shared and contrasting shifts. Notably, Bacteroides and Clostridia abundance underwent similar changes in both clusters, accompanied by increased propionate production in the colon. However, in the ileum, cluster 2 displayed a higher metabolic activity in terms of BO-induced propionate levels. Accordingly, a triad of bacterial members involved in propionate production through the succinate pathway, namely Bacteroides, Parabacteroides, and Phascolarctobacterium, was identified particularly in this cluster, which also showed a surge of second-generation probiotics, such as Akkermansia, in the colon. Finally, we describe for the first time the capability of gut bacteria to produce N-acyl-ethanolamines, and particularly the SDA-derived N-stearidonoyl-ethanolamine, following BO supplementation, which also stimulated the production of another bioactive endocannabinoid-like molecule, commendamide, in both cases with variations across individuals. Spearman correlations enabled the identification of bacterial genera potentially involved in endocannabinoid-like molecule production, such as, in agreement with previous reports, Bacteroides in the case of commendamide. This study suggests that the potential health benefits on the human microbiome of certain dietary oils may be amenable to stratified nutrition strategies and extend beyond n-3 PUFAs to include microbiota-derived endocannabinoid-like mediators.


Subject(s)
Bacteria , Endocannabinoids , Gastrointestinal Microbiome , Humans , Gastrointestinal Microbiome/drug effects , Bacteria/classification , Bacteria/metabolism , Bacteria/isolation & purification , Bacteria/genetics , Endocannabinoids/metabolism , Colon/microbiology , Colon/metabolism , Ileum/microbiology , Ileum/metabolism , Fatty Acids, Omega-3/metabolism , Plant Oils/metabolism , Plant Oils/pharmacology , Dietary Supplements , Adult , Male
6.
Article in English | MEDLINE | ID: mdl-38770686

ABSTRACT

Background: Cannabidiol (CBD) has been proposed to have a therapeutic potential over a wide range of neuropsychiatric disorders, including substance use disorders. Pre-clinical evidence suggests that CBD can increase anandamide (AEA) plasma concentration, possibly mediating some of its therapeutic properties. Whether CBD exerts such an effect on AEA in individuals with cocaine use disorder (CUD) remains unknown. Aims: To explore the sustained effects of daily CBD administration on AEA plasma concentrations compared with placebo in CUD. Methods: We used data from a randomized, double-blind, placebo-controlled trial evaluating CBD's efficacy in CUD. Seventy-eight individuals were randomized to receive a daily oral dose of 800 mg CBD (n = 40) or a placebo (n = 38). Participants stayed in an inpatient detoxification setting for 10 days, after which they were followed in an outpatient setting for 12 weeks. AEA plasma concentration was measured at baseline and at 23-h post CBD ingestion on day 8 and week 4. A generalized estimating equation model was used to assess CBD's effects on AEA, and sensitivity analyses were computed using Bayesian linear regressions. Results: Sixty-four participants were included in the analysis. Similar mean AEA plasma concentrations in both treatment groups (p = 0.357) were observed. At day 8, mean AEA plasma concentrations (± standard deviation) were 0.26 (± 0.07) ng/mL in the CBD group and 0.29 (± 0.08) ng/mL in the placebo group (p = 0.832; Bayes factor [BF] = 0.190). At week 4, they were 0.27 (± 0.09) ng/mL in the CBD group and 0.30 (± 0.09) ng/mL in the placebo group (p = 0.181; BF = 0.194). Conclusion: While not excluding any potential acute and short-term effect, daily CBD administration did not exert a sustained impact on AEA plasma concentrations in individuals with CUD compared with placebo. Registration: clinicaltrials.gov (NCT02559167).

7.
Front Pharmacol ; 15: 1395156, 2024.
Article in English | MEDLINE | ID: mdl-38720772

ABSTRACT

Approximately 80% of all malignant brain tumors are gliomas, which are primary brain tumors. The most prevalent subtype of glioma, glioblastoma multiforme (GBM), is also the most deadly. Chemotherapy, immunotherapy, surgery, and conventional pharmacotherapy are currently available therapeutic options for GBM; unfortunately, these approaches only prolong the patient's life by 5 years at most. Despite numerous intensive therapeutic options, GBM is considered incurable. Accumulating preclinical data indicate that overt antitumoral effects can be induced by pharmacologically activating endocannabinoid receptors on glioma cells by modifying important intracellular signaling cascades. The complex mechanism underlying the endocannabinoid receptor-evoked antitumoral activity in experimental models of glioma may inhibit the ability of cancer cells to invade, proliferate, and exhibit stem cell-like characteristics, along with altering other aspects of the complex tumor microenvironment. The exact biological function of the endocannabinoid system in the development and spread of gliomas, however, is remains unclear and appears to rely heavily on context. Previous studies have revealed that endocannabinoid receptors are present in the tumor microenvironment, suggesting that these receptors could be novel targets for the treatment of GBM. Additionally, endocannabinoids have demonstrated anticancer effects through signaling pathways linked to the classic features of cancer. Thus, the pharmacology of endocannabinoids in the glioblastoma microenvironment is the main topic of this review, which may promote the development of future GBM therapies.

8.
J Anesth Analg Crit Care ; 4(1): 33, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745258

ABSTRACT

Pain is a complex phenomenon, and basal ganglia circuitry integrates many aspects of pain including motor, emotional, autonomic, and cognitive responses. Perturbations in dopamine (DA) signaling are implicated in the pathogenesis of chronic pain due to its involvement in both pain perception and relief. Several lines of evidence support the role of endocannabinoids (eCBs) in the regulation of many electrical and chemical aspects of DAergic neuron function including excitability, synaptic transmission, integration, and plasticity. However, eCBs play an even more intricate and intimate relationship with DA, as indicated by the adaptive changes in the eCB system following DA depletion. Although the precise mechanisms underlying DA control on pain are not fully understood, given the high correlation of eCB and DAergic system, it is conceivable that eCBs may be part of these mechanisms.In this brief survey, we describe the reciprocal regulation of eCB-DA neurotransmission with a particular emphasis on the actions of eCBs on ionic and synaptic signaling in DAergic neurons mediated by CB receptors or independent on them. Furthermore, we analyze the eCB-DA imbalance which characterizes pain condition and report the implications of reduced DA levels for pain in Parkinson's disease. Lastly, we discuss the potential of the eCB-DA system in the development of future therapeutic strategies for the treatment of pain.

10.
Cereb Cortex ; 34(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38802684

ABSTRACT

The ε4 allele of the APOE gene heightens the risk of late onset Alzheimer's disease. ε4 carriers, may exhibit cognitive and neural changes early on. Given the known memory-enhancing effects of physical exercise, particularly through hippocampal plasticity via endocannabinoid signaling, here we aimed to test whether a single session of physical exercise may benefit memory and underlying neurophysiological processes in young ε3 carriers (ε3/ε4 heterozygotes, risk group) compared with a matched control group (homozygotes for ε3). Participants underwent fMRI while learning picture sequences, followed by cycling or rest before a memory test. Blood samples measured endocannabinoid levels. At the behavioral level, the risk group exhibited poorer associative memory performance, regardless of the exercising condition. At the brain level, the risk group showed increased medial temporal lobe activity during memory retrieval irrespective of exercise (suggesting neural compensatory effects even at baseline), whereas, in the control group, such increase was only detectable after physical exercise. Critically, an exercise-related endocannabinoid increase correlated with task-related hippocampal activation in the control group only. In conclusion, healthy young individuals carrying the ε4 allele may present suboptimal associative memory performance (when compared with homozygote ε3 carriers), together with reduced plasticity (and functional over-compensation) within medial temporal structures.


Subject(s)
Alzheimer Disease , Exercise , Magnetic Resonance Imaging , Humans , Alzheimer Disease/genetics , Alzheimer Disease/physiopathology , Alzheimer Disease/diagnostic imaging , Male , Female , Exercise/physiology , Adult , Young Adult , Memory/physiology , Endocannabinoids/genetics , Genetic Predisposition to Disease , Association Learning/physiology , Apolipoprotein E4/genetics , Hippocampus/diagnostic imaging , Hippocampus/physiology , Brain/diagnostic imaging , Brain/physiology , Heterozygote
11.
Psychiatry Res ; 337: 115967, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38796933

ABSTRACT

The role of the endocannabinoid system (ECS) in depression and suicidality has recently emerged. The purpose of the study was to identify changes in plasma endocannabinoid concentrations of several endocannabinoids and correlate them with depressive symptoms and suicidality in patients with severe major depression undergoing electroconvulsive therapy (ECT). The study included 17 patients that were evaluated in four visits at different stages of therapy. At each visit depression, anxiety and suicidality symptoms were assessed and blood samples collected. Several endocannabinoid concentrations increased following six sessions of ECT, as 2-AG (p < 0.05) and LEA (p < 0.01), and following twelve sessions of ECT, as 2-AG (p < 0.05), AEA (p < 0.05), LEA (p < 0.05) and DH-Gly (p < 0.05). Endocannabinoids also correlated with symptoms of depression, anxiety and suicidality at baseline and at the sixth ECT session. Finally, we found one endocannabinoid, l-Gly, that differentiated between remitted and not-remitted patients at the seventh and thirteenth ECT sessions (p < 0.05). Our findings suggest that depression is markedly related to imbalance of the endocannabinoid system, and further regulated by ECT. Plasma endocannabinoids could be promising biomarkers for detection of depression response and remission.


Subject(s)
Depressive Disorder, Major , Electroconvulsive Therapy , Endocannabinoids , Humans , Endocannabinoids/blood , Depressive Disorder, Major/blood , Depressive Disorder, Major/therapy , Female , Male , Middle Aged , Adult , Arachidonic Acids/blood , Aged , Polyunsaturated Alkamides/blood , Glycerides/blood , Oleic Acids/blood , Psychiatric Status Rating Scales , Suicidal Ideation
12.
Cells ; 13(10)2024 May 13.
Article in English | MEDLINE | ID: mdl-38786051

ABSTRACT

The inhibition of endocannabinoid hydrolysis by enzymatic inhibitors may interfere with mechanisms underlying migraine-related pain. The dual FAAH/MAGL inhibitor AKU-005 shows potent inhibitory activity in vitro. Here, we assessed the effect of AKU-005 in a migraine animal model based on nitroglycerin (NTG) administration. Male rats were treated with AKU-005 (0.5 mg/kg, i.p.) or vehicle 3 h after receiving NTG (10 mg/kg, i.p.) or NTG vehicle. One hour later, rats were subjected to the open field test followed by the orofacial formalin test. At the end of the test, we collected serum samples for assessing calcitonin gene-related peptide (CGRP) levels as well as meninges, trigeminal ganglia, and brain areas to assess mRNA levels of CGRP and pro-inflammatory cytokines, and endocannabinoid and related lipid levels. AKU-005 reduced NTG-induced hyperalgesia during the orofacial formalin test but did not influence NTG-induced changes in the open field test. It significantly reduced serum levels of CGRP, CGRP, and pro-inflammatory cytokine mRNA levels in the meninges, trigeminal ganglia, and central areas. Surprisingly, AKU-005 caused no change in endocannabinoids and related lipids in the regions evaluated. The present findings suggest that AKU-005 may have anti-migraine effects by reducing CGRP synthesis and release and the associated inflammatory events. This effect, however, does not seem mediated via an interference with the endocannabinoid pathway.


Subject(s)
Amidohydrolases , Calcitonin Gene-Related Peptide , Hyperalgesia , Trigeminal Ganglion , Animals , Male , Hyperalgesia/drug therapy , Rats , Amidohydrolases/antagonists & inhibitors , Amidohydrolases/metabolism , Amidohydrolases/genetics , Calcitonin Gene-Related Peptide/metabolism , Calcitonin Gene-Related Peptide/blood , Trigeminal Ganglion/drug effects , Trigeminal Ganglion/metabolism , Rats, Sprague-Dawley , Monoacylglycerol Lipases/antagonists & inhibitors , Monoacylglycerol Lipases/metabolism , Endocannabinoids/metabolism , Nitroglycerin/pharmacology , Disease Models, Animal , Cytokines/metabolism , Cytokines/blood , Migraine Disorders/drug therapy , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Oligopeptides , Salivary Proteins and Peptides
13.
medRxiv ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38798603

ABSTRACT

Hermansky-Pudlak syndrome (HPS) is a group of rare genetic disorders, with several subtypes leading to fatal adult-onset pulmonary fibrosis (PF) and no effective treatment. Circulating biomarkers detecting early PF have not been identified. We investigated whether endocannabinoids could serve as blood biomarkers of PF in HPS. We measured endocannabinoids in the serum of HPS, IPF, and healthy human subjects and in a mouse model of HPSPF. Pulmonary function tests (PFT) were correlated with endocannabinoid measurements. In a pale ear mouse model of bleomycin-induced HPSPF, serum endocannabinoid levels were measured with and without treatment with zevaquenabant (MRI-1867), a peripheral CB1R and iNOS antagonist. In three separate cohorts, circulating anandamide levels were increased in HPS-1 patients with or without PF, compared to healthy volunteers. This increase was not observed in IPF patients or in HPS-3 patients, who do not have PF. Circulating anandamide (AEA) levels were negatively correlated with PFT. Furthermore, a longitudinal study over the course of 5-14 years with HPS-1 patients indicated that circulating AEA levels begin to increase with the fibrotic lung process even at the subclinical stages of HPSPF. In pale ear mice with bleomycin-induced HpsPF, serum AEA levels were significantly increased in the earliest stages of PF and remained elevated at a later fibrotic stage. Zevaquenabant treatment reduced the increased AEA levels and attenuated progression in bleomycin-induced HpsPF. Circulating AEA may be a prognostic blood biomarker for PF in HPS-1 patients. Further studies are indicated to evaluate endocannabinoids as potential surrogate biomarkers in progressive fibrotic lung diseases.

14.
Brain Sci ; 14(4)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38672009

ABSTRACT

Stress-related mental disorders have become increasingly prevalent, thus endangering mental health worldwide. Exploring stress-associated brain alterations is vital for understanding the possible neurobiological mechanisms underlying these changes. Based on existing evidence, the brain endogenous cannabinoid system (ECS) plays a significant role in the stress response, and disruptions in its function are associated with the neurobiology of various stress-related disorders. This study primarily focuses on investigating the impact of chronic unpredictable stress (CUS) on the expression of hippocampal cannabinoid type 1 (CB1) receptors, part of the ECS, in adult male and female Wistar rats. Additionally, it explores whether environmental enrichment (EE) initiated during adolescence could mitigate the CUS-associated alterations in CB1 expression. Wistar rats, shortly after weaning, were placed in either standard housing (SH) or EE conditions for a duration of 10 weeks. On postnatal day 66, specific subgroups of SH or EE animals underwent a 4-week CUS protocol. Western blot (WB) analysis was conducted in the whole hippocampus of the left brain hemisphere to assess total CB1 protein expression, while immunohistochemistry (IHC) was performed on the right hemisphere to estimate the expression of CB1 receptors in certain hippocampal areas (i.e., CA1, CA3 and dentate gyrus-DG). The WB analysis revealed no statistically significant differences in total CB1 protein levels among the groups; however, reduced CB1 expression was found in specific hippocampal sub-regions using IHC. Specifically, CUS significantly decreased CB1 receptor expression in the CA1 and DG of both sexes, whereas in CA3 the CUS-associated decrease was limited to SH males. Interestingly, EE housing proved protective against these reductions. These findings suggest a region and sex-specific endocannabinoid response to chronic stress, emphasizing the role of positive early experiences in the protection of the adolescent brain against adverse conditions later in life.

15.
Br J Pharmacol ; 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38581262

ABSTRACT

BACKGROUND AND PURPOSE: Neurotransmission and neuroinflammation are controlled by local increases in both extracellular ATP and the endocannabinoid 2-arachidonoyl glycerol (2-AG). While it is known that extracellular ATP stimulates 2-AG production in cells in culture, the dynamics and molecular mechanisms that underlie this response remain poorly understood. Detection of real-time changes in eCB levels with the genetically encoded sensor, GRABeCB2.0, can address this shortfall. EXPERIMENTAL APPROACH: 2-AG and arachidonoylethanolamide (AEA) levels in Neuro2a (N2a) cells were measured by LC-MS, and GRABeCB2.0 fluorescence changes were detected using live-cell confocal microscopy and a 96-well fluorescence plate reader. KEY RESULTS: 2-AG and AEA increased GRABeCB2.0 fluorescence in N2a cells with EC50 values of 81 and 58 nM, respectively; both responses were reduced by the cannabinoid receptor type 1 (CB1R) antagonist SR141617 and absent in cells expressing the mutant-GRABeCB2.0. ATP increased only 2-AG levels in N2a cells, as measured by LC-MS, and induced a transient increase in the GRABeCB2.0 signal within minutes primarily via activation of P2X7 receptors (P2X7R). This response was dependent on diacylglycerol lipase ß activity, partially dependent on extracellular calcium and phospholipase C activity, but not controlled by the 2-AG hydrolysing enzyme, α/ß-hydrolase domain containing 6 (ABHD6). CONCLUSIONS AND IMPLICATIONS: Considering that P2X7R activation increases 2-AG levels within minutes, our results show how these molecular components are mechanistically linked. The specific molecular components in these signalling systems represent potential therapeutic targets for the treatment of neurological diseases, such as chronic pain, that involve dysregulated neurotransmission and neuroinflammation.

16.
Eur J Ophthalmol ; : 11206721241247419, 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38613316

ABSTRACT

PURPOSE: To compare the levels of endocannabinoids (EC) in plasma, aqueous humor and tears, cortisol in plasma and aqueous, in primary angle closure glaucoma (PACG) and controls, while comparing the quality of life in both groups. METHODS: A total of 60 patients, ≥40years of age, with a diagnosis of PACG or cataract, 30 in each group were recruited. They were subjected to a detailed ophthalmic evaluation, a WHO Quality of Life Brief Version (WHOQOL-BREF) questionnaire answering and collection of tear, aqueous and blood samples. The levels of endocannabinoids-anandamide (AEA), 2-arachidonoylglycerol (2AG) in plasma, aqueous humor and tears; cortisol in plasma and aqueous humor; and WHO-QOL score in each group were noted. RESULTS: Plasma AEA (p = 0.01) and plasma 2-AG, (p = 0.002) levels were significantly higher in the control group as compared to the PACG group. WHO-QOL score was better in controls (p < 0.001). The EC were in undetectable levels in aqueous. Plasma and aqueous cortisol were significantly higher in PACG and both had the highest Area under the receiver operating characteristics (AUROC) curve value for differentiating PACG from controls. Tear 2AG and tear AEA had a moderately strong positive correlation with plasma 2-AG. Females had insignificantly higher levels of plasma and tear endocannabinoids. CONCLUSIONS: Tear endocannabinoids were determined for the first time in PACG and normal with no difference between the two groups. Plasma and aqueous cortisol levels are a differentiating factor between normal and glaucoma patients with plasma endocannabinoids being remarkably higher in normals. Quality of life in glaucoma patients with high cortisol levels is poorer.

17.
Heliyon ; 10(7): e28467, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38560270

ABSTRACT

Endocannabinoids (eCBs) exert considerable influence over energy metabolism, lipid metabolism, and glucose metabolism within the human body. Among the most biologically active cannabinoids identified thus far are 2-arachidonoylglycerol (2-AG), arachidonoyl ethanolamide (AEA), 1-stearoylglycerol (1-SRG), and stearoyl ethanolamide (SEA), which are derived from arachidonic acid (AA) and stearic acid (SA). However, despite the unique in bioactivities exhibited by eCBs, their determination in plasma has been hindered by the lack of sensitive analytical methods. The aim of this study was to develop and validate a highly sensitive and rapid method using ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) for accurate measurement of AEA, SEA, 2-AG, 1-SRG, AA, and SA levels in human plasma samples. Sample preparation involved a protein precipitation method and a methyl tert-butyl ether liquid-liquid extraction method. Chromatographic separation was accomplished by utilizing an ACQUITY UPLC BEH C8 column with a mobile phase of acetonitrile containing 0.1% formic acid and water containing 0.1% formic acid, flowing at a rate of 0.35 mL/min. AA-d8, 2-AG-d5, and AEA-d8 were selected as deuterated internal standards. The analytes were determined with MRM in both positive and negative ion mode. The lower limit of quantification ranged from 0.1 to 400 ng/mL, and the correlation coefficient (R2) was >0.99. Inter-day and intra-day precision exhibited values of 0.55-13.29% and 0.62%-13.90%, respectively. Recovery and matrix effect were within the range of 77.7%-109.7%, and 90.0%-113.5%, respectively. Stability tests confirmed the acceptability of all analytes. To demonstrate the effectiveness of the approach, it was implemented to assess and compare plasma samples from healthy volunteers (n = 49) and individuals with non-alcoholic fatty liver disease (NAFLD) (n = 62). The study revealed significant differences in AEA, SEA, AA, and SA levels between the two groups.

18.
Front Neurosci ; 18: 1366216, 2024.
Article in English | MEDLINE | ID: mdl-38595974

ABSTRACT

Introduction: Inhalant abuse is an important health issue especially among children and adolescents who often encounter these agents in the home. Research into the neurobiological targets of inhalants has lagged behind that of other drugs such as alcohol and psychostimulants. However, studies from our lab and others have begun to reveal how inhalants such as the organic solvent toluene affect neurons in key addiction related areas of the brain including the ventral tegmental area, nucleus accumbens and medial prefrontal cortex. In the present study, we extend these findings and examine the effect of toluene on electrophysiological responses of pyramidal neurons in the basolateral amygdala BLA, a region important for generating emotional and reward based information needed to guide future behavior. Methods: Whole-cell patch-clamp electrophysiology recordings of BLA pyramidal neurons in rat brain slices were used to assess toluene effects on intrinsic excitability and excitatory glutamatergic synaptic transmission. Results: Acute application of 3 mM but not 0.3 mM toluene produced a small but significant (~20%) increase in current-evoked action potential (AP) firing that reversed following washout of the toluene containing solution. The change in firing during exposure to 3 mM toluene was accompanied by selective changes in AP parameters including reduced latency to first spike, increased AP rise time and decay and a reduction in the fast after-hyperpolization. To examine whether toluene also affects excitatory synaptic signaling, we expressed channelrhodopsin-2 in medial prefrontal cortex neurons and elicited synaptic currents in BLA neurons via light pulses. Toluene (3 mM) reduced light-evoked AMPA-mediated synaptic currents while a lower concentration (0.3 mM) had no effect. The toluene-induced reduction in AMPA-mediated BLA synaptic currents was prevented by the cannabinoid receptor-1 antagonist AM281. Discussion: These findings are the first to demonstrate effects of acute toluene on BLA pyramidal neurons and add to existing findings showing that abused inhalants such as toluene have significant effects on neurons in brain regions involved in natural and drug induced reward.

19.
Biomolecules ; 14(4)2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38672462

ABSTRACT

Microgravity is one of the main stressors that astronauts are exposed to during space missions. This condition has been linked to many disorders, including those that feature dysfunctional immune homeostasis and inflammatory damage. Over the past 30 years, a significant body of work has been gathered connecting weightlessness-either authentic or simulated-to an inefficient reaction to pathogens, dysfunctional production of cytokines and impaired survival of immune cells. These processes are also orchestrated by a plethora of bioactive lipids, produced by virtually all cells involved in immune events, which control the induction, magnitude, outcome, compartmentalization and trafficking of immunocytes during the response to injury. Despite their crucial importance in inflammation and its modulation, however, data concerning the role of bioactive lipids in microgravity-induced immune dysfunctions are surprisingly scarce, both in quantity and in variety, and the vast majority of it focuses on two lipid classes, namely eicosanoids and endocannabinoids. The present review aims to outline the accumulated knowledge addressing the effects elicited by microgravity-both simulated and authentic-on the metabolism and signaling of these two prominent lipid groups in the context of immune and inflammatory homeostasis.


Subject(s)
Immune System , Weightlessness , Humans , Immune System/metabolism , Immune System/immunology , Animals , Endocannabinoids/metabolism , Eicosanoids/metabolism , Lipid Metabolism , Inflammation/metabolism , Inflammation/immunology , Signal Transduction , Space Flight , Lipids/immunology
20.
Psychoneuroendocrinology ; 164: 107007, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38503195

ABSTRACT

The endogenous cannabinoid (ECB) system is a small molecule lipid signalling system that is involved in stress response activation and is associated with PTSD, but it is unclear whether salivary ECBs are part of the sympathetic nervous system response to stress. We conducted an adapted trauma film paradigm, where participants completed a cold pressor test (or control) while watching a 10-minute trauma film. We also collected saliva and hair samples and tested them for ECBs, cortisol, and salivary alpha amylase (sAA). As hypothesised, there were significant positive correlations between sAA activity and salivary ECB levels, particularly 2-arachidonoyl glycerol (2-AG), though ECBs were not correlated with sAA stress reactivity. Participants who had a significant cortisol response to the trauma film/stressor reported less intrusive memories, which were also less distressing and less vivid. This effect was moderated by arachidonoyl ethanolamide (AEA), where decreases in AEA post-stress were associated with more intrusive memories in cortisol non-responders only. This study provides new evidence for the role of ECBs in the sympathetic nervous system.


Subject(s)
Arachidonic Acids , Hydrocortisone , Salivary alpha-Amylases , Humans , Endocannabinoids , Polyunsaturated Alkamides , Saliva
SELECTION OF CITATIONS
SEARCH DETAIL
...